Vision, Modeling, and Visualization (2019)
H.-J. Schulz, M. Teschner, and M. Wimmer (Eds.)

Reconfigurable Snapshot HDR Imaging Using
Coded Masks and Inception Network Supplementary

Masheal Alghamdi'®, Qiang Fu

, Ali Thabet

and Wolfgang Heidrich

King Abdullah University of Science and Technology (KAUST), Saudi Arabia

1. Calibration Network

Our full calibration network is depicted in Figure 1. Given N = 15
randomly captured raw CFA coded exposure images, our network
learns an estimate & of the original mask ®. Directly estimating
& is a challenging task, to help our network converge, we regular-
ize the process by making the network also learn to demosaick the
green channel of all N images. We jointly minimize the ¢,-loss of
both & and G defined in Eq.(1). We add a regularizing parameter u
to control the effect of our green channel demosaicking.

H W

w3, ot -0

Are w2
- G(l7 J) | .
During training phase we experiments with N= 15, 10 and 15, table
1 show the training loss as defined in eq. 1. Clearly larger N leads to
lower training error, however it will increase the number of network
parameters and memory usage.

L (@,9,G,6) =
M

+u|G(i, j)

Table 1: Calibration training loss for different N. Larger N value
have a better training loss

N 5 10 15
Training loss | 0.050 | 0.006 | 0.002

2. Calibration Results

Our calibration network first learns the mask from a series of ran-
domly selected LDR images. For a total of 260 images in the testing
set we randomly select 15 HDR images, re-size them to 768 x 1024,
and perform 90th percentile normalization as in eq. 2. We select a
camera model from the 67 camera models that we trained for (for
more information refer to section 3.4 of the main paper). We simu-
late the corresponding 15 coded LDR images given a ground truth
mask, which has a continuous uniform random distribution in the
range [0, 1]. The exposure time is fixed for most of the images as
a baseline, where we set the exposure time depends on the cho-
sen camera , and the normalized HDR scenes such that most of the
images are properly exposed (the number of saturated and under-
exposed pixels are minimized). While 3 or 4 of which are randomly

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

chosen to have 1 or 2 stops more exposure. Such an operation fa-
cilitates the regions with low values in the mask. We also take into
account the Bayer color filters in the simulated LDR images. We in-
put the 15 simulated coded LDR images to the calibration network,
and the network outputs the learned mask, as well as the demo-
saicked green channel of the LDR image. In Figure 2 we show an
example of our calibration results. We repeat the previous test for
260 times the measurements mean absolute error (MAE = 0.037),
mean squared error (MSE = 0.002), and the standard deviation
(STD =0.03).

In real experiments, our calibration network works well in com-
mon illuminations, e.g. sunlight, indoor fluorescent light, tungsten
light etc. The camera is set without any gain to avoid noise ampli-
fication. In addition, there should be no large overexposed areas in
the calibration images.

3. Dataset Preprocessing

We divide the HDR Core into 910 training and 260 testing im-
ages. It is common practice in deep learning to normalize input data
within a constant range. In our case, we use the 90th percentile nor-
malization defined in (2), where /; . is the i-th pixel in color channel
¢, p is the target scalar for the 90th percentile of each images, and
poo is the 90th percentile of in the original image.

H(lie) = lie % ﬁ.)

Our next step is to simulate the mask encoding. First, we modu-
late light arriving at the sensor by multiplying the radiance values
of the input augmented HDR image by a randomly generated trans-
mittance mask. Then we use a noise model proposed by Konnik
and Welsh [KW14] to simulate various realistic noises, coded and
filtered by the Bayer filters to obtain the raw image. For the MIT
Places dataset and the HD YouTube frames we follow exactly the
same preprocessing.

We prepare the training data offline. We use the full resolution
images from the MIT Places dataset to avoid ringing artifacts re-
sulting from downsampling. We encode each image with a random
mask, apply the noise simulation and then crop 16 random patches
of size 128 x 128 x 3. Each image from the MIT Places dataset is

https://orcid.org/0000-0002-7866-3117
https://orcid.org/0000-0001-6395-8521
https://orcid.org/0000-0001-7513-0748
https://orcid.org/0000-0002-4227-8508

M. Alghamdi, Q. Fu, A. Thabet & W. Heidrich / Reconfigurable HDR

Tx7
Convolutions
#64
3x3
Convolutions
#64
inception block

demosaiced
G channel

#N +1

inception block
2 :
Convolutions

\
inception block

#N CFA LDR

Coded Mask @

Figure 1: Calibration inception network. Given N = 15 raw CFA coded exposure images, our network learns an estimate $ of the original
mask ®. Our network consists of 2 convolutional layers followed by 8 inception blocks (illustrated in main paper) and followed by a
convolutional layer. The numbers of filters are indicated in each convolution layer in our implementation.

GT

ours

abs(Err), MAE = 0.03

Figure 2: An example of simulated calibration results by our trained network. Left: ground truth mask, Middle: network estimated mask.

right: absolute error.

augmented with one random Gaussian mask and one random uni-
form mask, resulting in 40M crops for both types of masks. For
the YouTube HD frames we follow the same processing, however,
each image is augmented with two random unifrom mask and two
LF Gaussian mask, resulting in 1.2M crops.

For the HDR core training set we use the 910 samples to gener-
ate 120K coded LDR images (16 random patches of size 128 x 128
are cropped randomly in each coded image). For each image we
randomly select a camera model, set the exposure, and then ran-
domly select a random mask that corresponds to a certain distance
between the binary mask and the sensor, which controls statistics
of the mask pattern.

3.1. Hyperparameter Search

We fix the parameters of all the inception blocks in our implemen-
tation, such that the input and output of each inception block has
64 channels.

We use the Xavier uniform initializer for all weights [GB10]. For
the loss function parameter A we examine the following values, A
=[0.1,0.3,0.5,0.7, 0.9].

For the Lygg loss, we experiment using the features from
VGGg [SZ14]:

e Last convolutional layer before the first max-pooling layer
‘convl-2’.

e Last convolutional layer of VGG g before the last max-pooling
layer ‘conv5-4°.

e All the convolutional layer proceeding max-pooling layers (five
in total).

For mask calibration we use a total number of N = 15 randomly
captured raw coded LDR images as inputs to the network. For
learning we use the ADAM optimizer [KB14]. We set a learning
rate for all networks to 107>, We use the Keras API on top of
TensorFlow [C*15]. We train and test all the networks using two
GeForce GTX GPU. After the training is finished, our HDR recon-
struction network runs on both real and synthetic data.

3.2. Pre-Training and Fine-Tuning

We train our network in three stages. First on the MIT Places
dataset we use the ¢, norm. We train this network for around 3M
gradient updates. Then we use the learned wights to train on the

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

M. Alghamdi, Q. Fu, A. Thabet & W. Heidrich / Reconfigurable HDR

YouTube HD (16-bit) dataset with the following loss function:
Lypr(x,8) = ALy (x,%) + (1 = A)Lygg(x,%). 3)

For this stage we train for different A values and different VGGg
features as mentioned above for 2M steps. After that we compute
the HDR-VDP Qjcore for all models on the YouTube HD data set.
The highest HDR-VDP Qscore is obtained with A = 0.3, and by us-
ing all the convolutional layer proceeding max-pooling layers (five
in total) of VGG|g9. The best model is fine-tuned on HDR-Core
dataset for another 2.5M steps. For training we used patch size of
16 on the Places dataset. For HDR-Core dataset and YouTube HD
data set we set the patch size to 4.

References

[C*15] CHOLLET F., ET AL.: Keras: Deep learning library for theano
and tensorflow., 2015. URL: https://keras.io. 2

[GB10] GLOROT X., BENGIO Y.: Understanding the difficulty of train-
ing deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics (2010),
pp. 249-256. 2

[KB14] KINGMA D. P, BA J.: ADAM: A method for stochastic opti-
mization. arXiv preprint (2014). arXiv:1412.6980. 2

[KW14] KONNIK M., WELSH J.: High-level numerical simulations of
noise in CCD and CMOS photosensors: review and tutorial. arXiv
preprint (2014). arXiv:1412.4031. 1

[SZ14] SIMONYAN K., ZISSERMAN A.: Very deep convolutional net-
works for large-scale image recognition. arXiv preprint (2014). arXiv:
1409.1556. 2

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

https://keras.io
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.4031
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

