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Abstract

Visible light tomography is a promising and increasingly
popular technique for fluid imaging. However, the use of a
sparse number of viewpoints in the capturing setups makes
the reconstruction of fluid flows very challenging. In this
paper, we present a state-of-the-art 4D tomographic recon-
struction framework that integrates several regularizers into
a multi-scale matrix free optimization algorithm. In addition
to existing regularizers, we propose two new regularizers for
improved results: a regularizer based on view interpolation
of projected images and a regularizer to encourage reprojec-
tion consistency. We demonstrate our method with extensive
experiments on both simulated and real data.

1. Introduction

Capturing fluid flows is a challenging reconstruction prob-
lem that is of great interest in computer vision and many sci-
entific fields, e.g. for retrieving the fluid properties (e.g. tem-
perature, species concentration, density and velocity) [43],
validating simulation results [14, 40] or allowing flow editing
and re-simulation [20].

A number of fluid imaging methods have been developed
to tackle the different usage scenarios (we provide a brief lit-
erature review in the next section). Among those techniques,
visible light tomography is the most used in computer vi-
sion and also finds frequent use in scientific imaging appli-
cations. In visible light tomography, simultaneous video
sequences of the fluid are acquired from different angles,
using either monochromatic or color cameras. From those
videos tomographic reconstruction algorithms can be ap-
plied to reconstruct a sequence of 3D volumes, representing
the densities of the fluid at different times. Some proposed
approaches reconstruct the volumes at each time frame in-
dependently of each other, while others jointly optimize all
frames in a single time-dependent reconstruction [20, 13, 14].
This second approach allows the introduction of temporal
priors that improve the reconstruction quality. However, re-
constructing complex three-dimensional fluid flows using
visible-light tomography remains a difficult task for several
reasons: First, many phenomena like absorption, scattering,
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Figure 1: With sparse view videos as input (yellow box), To-
moFluid generates three types of results: Novel view images for
each time frame (green box) in the first row, physical-based tem-
porally coherent density volumes and velocity fields (illustrated
with streamlines) in the last row. Comparison between ground truth
(GT) and different approaches is shown in the middle.

refraction, occlusion impact the captured data. Second, the
involved setups are often sophisticated and require a difficult
calibration step. Finally, the data acquired is typically very
sparse with few cameras capturing the fluid flow. Indeed,
usually the cameras are placed relatively close to the fluid,
which limits the number of cameras that can be used. Also,
many real-world fluid experiments in scientific imaging take
place inside special containers, and it is difficult or impossi-
ble to add many optical access windows to these containers
without affecting the fluid flow. Finally, many fluid phenom-
ena of interest are quite fast, which necessitates the use of
high-speed or ultra high-speed cameras that add a significant
expense to the setup (e.g. $80k or more per camera). For
these reasons, it is often only feasible to use 2 or 3 cameras
for an experiment. This leads to an under-constrained re-
construction problem that heavily relies on the use of good
regularizers to produce satisfactory results.
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As shown in Figure 1, our work aims to reconstruct a
4D sequence of fluid flow from a sparse set of captured
videos of this fluid. Our proposed approach is based on
three primary observations. (1) In visible-light tomography,
we often use very narrow fields of view, so that the camera
geometry is almost orthographic, and thus the projection at
180° is significantly similar to the mirrored projection at 0°.
(2) Although different points in the volume move differently
in the image plane according to the camera parallax, the
apparent motion of each point in the images is smooth with
changes in viewing angle. (3) Furthermore, each pixel in
one of the projection images corresponds to a line integral
of the volume densities along a ray, and since the volume
densities are the same in all views, this suggests that views
can be interpolated with optimal transport-type methods.
In practice, however, we found that direct interpolation of
intensity images produces superior results (see supplemental
material for more details).

Based on these observations, we propose an approach
that can reconstruct high quality fluid flows from a limited
number of input views (two or three). In particular, the main
contributions of our work are:

• We built an effective framework for the reconstruction
of fluid flows captured by a sparse set of high speed
cameras. This framework provides both the 4D density
field of the fluid and its deformation field.

• We propose a new regularizer based on view-
interpolation and a reprojection consistency constraint
that we incorporate in our framework.

• We extensively validate our method using both simu-
lated and real experimental data from a range of differ-
ent application scenarios.

2. Related Work

Dynamic Fluid Capture To characterize fluid flows, sev-
eral modalities have been used to measure either 3D scalar-
fields (e.g. temperature, species concentration and density)
or 3D vector fields (e.g. velocity and vorticity) [43]. Planar
Laser Induced Fluorescence (PLIF) [11], for example, mea-
sures the concentration of a fluorescent dye in fluid flows. A
3D extension of this technique has also been proposed [46].
To capture the 3D density field of the fluid several scan-
ning approaches have been developed like laser line scan-
ning [25, 17] or compressive structured light scanning [22].
However, the characterization of fluid flows requires the
retrieval of the 3D velocity vector field. In the literature,
two families of techniques have been used to measure the
velocity field of a fluid: the tracer-based approaches and
the tracer-free methods. The first family of methods con-
sists of introducing tracers (particles, dye, etc.) in the fluid,

then the velocity of the fluid is retrieved by tracking these
tracers. Particle Image Velocimetry (PIV) and its differ-
ent variants, such as tomographic PIV [15], synthetic aper-
ture PIV [6], structured-light PIV [48, 47, 1] and plenoptic
PIV [16, 41] are widely used in different fields to character-
ize fluid flows. For tracer-free approaches like Background
Oriented Schlieren tomography (BOS) [19, 4], the phase
change due refractive index differences in the fluid to track
the flow. Most of these approaches retrieve only either the
density field of the fluid or the velocity field. Moreover, they
are specific to a given family of fluid. By using visible light
tomography, we propose to jointly retrieve the density and
the velocity fields of a large family of fluids.

Visible-light tomography In computer vision and graph-
ics, most methods for fluid imaging are based on a tomo-
graphic reconstruction. This approach consists of retrieving
a 3D density field representing the state of the fluid at a
given time, from a set of 2D captured images (projections).
In contrast to the medical field where computed tomography
is based on X-ray scanning, visible-light is used to scan the
fluids. Therefore, visible-light tomography methods were
proposed to reconstruct 3D flames [24, 29], to image gas
flows using Schlieren tomography [5] or to capture turbulent
fluid mixtures using emission tomography [21]. The main
shortcoming of visible light tomography for imaging fluids
is the small number of vie points / projection images due to
constraints in the hardware setup (e.g. cost of the cameras
and space limitations). Usually less than 16 projections are
used in the reconstruction, while in X-ray tomography hun-
dreds or even thousands of projections can be used. This
problem is commonly called the sparse-view tomography
reconstruction problem, and it is heavily ill-posed – often
the number of unknowns (voxels) exceeds the number of
knowns (pixels) by one or two orders of magnitude.

Sparse-view reconstruction In medical X-ray CT appli-
cations, sparse-view scanning has been introduced to reduce
radiation dose and shorten the acquisition time. Several
techniques were proposed to improve the quality of the re-
construction. These methods are based on compressed sens-
ing [38, 8], total variation based regularization [32, 31, 2],
dictionary learning [9, 10, 33] or deep learning [23, 30, 37].
In the medical field, the deep learning approaches outperform
the other methods, thanks to the large amount of available
training data and the limited space of reconstructed shapes.
However, it is very challenging to apply learning approaches
to 4D fluid applications, because of the lack of training data
and the diversity of flows. In addition, the memory consump-
tion and time for training are also potentially serious issues.
Finally, it is very hard to train one network to reconstruct a
wide range of datasets in different application scenarios as
presented in our work.

The sparse-view problem occurs also for dynamic X-ray



reconstructions, since it is impossible to take a large number
of projections representing the same state of the scanned ob-
ject. Zang et al. [52, 53, 50] proposed to jointly reconstruct
the density and the deformation fields, by incorporating some
spatial and temporal priors on these two fields. These ap-
proaches provide accurate reconstructions for the scanned
objects. Nevertheless, the proposed scanning strategy to
improve the reconstruction cannot be applied easily to high-
speed fluid imaging setups, where the cameras have a fixed
position and orientation.

Some attempts to improve the results of sparse tomo-
graphic reconstruction have been also proposed in the fluid
imaging field. Gregson et al. [20] introduced a physically-
based prior to reconstruct incompressible (i.e. divergence-
free) flows. Okabe et al. [36] reconstructed a smoke vol-
ume from a sparse set of projections, by transferring the
appearance information from the captured projections to
novel viewing angles. This statistics-based approach (i.e.
histogram matching and normalization) provides a plausible
visualization of the smoke. However, there is no guarantee
that the retrieved results correspond to the captured smoke.
Eckert et al. [13] pushed the limit of the sparse tomogra-
phy problem by introducing a single-view reconstruction
approach for plumes. They compensate the lack of infor-
mation by using physics-based and geometric priors. To
improve the reconstruction of plumes, they added in [14]
an inflow estimation module that only applies in very spe-
cific settings, and they used 5 viewing angles instead of one.
While these methods result in plausible reconstruction for
graphics, the overall accuracy and agreement with ground
truth measurements is relatively poor and insufficient for
scientific or engineering purposes.

3. Optimization Framework

System Overview We propose a novel dynamic recon-
struction framework called TomoFluid. In this framework,
several regularizers are introduced to constrain the solution
space and achieve unprecedented reconstruction quality for
fluid imaging. In the following section, we first present the
camera model and pre-processing step of the input videos
captured from optical cameras. Then we formulate the data-
fitting term that involves the input videos. Next, the synthetic
view regularizer, which is one of our key technical contri-
butions will be explained in detail. This regularizer consists
of using new estimated views to constrain the reconstructed
volumes. The view estimation is done using an interpola-
tion from existing videos. In addition, since only 2 or 3
views are available in our setting, we propose a visual hull
regularizer to tackle this highly under-determined inverse
problem. Finally, other regularizers, such as smoothness con-
straint, temporal coherence prior, density consistency prior,
as well as a physically plausible regularizer used commonly

for the incompressible flow estimation (i.e. divergence-free
constraint) will be explained.

3.1. Framework Details

3.1.1 Camera Model

For a tomographic reconstruction, the fluid, represented by
a sequence of discretized density fields x = (xt)1≤t≤T ,
is captured simultaneously by N cameras. Ideally, these
cameras have to cover a 180° angular range around the fluid.
At each time step t with 1 ≤ t ≤ T , the ith camera (1 ≤
i ≤ N ) corresponding to the angle φi = (i − 1)/N · 180°,
captures the projection image fi,t given by:

fi,t = Kixt + ni (1)

where Ki and ni are respectively the projection matrix
(Radon transform operator) and the noise distribution corre-
sponding to the ith camera.

To retrieve the 3D volume sequence x from the captured
videos, using the classical tomography reconstruction, we
have to optimize the following loss function:

LRecon =

T∑
t=1

N∑
i=1

‖Kixt − fi,t‖22 (2)

In our case, however, only few cameras are used to cap-
ture the fluid flow. Thus, at each time step t, only a sparse
set of projection images f1,t . . . fM,t is known, for M < N .
This results in a sparse sampling in the frequency domain,
according to the Fourier Slice Theorem [28]. Strong reg-
ularization is then needed to overcome this issue. For the
following, we denoteM as the set of viewing angles corre-
sponding to the captured projections. Then, fi,t (φi ∈ M)
are the known projection images, and fj,t (φj ∈ N −M)
are the unknown ones that we would like to estimate.

3.1.2 Data-fitting Term

We define our data-fitting term as the contribution of the M
known views in the loss function given in Equation (2). This
term can be written as follows:

Ldata =

T∑
t=1

∑
i|φi∈M

‖Kixt − fi,t‖22 (3)

3.1.3 Novel View Regularizer

The aim of introducing this regularizer is to take into account
the contribution of the N −M non-captured projections, in
order to improve the reconstruction quality. To achieve this
goal, we first estimate the novel views from the captured
ones, as described below.



Figure 2: Overview of the architecture of our framework.

Flow-based warping: To estimate the novel views from
the known orthographic view geometry, we interpolate the
missing projections (i.e. novel views) fj,t from its two neigh-
boring captured projections fi,t and fk,t, given φi < φj <
φk. Notice that: φj /∈M and φi, φk ∈M.

We first compute the optical flow vi→k from the acquired
image pair fi,t and fk,t. A multi-scale scheme is utilized to
tackle the large deformation [35]. Different weight settings
are given to the horizontal and vertical directions, since the
deformation occurs primly in the direction perpendicular to
the rotation axis of our setting. Based on the angle indexing
ratio s = (j− i)/(k− i), we obtain two intermediate images
f̃i,t and f̃k,t by warping fi,t and fk,t, respectively:

f̃i,t =warp(fi,t, svi→k) (4)

f̃k,t =warp(fk,t,−(1− s)vi→k) (5)

Morphing-based view interpolation: The missing pro-
jection fj,t is interpolated using the warped images f̃i,t and
f̃k,t, as follows:

fj,t = (1− s)f̃i,t + sf̃k,t (6)

which is very similar to a morphing process. At this step, all
the N −M missing projections are interpolated from the
captured images.

Loss function: The loss function of the proposed synthetic
view constraint is given in Equation (7). The accuracy of the
projection estimation module depends highly on the angular
distance to the captured projections (please refer to Sec-
tion 4 for detail). We translate this point in the optimization
framework, by introducing a confidence estimation weight
(0 < ωj < 1) in the term Lnovel. The closer the angles are
to the captured projections, the higher is the confidence in
the estimation. For these closer angles the weight will be
set close to 1. For the other angles, the weight will decrease

gradually.

Lnovel =

T∑
t=1

∑
j|φj /∈M

ωj ‖Kjxt − fj,t‖22 (7)

Analysis: Our main goal in introducing the morphing-
based interpolation is to regularize the missing projections in
an energy consistent manner w.r.t. their neighboring captured
projections. As mentioned in Section 1, the volume densi-
ties are the same in all views. Thus intuitively, an optimal-
transport based interpolation is the approach to use for esti-
mating the missing views from the captured ones. However,
in practice, the proposed flow based warping operations out-
perform optimal-transport based methods (see supplemen-
tary for the experiments). In another perspective, considering
the huge number of missing projections and interpolation
operation involved, we anticipate our morphing method to
be simple and efficient, especially in our 4D application sce-
nario where hundreds of time frames are involved, making
this extra time cost subtle for the full tomography reconstruc-
tion. Figure 3 shows a comparison between state-of-the-art
optical flow with morphing [39], appearance transfer view
interpolation [36], and ours, which is quantitatively the best
and the fastest.

3.1.4 Reprojection Consistency Constraint

In our optimization framework, we introduce a reprojec-
tion consistency term (Lreprojection), which is a variation of
image-based visual hulls [34, 5, 13] and implemented in a
simpler and more efficient way. However, in the referenced
approaches the constraint is constructed only using the cap-
tured projections. In our work, we also generate silhouette
masks corresponding to the missing views in the novel view
interpolation step. These masks are then also involved in
the computation of the visual hull from our reprojection
consistency prior.
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Figure 3: Flow-based warping comparison at 22° (morphed from
0° and 45°). Our simple yet efficient approach achieves satisfactory
result compared to state-of-the-art optical flow [39] and appearance
transfer [36] methods with the shortest time, where GT denotes
ground truth.

As highlighted in Figure 2, for each time frame, we first
create the silhouette images for the captured projections.
Then, using these 2D projections and their silhouette images,
the TV-regularized [18] method is applied to reconstruct a
smooth volume due to lack of input information and artifact
removal. A forward rendering operation is then applied on
the initial volume to retrieve the object shape at different
angles, corresponding to the estimated projections. These ob-
tained silhouettes, combined with the masks of interpolated
projections, correspond to the final results of reprojection
consistency constraints for the estimated views. Though the
mask from forward rendering is more conservative than that
from the view interpolation step, in practice, by combining
these two, a smooth visual hull in both spatial and temporal
domain can be obtained.

In the forward rendering step, for each voxel at each
angle φi, a ray will be generated between this voxel and the
camera. The loss Lreprojection is defined as follows: For each
intersection point of the generated ray and the projection
images, if both the voxel value of the volume and the mask
value of the interpolated projection is non-zero, then we set
the pixel as 1, otherwise the value 0 will be given.

3.1.5 Other Regularizers

Lsmooth(α, β, γ) =

T∑
t=1

[
α ‖∇Sxt‖1 + β ‖∇Txt‖22

]
+ γ

T−1∑
t=1

∑
d=x,y,z

‖∇Sut,d‖1 (8)

Smoothness constraint: The fourth term that we intro-
duce in our objective function is a smoothness prior that
we apply both on the density volume of the fluid and the
flow field: Lsmooth. In this prior we incorporate a spatial com-
ponent with an L1-norm on both fields (x and u) and a
temporal component with an L2-norm only on the density
volume. Indeed, the fluid flow is smoother according to the

Algorithm 1 TomoFluid algorithm

1: for t from 1 to T do
2: fj,t = ViewSynthesis(fi,t) // interpolation
3: xt = Tomography(fi,t)
4: mt = ReProjection(xt)
5: end for
6: repeat
7: for t from 1 to T do
8: x∗t = argmin

xt

Ldata + Lsmooth(α, β, 0) + δ · Lof

9: +Lnovel, w.r.t Lreprojection(mt) > 0
10: u∗t = argmin

ut

Lsmooth(0, 0, γ) + δ · Lof

11: +ζ · Lincompressible
12: end for
13: until Converge

temporal dimension than the spatial dimension, where some
discontinuities should be allowed.

where: ∇S and ∇T represent the spatial and temporal
gradient operators. α, β and γ are respectively the weights
of the spatial and temporal smoothness prior of the density
volume and the spatial smoothness on the flow field.

Density consistency prior: The next prior that we add to
our loss function is a density consistency over time. This
term can be seen as a 3D version of the brightness constancy
prior in the optical flow [27]. It ensures that the retrieved
density volume in successive time steps should be consistent
with a warping using the estimated flow field between these
time steps. This assumption is generally valid for most fluid
experiments, so long as diffusion happens at a time scale
much slower than the camera frame rate. Note that this term
involves both the density volume and the flow fields.

Lof =

T−1∑
t=1

‖∇Txt +∇Sxt · ut‖1 (9)

Divergence-free prior: In the fluid simulation and imag-
ing community, it is common to constrain the divergence of
the flow to be equal to zero for incompressible fluid flows.
This is simply the result of the mass-conservation assumption
for the fluid. When the captured fluid flow can be assumed
as incompressible, we incorporate the divergence-free prior
(Lincompressible) to our loss function.

Lincompressible =

T−1∑
t=1

DIV(ut) (10)

3.1.6 Optimization Details

By combining all the terms described previously, our loss
function is given by:



(x∗,u∗) = argmin
x,u

Ldata + Lnovel (11)

+ Lsmooth + δ · Lof + ζ · Lincompressible

where δ and ζ correspond respectively to the weights of
spatial smoothness of the density volume, the density consis-
tency and the divergence-free priors.

To solve the joint optimization problem in Equation (11),
we split it into two sub-problems that we solve separately
in an iterative and alternative fashion. Consequently, we get
the scheme highlighted respectively in line 8 and line 10
of Algorithm 1. We apply the primal-dual Chambolle Pock
algorithm [7] to efficiently tackle the involved discontinuities
in the L1-terms in each sub-problem.

x-problem: The first sub-problem aims to reconstruct
the density volume of the captured fluid. It involves the
data-fitting term, the novel view regularizer, the reprojection
consistency prior, the spatial and temporal regularizers of the
density field (two first components of Lsmooth) and the den-
sity consistency prior. We follow the work [51] and use the
PSART algorithm as solver to tackle the proximal operators
of Ldata and Lnovel efficiently in a matrix-free manner.

u-problem: The second sub-problem is the flow field esti-
mation. The corresponding objective function encompasses
the spatial smoothness of the flow field (last term in Lsmooth),
the density consistency prior and the divergence-free con-
straint. A multi-scale strategy [35] is applied to enable large
deformations between the flow field volumes.

4. Results and Discussion

Baselines: In the following, we compare our approach to
four baseline reconstruction techniques. The first baseline
is an iterative tomographic reconstruction method named
Simultaneous Algebraic Reconstruction Technique (SART)
[3, 49], since it produces reasonably high-quality results
while still being applicable to arbitrary camera models and
application scenarios in practice [21, 26, 51]. The second
baseline is the Bregman algorithm of Goldstein and Osher
for TV-regularized denoising (Getreuer) [18]. The appear-
ance transfer based method (Okabe et al.) for fluid modeling
proposed by [36] is compared as the third baseline. The last
baseline (Zang et al.) reconstructs fast deforming object
with internal structure by X-ray CT scanner via a so called
warp-and-project strategy proposed in [53]. Since the prob-
lem we are tackling is highly underdetermined, improved
results are achieved for each method by constraining the
reconstruction to the visual hull [29] of each data.

Parameters: The framework is implemented in C++ and
it is parallelized using OpenMP. The experiments are con-

Table 1: PSNR/SSIM measurements for each approach. The value
is averaged projection images over all 92 time frames at several
degree (note as °). For each approach, average measurements for
all generated projections (Avg. Proj.) and all reconstructed volumes
(Avg. Vol.) are also presented. Refer to supplementary for more
numerical analysis.

Method 05◦ 15◦ 25◦ 35◦ Avg. Proj. Avg. Vol.

SART 32.16/.872 27.55/.846 26.02/.852 28.25/.896 29.43/.868 25.54/.505
Getreuer 32.40/.879 27.58/.856 26.03/.857 28.33/.897 29.56/.876 25.58/.512
Okabe 29.80/.871 26.82/.832 25.96/.807 27.89/.829 28.23/.843 25.24/.467
Zang 32.69/.923 28.59/.895 27.15/.883 28.74/.903 29.81/.905 25.76/.538
Ours 36.55/.978 30.09/.936 28.80/.923 31.17/.946 32.36/.950 27.72/.671

ducted on a computer with 512 GB RAM and a dual-core
3.00GHZ Intel Xeon 2687W processor. In novel view syn-
thesis stage, we estimate the flow with typical vertical and
horizontal smoothness parameters of 1 and 10 respectively,
performed at 8 different image pyramid scales. Additional
details for parameters are provided in the supplement.

SART Getreuer [18] Okabe et al. [36] Zang et al. [53] Ours Ground Truth
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Figure 4: Projection images comparison for different methods.

4.1. Synthetic results

We first validate our algorithm on the synthetic fluid flow
data, generated from Mantaflow [42]. In this experiment, as
shown in Figure 4 and Table 1, a comprehensive evaluation
is conducted between our method and the baselines. A time
sequence of 100 fluid volumes is generated with a size of
100×150×100 for each volume. For each time step, 180 or-
thogonal projection images, uniformly distributed over 180°,
are then generated. The 100 volumes and 18000 projection
images act as ground truth data. To simulate the real capture
environment, three images at respectively 0°, 45°, and 90°
for each time step are used as input for all methods.

The values of PSNR and SSIM, for both projections and
volumes, are shown in Table 1 for all compared methods.
We can observe that for all methods, the quality of projec-
tions is higher when they are closer to the real captured
angles (i.e. 0°, 45°, or 90°). On the other hand, the compar-
ison for the angles 25° and 65° yield the lowest values of



PSNR and SSIM (see the supplementary table). As shown
in Figure 4, although a sharper boundary can be visually
observed comparing to SART, Getreuer and Zang et al.,
the appearance transfer based method Okabe et al. fails to
achieve a better numerical result than other methods. As
mentioned in their paper, Okabe et al. mainly focus on
how to apply this statistics based method to obtain a bet-
ter visualization results instead of numerical analysis. In
contrast, Zang et al. achieves the best results among all the
baseline methods, mainly due to their effective spatial and
temporal priors. They failed, however, to obtain good recon-
structions at the novel estimated views in this sparse view
setting, and significant blurring can be observed, as shown
in Figure 4. Finally, our method (Ours) achieves best results
for projections at any angle and reconstructed volumes, in
terms of both PSNR/SSIM evaluation in Table 1 as well
as for the qualitative comparison in Figure 4. In Table 1,
the PSNR/SSIM results at several views are presented, and
the averaged values of PSNR/SSIM for all projections and
volumes are also evaluated.

4.2. Real world results

4D Soot Imaging of the turbulent flame: The setup
for capturing the combustion process is done using a non-
premixed turbulent jet flame with ethylene fuel at a Reynolds
(Re) number of 2,600 and 10,400. As shown in Figure 5, the
high speed videos were collected from three Photron SA-Z
cameras placed at 0° (Camera 1), 45° (Camera 2), and 90°
(Camera 3). For a qualitative evaluation for the reconstruc-
tion methods, we applied planar laser induced incandescence
(LII) at 117° (ICCD) with a frequency doubled Quanta-Ray
Pro-Series pulsed Nd:YAG laser at 10 Hz. A projection im-
age from the 2,600 Re is shown in Figure 5(b). The normal-
ized LII image, and reconstructed slices from our method
(Ours) and Zang et al. [53] method at 117° are shown re-
spectively in Figure 5(c-e) indicating sharper results with
reasonably finer soot structures that can be observed from
our method.

Camera 1

Camera 2Camera 3

ICCD

LED Fresnel Lenses

Diffusers

Burner

Extinction imaging setup Data LII Ours [53]
Figure 5: Extinction imaging and planar laser induced incandes-
cence setup (LII), where one soot raw image from the video cap-
tured by camera 1 is shown. We compare normalized LII image
taken at 117° (ground truth) with the same slice reconstructed by
our method and Zang et al. [53].

Volume reconstructions using our method at 4 time steps
can be seen in the top row of Figure 6. A comparison between
each of the baseline methods and our method can be observed
in the bottom of Figure 6 with each from split between
baseline methods on the left and our method on the right.
Figure 7 shows a further comprehensive comparison between
our approach and the-state-of-the-art method [53], in terms
of the projection images, the volume slices, and dynamic
volumes at different angles and time frames. From all of
these metrics, the unprecedented reconstruction quality from
our method can be observed.

t = 01 t = 28 t = 48 t = 78

SART Getreuer [18] Zang et al. [53] SAD [21]

Figure 6: Reconstructed results for a highly turbulent flame. First
row: Reconstructed results from our method for different time
frames and viewing angles. Second row: A comparison of the
baseline approach/Our approach (split left/right respectively) for
volume slice. The baseline methods on the left side are: Plain
SART reconstruction, Getreuer [18], Zang et al. [53], and sum-
of-absolute-differences (SAD) [21] regularized reconstruction.

4D Imaging of a Mixing Fluid Process: The second appli-
cation we performed is the imaging of a mixing fluid process
with two high speed cameras. The experimental setup is
shown in Figure 8. There are two cameras placed respec-
tively at 0° and 90°. The light source is generated from the
bottom of the glass tank with the help of reflector. The results
from our method with different time frames and rotated an-
gles are presented in Figure 8(c). Additional volumetric slice
comparison for two different time steps between Ours and
Zang et al. [53] is also performed in Figure 8(d). Although
only two videos are available in this setting, a significant im-
provement in terms of reconstruction quality can be noticed
from Ours.

4D Imaging of a Fuel Injection Process: In the final ap-
plication, we tried to model the process of fuel injection for
spray plume data. The setup for the experiments is illustrated
in Figure 9(a). The details of this experiment are described
in [12]. The light source is generated from a pulsed-driven
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Figure 7: Reconstruction results for soot data, acquired using setup
in Figure 5. (a) Single view comparison (at 25°). (b) Volume com-
parison (sliced). (c) Volume comparison (rotated).
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Camera 1

Camera 2Syringe

Light Source

Figure 8: (a) The set up for capturing fluid images with two views.
(b) One captured image from the setup (c) Our reconstruction at
different time frames and viewing angles. (d) Slice comparison
between Zang et al. [53] and our method for two different time
frames.

white LED. A Photron SA-X2 high-speed camera was em-
ployed at 40 kfps to capture the extinction. The size of the
captured image is 552×512. The injector was rotated at 0°,
40°, and 90°, respectively. At each view angle, the averaged
image of three repeats was used for the 3D reconstruction.
Note that this experiment is highly repeatable, if the same
initial conditions are applied. Figure 9(b) shows two images
captured at different time frames from 0 degree with the
ambient gas pressure as 4kPa (left), and their flow field visu-
alization estimated (right) from our TomoFluid framework
(illuminated with streamlines). In Figure 9, from left to right,
we compare respectively the reconstruction results with the
sophisticated visible-light tomography method that regular-
ized with the sum-of-absolute-differences (SAD) prior [21],
state-of-the-art dynamic tomographic reconstruction method
(Zang et al.), and Ours. The first row illustrates the volume
slice comparison, while the second row shows the volume
reconstruction for one time frame. We can observe that there
are obvious discontinuity between different time frames for
SAD regularized method [21], since only a spatial prior is

applied for this approach. In contrast, with both spatial and
temporal priors, better results can be noticed when Zang
et al. [53] is used. Finally, with a combination of powerful
regularizers for view interpolation, reprojection consistency,
spatial and temporal smoothness, and jointly optimization
framework, our method provides more details of the spray.

High speed camera Engineering diffuser

Injector tip
Collimating lens

LED

(a) (b)
(c)

Figure 9: (a) The set up for capturing spray images. (b) Captured
images at two time frames (left) and estimated flow field illustrated
with streamlines. (c) Reconstruction results for SAD regularized
method [21], Zang et al. [53], and Ours. First and second row of
(c) represents respectively reconstructed slice and the volume.

5. Conclusion and Future work

We presented TomoFluid, a framework for the fluid re-
construction from sparse view videos. Although our work
mainly focuses on dynamic fluid imaging, the presented
methods could potentially be useful for various tasks such as
X-ray tomography reconstruction with flow-based view inter-
polation, or fluid re-simulation with an estimated flow field
between successive volumes. One limitation of our work is
that the introduced novel view regularizer lacks a thorough
physical interpretation, although we have demonstrated that
it works very well in practice. Nonetheless we believe that
for the future there lies much promise in exploring physically
motivated view interpolation methods to achieve even better
reconstruction results for sparse view tomography problems.
Other future directions include combining phase contrast
techniques [5, 44, 45] to handle transparent phenomena,
such as gas flows.
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