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ABSTRACT

Space-Time Tomographic Reconstruction of Deforming Objects

Guangming Zang

X-ray computed tomography (CT) is a popular imaging technique used for recon-

structing volumetric properties for a large range of objects. Compared to traditional

optical means, CT is a valuable tool for analyzing objects with interesting internal

structure or complex geometries that are not accessible with. In this thesis, a variety

of applications in computer vision and graphics of inverse problems using tomographic

imaging modalities will be presented:

The first application focuses on the CT reconstruction with a specific emphasis

on recovering thin 1D and 2D manifolds embedded in 3D volumes. To reconstruct

such structures at resolutions below the Nyquist limit of the CT image sensor, we de-

vise a new 3D structure tensor prior, which can be incorporated as a regularizer into

more traditional proximal optimization methods for CT reconstruction. The second

application is about space-time tomography: Through a combination of a new CT

image acquisition strategy, a space-time tomographic image formation model, and an

alternating, multi-scale solver, we achieve a general approach that can be used to an-

alyze a wide range of dynamic phenomena. Base on the second application, the third

one is aiming to improve the tomographic reconstruction of time-varying geometries

undergoing faster, non-periodic deformations, by a warp-and-project strategy. Fi-

nally, with a physically plausible divergence-free prior for motion estimation, as well

as a novel view synthesis technique, we present applications to dynamic fluid imaging

(e.g., 4D soot imaging of a combustion process, a mixing fluid process, a fuel injection

process, and view synthesis for visible light tomography), which further demonstrates

the flexibility of our optimization frameworks.
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Chapter 1

Introduction

X-ray tomography is a popular imaging technique used for reconstructing volumetric

properties for a large range of objects [1]. For example, it is used for industrial

inspection, luggage inspection, research and development in mechanical engineering

and material sciences, biomedical diagnosis and treatment, and it serves as an input

to many computer vision algorithms, including methods for automatic segmentation,

detection, and recognition.

This thesis presents four separate but closely related applications of inverse prob-

lems in tomography: the first is 3D super-resolution and sparse view tomography

(Chapter 3), the second is space time reconstruction for dynamic phenomena (Chap-

ter 4), the third one is the problem of reconstructing rapidly deforming objects with

a warp and project strategy (Chapter 5), the fourth is the capture of physically plau-

sible dynamic fluids (Chapter 6). The first three applications are based on X-ray

CT scanning, while the fourth one utilizes traditional RGB cameras. All these four

applications share a general numerical optimization framework (as shown in Equa-

tion 1.1) that allows the novel regularizers to be incorporated into the framework

flexibly, depending on the different applications.

One important goal of CT scanning is to get the most out of the available equip-

ment and to reconstruct as many details as possible. This calls for super-resolution

reconstruction methods that can reconstruct volumes with higher resolution than the

input scans, as well as methods that can reconstruct high resolution volumes using

fewer projections (which is also called sparse-view reconstruction). While this is not
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(a) Artificial rose (b) Plumeria flower (c) Real rose (d) Toothbrush (e) Sponge

Figure 1.1: Five datasets with thin 2D (a-c) and 1D (d-e) structures embedded in 3D
volumes are presented in Chapter 3. Top row: scanned objects. Middle row: repre-
sentative projection images. Bottom row: rendering results of volumes reconstructed
by our method.

possible for general objects, it can be achieved by making reasonable assumptions

about the structure of the input volume. In Chapter 3, we propose a novel opti-

mization framework that addresses super-resolution and sparse view reconstruction

especially suited for volumes with thin sheets and tube-like structures. Specifically,

we demonstrate that our framework is capable of reconstructing volumetric features

smaller than the Nyquist limit in each individual projection, as well as better perfor-

mance in the sparse-view acquisition setting.

State of the art robust CT reconstruction usually employs iterative methods [1, 2]

and poses the problem as an optimization problem of the form

min
f

f(f)︸︷︷︸
data fidelity

+ g(Kf)︸ ︷︷ ︸
regularizer

, (1.1)

where f ∈ Rn is the unknown discrete 3D reconstruction volume or a single frame

in a 4D space-time volume sequence, f(·) is the data fidelity term that measures
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how well the volume fits the measured input projections, and is usually of the form

f(f) = ‖Af − p‖2
2, where A describes the projection geometry, and p represents the

observed projection images. g(Kf) is the regularizer consisting of a loss function g(.)

and a linear operator K that transforms the volume f into a sparse domain (e.g. for

Total Variation, g(.) = ‖.‖1 and K is the volume gradient operator). Problem (1.1)

is a general model, and can incorporate many noise models, e.g. Poisson [3] or Gaus-

sian noise [4]; and regularizers, e.g. `1 or Total Variation (TV). Such optimization

problems are commonly solved with proximal algorithms [5], which allow the decom-

position of (1.1) into independent proximal operators, one for the linear least squares

data term, and one for the non-linear regularizer.

The regularizer can be used to enforce specific prior information about the re-

constructed volume. Our major contribution in Chapter 3 is to show that enforcing

sparsity on the eigenvalues of the 3D structure tensor allows for super-resolved recon-

struction of thin structures such as thin sheets or tubes, see for example Fig. 1.1. The

intuition is that the 3D structure tensor should have two zero (or extremely small)

eigenvalues on a 2D manifold embedded into a 3D volume, since the volume will only

vary along the normal direction. Likewise, for curves embedded in 3D, one of the

eigenvalues is expected to be zero (or extremely small).

The linear least squares problem in the data term requires a matrix-free solver in

order to control memory consumption, and Conjugate Gradients is frequently used

for this purpose [6]. In this thesis we show that using the Simultaneous Algebraic

Reconstruction Technique (SART [7]) for this problem yields better results, especially

in reconstructions from a sparse numbers of projections. While SART has historically

played an important role in solving the unregularized CT problem, we demonstrate

how to use it for solving the data term proximal operator, which to our knowledge

has not been done before.

Besides 3D (i.e. spatial) tomography, which focuses on the geometry recovery,
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capture of 3D and dynamic phenomena has long been a topic of interest in computer

graphics. While much of the work in this area has been based on traditional computer

vision methods with either passive or active illumination [8, 9], tomographic methods

have also played an important role in computer graphics research [10, 11, 12, 13, 14].

In engineering and medicine, x-ray computed tomography has become a valuable tool

…… 

Frame 01 
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Y’ 

Frame 02 Frame 46 Frame 91 Frame 92 

…… 

…… 

…… 

…… 

…… 
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d a b 
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Y 

Y’ 

Figure 1.2: X-ray tomographic reconstruction of a rose undergoing significant wilting
during the scan due to loss of water. Images (a) and (b) show photographs of the rose
directly before and directly after the scanning process. Traditional CT reconstruction
(c) from all 5520 projections in the scan sequence show significant distortions due
to misalignment of features. When grouping the projections into 92 frames of 60
projections each (d), the deformation over each frame becomes negligible, but now
the number of projections per frame is insufficient for high-quality reconstruction of
the corresponding volumes (e,Y). By comparison, our full space-time reconstruction
algorithm yields a time sequence of highly detailed volumes for different time steps
(f , Y′). More details can be found in Chapter 4.

for its ability to reveal internal structures in objects that cannot be sensed by optical

means. Tomographic reconstruction in graphics has been primarily focused on visible

light tomography [10, 15, 16], although there are a few examples of using x-ray CTs

as well [11, 12]. While visible light tomography is inherently limited to transparent

materials, it does have the advantage of using regular cameras and light sources,

which makes it feasible to construct multi-camera setups that can be used to capture

dynamic phenomena such as fluids (e.g. [17, 18, 19, 20, 21, 14]). By comparison, x-ray

CT is typically limited to a single source and sensor array or a very small number of

such sources and arrays, and the required diversity of view points is created through

mechanical motion of either the sample (typical of industrial CTs) or the source-
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sensor assembly (as in medical CTs). Unfortunately, the need for mechanical motion

has so far hindered the ability to use x-ray CTs for imaging dynamic phenomena or

continuously changing geometries, except in some very specific setting such as objects

that undergo periodic motion (e.g. beating hearts [22]).

In this thesis (Chapter 4), we aim to generalize tomographic reconstruction to the

4-dimensional case of space-time reconstruction of continuously deforming objects and

phenomena. We target the general case of non-periodic motion, though we do assume

relatively slow, smooth motion fields. Specifically, we assume that the deformation

is negligible when considering a small number of projections (e.g 10-60) acquired in

sequence, but that the motion is significant over the time it takes to acquire the

hundreds or even thousands of projections needed to scan the whole object at a high

spatial resolution.

Figure 1.2 shows an example of such a setting. The scanned object is a rose that

undergoes significant deformation due to loss of water during the scanning process.

This deformation makes it impossible to reconstruct a detailed volume using tradi-

tional 3D tomography methods: reconstructions from short sequences of projections

are severely under-determined and thus lack detail, while reconstructions from large

sequences of frames fail due to misalignment of the geometry. On the other hand,

our 4D space-time tomographic reconstruction is able to reconstruct not just a single

volume but a full-time sequence of highly detailed volumes. It also estimates the

deformation fields between these frames which allows our method to be used for a

full analysis of the wilting process.

Based on the space time tomography, in Chapter 5, the assumption that defor-

mation is negligible when considering a small number of projections is then relaxed

by leveraging a novel warp and project strategy. By applying this method, unprece-

dented reconstruction quality can be obtained for rapidly deforming object, as shown

in Figure 1.3.
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Frame 001 Frame 190 Frame 026 Frame 052 Frame 078 Frame 104 Frame 130 Frame 156 

Figure 1.3: In Chapter 5, we introduce a novel CT reconstruction method for ob-
jects that undergo rapid deformation during the scan. Shown here is a copper foam
crumpling under a compressive force during the scan. The whole complex anima-
tion is reconstructed using only 192 projection images that all correspond to different
deformation states of the foam.

Beyond these points, the specific contributions made by this thesis are:

• A new CT image acquisition strategy based on low-discrepancy sampling, which

improves the distribution of projection angles over time.

• A new image formation model for non-parametric 4D (space-time) tomographic

reconstruction, together with the appropriate regularization strategies for tackling

the ill-posed inverse problem.

• A matrix-free, multi-scale optimization framework for solving this inverse prob-

lem. With this flexible framework, different powerful priors for different tasks, can

be incorporated easily.

• By applying the methods in this thesis on extensive real data from a range of

different application scenarios, we demonstrate that tomography techniques are quite

general and powerful tools in solving inverse problems.

In the remainder of this thesis, Chapter 2 gives a brief background for CT and re-

lated work. Next, Chapter 3 introduces sparse view and super-resolution tomography.

The framework for space time tomography is then presented in Chapter 4. In Chap-

ter 5, the warp and project tomography will be introduced. Chapter 6 discusses the

applications of dynamic fluid imaging that based on the optimization frameworks de-

scribed in Chapter 4 and Chapter 5. The thesis concludes with some closing remarks
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in Chapter 7.

The content of Chapter 3, Chapter 4, and Chapter 5 of this thesis is mainly based

upon three publications:

• [23] G. Zang, M. Aly, R. Idoughi, P. Wonka, and W. Heidrich. Super-Resolution

and Sparse View CT Reconstruction. European Conference on Computer Vision

(ECCV), 2018.

• [24] G. Zang, R. Idoughi, R. Tao, G. Lubineau, P. Wonka, and W. Heidrich.

Space-time Tomography for Continuously Deforming Objects. ACM Trans.

Graph.(Proc. SIGGRAPH), 37(4), 2018.

• [25] G. Zang, R. Idoughi, R. Tao, G. Lubineau, P. Wonka, and W. Heidrich.

Warp-and-Project Tomography for Rapidly Deforming Objects. ACM Trans.

Graph. (Proc. SIGGRAPH), 38(4), 2019.
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Chapter 2

Background and Related Work

2.1 Proximal Algorithms

With the CT reconstruction problem expressed as an optimization problem (1.1), we

turn to the question of finding appropriate solvers. Like several recent approaches, we

rely on proximal algorithms [5], namely the first-order primal-dual algorithm proposed

by Chambolle and Pock [26] (henceforth referred to as the CP algorithm). Proximal

algorithms are able to solve complex optimization problems by splitting them into

several smaller and easier sub-problems, that are solved independently, and then

combined to find a solution to the original problem.

These simple sub-problems take the form of proximal operators [5]:

proxζh(q) , argmin
f

h(f) +
1

2ζ
‖f − q‖2

2, (2.1)

where q ∈ Rn is the input to the operator and ζ ∈ R is a weighting parameter. For the

CP algorithm to work, we need to determine and implement two proximal operators:

The proximal operator for the data term: proxτf (q), and the proximal operator for

the convex conjugate [27] function g∗(·) of g(·) defined as: proxµg∗(q). By using

different regularization functions g(·) and matrices K, we can plug in different priors

based on different models of what the reconstructed volume should look like. Here

We present the definition and the proximal operator of Anisotropic Total Variation

(ATV), Isotropic Total Variation (ITV), and Sum of Absolute Differences (SAD),

respectively:
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• Anisotropic TV (ATV): This prior is defined as

h(f) =
∑
ijk

|fi+1,j,k−fi,j,k|+|fi,j+1,k−fi,j,k|+|fi,j,k+1−fi,j,k|, (2.2)

where fi,j,k is the voxel value at position (i, j, k). This can be represented as

g̃(Kx), where g̃(·) = ‖ · ‖1 is the `1 norm and K = D ∈ R3n×n is the forward

difference matrix. The proximal operator of g̃∗(·) can be shown to be [28]

proxµg̃∗(q) = ΠB∞(q) =


1 u > 1

q |q| ≤ 1

−1 u < −1

, (2.3)

where the operations are component-wise, and is equivalent to the projection on

the unit ball B∞ of the `∞ norm. Note that we do not need to store the matrix

D, and multiplication by D (computing the gradient) or by DT (computing the

divergence) can be efficiently computed on-the-fly [29]. Also note that DTD is

the Laplace operator.

• Isotropic TV (ITV): This prior is defined as

h(f) =
∑
ijk

√
|fi+1,j,k−fi,j,k|2+|fi,j+1,k−fi,j,k|2+|fi,j,k+1−fi,j,k|2,

where it sums the magnitude of the gradient at each voxel. Using the forward

matrixD above and defining a new matrix E ∈ R3n×n that denotes the positions

of the forward differences [29], we can define the function h(f) as a norm ‖q‖E

for q = Df ∈ R3n defined as

‖w‖E = ‖
√
ETw2‖1 =

∑
v

‖wv‖2,
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where the square root and square functions are component-wise, and wv is the

gradient at voxel v = (i, j, k). Now we can express the ITV prior h(f) in terms

of the ‖q‖E norm as

h(x) = ‖Df‖E = g̃(Df) where g̃(q) = ‖q‖E.

The proximal operator for g̃∗(·) can be shown to be [29]

proxµg̃∗(q) = ΠB∗(q) =
q

E max
(√

ETq2,1
) (2.4)

which is the projection on the unit ball B∗ of the dual norm ‖q‖E∗ , and where

the division and max operations are performed component-wise.

• Sum of Absolute Differences (SAD): This prior is defined as

h(f) =
∑
ijk

∑
fn∈N(fi,j,k)

|fn − fi,j,k| , (2.5)

where N(fi,j,k) is the 3×3 neighborhood around voxel fi,j,k (excluding voxel fi,j,k

itself). It can be seen as an extension to the ATV prior, just with a different

matrix D where more edges are considered for every voxel instead of just three.

Hence its proximal operator is similar to Equation 2.3. It has been shown [21]

to produce excellent results in stochastic tomography reconstruction.

2.2 Dynamic Reconstruction

2.2.1 Dynamic 3D Surface Reconstruction

Surface reconstruction from color and depth sensors has been an active research topic

in computer graphics. The state-of-the-art techniques allow real-time 4D reconstruc-

tion of non-rigidly deforming scenes using one [30, 31] or more [9] or RGB-D cameras.
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These approaches combine surface reconstruction over time with a parameterized

nonrigid motion tracking in an optimization framework. Priors on motion are also

integrated. In [32, 16] a 3D scanner is used to capture 4D point cloud data, which

is used respectively to reconstruct the plant growth and the flower blooming process.

Furthermore, some approaches were developed for the capture of time-varying fluid

surfaces, where specific priors to the fluid field are usually incorporated [33]. How-

ever, these surface-based methods cannot reconstruct internal structures of objects

or occluded geometry.

2.2.2 Dynamic Tomographic Reconstruction.

Numerical Methods for Tomographic Reconstruction. CT reconstruction

methods can be grouped into two families: direct methods and iterative methods

[1, 2]. Direct methods, like the filtered back-projection (FDK) algorithm [34], rely on

the use of the Radon transform and its inverse. On the other hand, iterative meth-

ods propose to solve the discrete formulation of the reconstruction problem [2]. This

approach involves very large matrices, which makes the memory consumption a key

concern. The Simultaneous Algebraic Reconstruction Technique (SART), proposed

by Andersen et al. [7], is one of the most efficient iterative reconstruction methods.

It is based on the projection method of Kaczmarz, where the reconstructed volume

is updated for each scan view. This approach has modest memory requirements, and

yields better reconstruction results than the FDK algorithm when the number of used

projections is limited [35]. Another advantage of iterative methods is their flexibility

in incorporating prior information into the reconstruction process. For example, a

total variation (TV) prior has been used for tomography reconstruction [36, 6].

Dynamic tomographic reconstruction. Dynamic tomographic reconstruction is

a challenging task, which becomes unavoidable in situations where the scan target
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deforms or degrades during the scanning process in a way that cannot be controlled

or eliminated. This also opens the door to using of X-ray CT imaging for studies of

dynamic phenomena, where the motion itself is the primary interest. Thus, several

strategies have been proposed deal with dynamic objects.

In the medical field, the motion of the scanned organs is often periodic, like for

the heart or the lungs. Several methods have been based on this observation to

provide a dynamic reconstruction of the heart or the lungs [37, 38]. Such methods

reconstruct each phase of the motion cycle independently, by using only projections

belonging to the same phase. This requires a large number of projections to cover

all the phases of the cycle, which results in a higher radiation dose for the patient.

In addition, the obtained reconstruction presents clinically prohibitive artifacts [39].

To overcome these issues, 4D iterative reconstructions have been proposed [39, 22].

These methods employed either a spatial and temporal total variation regularization

or an optical flow based registration between successive phases. However, the quality

of the obtained reconstructions is still impacted by the low number of projections for

each phase. Furthermore, a considerable effort has been made in this field to estimate

the motion of the scanned object during the acquisition process [40, 41, 42]. Then the

retrieved deformation field is employed to correct the reconstructed volumes. Often,

this approach requires the knowledge of the initial state of the reconstructed volume,

which will be used as a reference to estimate the motion.

On the hardware side, very fast CT of hundreds of projections per second is

enabled by bright X-ray sources such as synchrotrons [43]. This paves the way for

mechanical engineering and material science to obtain a better understanding of some

dynamic processes. Indeed, the CT and micro-CT devices are commonly used in these

fields to study dynamic experiments like the compression of a foam [44, 43], fatigue

cracks [45, 46] or fluid flow in porous media [47, 48, 49]. However, even with this

fast hardware, the acquisition time is still three orders of magnitude too slow for true
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video rate volume reconstruction using traditional algorithms, and so better space-

time reconstruction algorithms are still highly desirable.

As a result, many studies use as stop-motion style acquisition of static states rep-

resenting a supposedly continuous deformation [46, 50, 45]. The motion field can then

be found by digital volume correlation (DVC, essentially 3D optical flow). Some vari-

ants of the DVC algorithm have been proposed to deal with continuous deformations,

that occur during the scans. One improvement is made by projecting the volumes

on a set of defined basis functions (e.g. finite element basis) [51]. Then the DVC is

applied only on these basis functions, in order to speed up the estimation of the mo-

tion and reduce the degrees of freedom. Another variant is to use a projection-based

DVC (P-DVC) to estimate the deformation of a known reference shape (template)

from only few projections [52, 53]. Finally, Jailin et al. [54] proposed a combination

between a variant of the ART reconstruction and the basis functions P-DVC approach

to reconstruct a deforming volume and retrieve its motion, in a multi-scale scheme.

The main limitation of these approaches is their specificity to certain types of de-

forming objects, where it is easy to define the basis function and track the motion

through them. For some phenomena such as rising dough, which undergoes significant

topological change, these methods will fail to reconstruct the volumes.

2.3 Computed Tomography in Graphics

CT in vision and graphics has been successfully employed for 3D reconstruction and

rendering. In order to obtain a volumetric rendering of trees, Reche-Martinez et

al. [10] introduced an approach that combines a volumetric opacity estimation with

a view-dependent texturing from different photographs. For fluid imaging, computed

tomography allows the 3D reconstruction of flames [17, 19], the capture of non-

stationary gas flows [20], the 3D imaging of turbulent fluids [21, 14], as well as the the

3D velocity estimation inside a fluid [18]. After suspending a transparent object in-
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side a fluid with the same refractive index, Trifonov et al. [15] realized a tomographic

reconstruction of that object. Tomography was also introduced for other applications

like 3D displays [55, 56], where multi-layered systems are employed. X-ray computed

tomography has also been used for some applications in graphics, including the uti-

lization of micro CT images to build volumetric appearance models for fabrics [11].

In addition, X-ray tomography has proven to be an excellent tool for flower modeling

[13] or flower structure analysis [12].

The main interest of using X-ray CT in computer graphics is to capture the internal

structures of opaque objects [11, 57], as well as to retrieve complicated surfaces with

occlusions like flowers [12, 13].

2.4 Deformation and Motion Capture

Discrete Deformations. Refer to the situation where the target can be scanned

before and after it undergoes a deformation, but where either no deformation is taking

place during the scan, or the time scale of the deformation is very long compared to

the scan time, such as in recent work by Kato et al. [58] on imaging the growing

process of plants. This scenario often occurs in mechanical engineering and material

science, where the primary goal is to measure the displacement through of a target

structure before and after mechanical loading, in order to retrieve the strain field. To

estimate this strain field, Digital Volume Correlation (DVC), essentially a 3D variant

of optical flow [59], is widely employed [60, 61, 46, 50, 45].

Periodic Deformations. For medical CT imaging, the deformation time scale is

smaller than the scan time, however, the motion is often cyclic, with a period cor-

responding to a heart beat or respiratory cycle. Based on this observation, several

approaches proposed a 4D reconstruction of the heart or thorax [37, 38], by regroup-

ing the scans into different phases of the cycle and then reconstructing each phase
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independently, using only the relevant x-ray projections. In order to get a good re-

construction for all phases, the total number of scans should be sufficiently large,

which mandates a longer irradiation time and a higher radiation dose for the patient.

To address this issue, Mory et al. [22] proposed a 4D iterative reconstruction with

spatial and temporal total variation regularization. This technique is applied on all

projections together. The quality of the yielded reconstruction still suffers from the

angular undersampling for each cardiac phase. Another recent approach consists of

estimating and iteratively compensating the motion that occurs during a cycle, in

order to obtain a 4D reconstruction [42]. The motion estimation is realized using

a pair-wise 3D/3D image registration. A major limitation of this approach lies in

the low accuracy of the generated 3D volumes representative of each cardiac phase.

Finally, one common limitation of all presented 4D CT reconstruction approaches is

their reduced applicability to specific deformation phenomenon.

General Deformations. There has been some limited work on handling general

deformations during a tomographic scan, and obtaining a true 4D tomographic re-

construction. A first approach consists of compensating for known time-dependent

transformations of the scanned object [62]. Another approach is to project the vol-

ume densities into a finite element basis, and then track deformations of the finite

elements over time [63, 51]. This can be used in digital volume correlation to speed

up the distortion estimation between two static frames, but such concepts can also

be used as regularizers in continuously deforming objects. Unfortunately, finite ele-

ments are very cumbersome to fit to geometries with complex topologies, such as the

rose in Figure 1.2. Recent work like e.g [52, 53] first scans a high-quality template

geometry, and then requires only a few projections per deformation state to track the

motion. This approach will fail if the object is not stationary long enough to obtain

the template. Our method, by comparison, is non-parametric and does not require a
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template.
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Chapter 3

Sparse View and Super-Resolution Tomography

3.1 Introduction

In this chapter, we present a flexible framework for robust computed tomography

(CT) reconstruction with a specific emphasis on recovering thin 1D and 2D mani-

folds embedded in 3D volumes. To reconstruct such structures at resolutions below

the Nyquist limit of the CT image sensor, we devise a new 3D structure tensor prior,

which can be incorporated as a regularizer into more traditional proximal optimization

methods for CT reconstruction. As a second, smaller contribution, we also show that

when using such a proximal reconstruction framework, it is beneficial to employ the

Simultaneous Algebraic Reconstruction Technique (SART) instead of the commonly

used Conjugate Gradient (CG) method in the solution of the data term proximal

operator. We show empirically that CG often does not converge to the global op-

timum for tomography problem even though the underlying problem is convex. We

demonstrate that using SART provides better reconstruction results in sparse-view

settings using fewer projection images. We provide extensive experimental results for

both contributions on both simulated and real data.

The main components of our proximal framework are the regularization term and

the data term. We first introduce the STP prior and its proximal operator, then how

to use SART as a solver for the data term is presented.
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3.2 Structure Tensor Prior (STP)

3.2.1 Structure Tensor

The structure tensor [64] SK(fi) ∈ S3
+ for a 3D volume at voxel i is a 3 × 3 positive

semi-definite matrix that captures the local structure around a voxel, and is defined

as

SK(fi) =
∑

j∈N (qi)

K(qj − qi)


(δ1
j )

2 δ1
j δ

2
j δ1

j δ
3
j

δ1
j δ

2
j (δ2

j )
2 δ2

j δ
3
j

δ1
j δ

3
j δ2

j δ
3
j (δ3

j )
2


=
∑

j∈N (qi)

K(qj − qi)
(
∇fj∇fTj

)
,

(3.1)

where qi = [i1, i2, i3]T ∈ R3 is the coordinates of voxel i and fi = fi1,i2,i3 is the voxel

value, K(qj − qi) : R3 → R is a 3D rotationally-symmetric smoothing kernel that

down-weights the contributions of voxel j in the set N (qi) of the l neighboors of the

voxel i and ∇fj ∈ R3 is the local gradient at voxel j. δkj = ∇kfj is its kth component

∇fj =


∇1fj

∇2fj

∇3fj

 =


fj1+1,j2,j3 − fj1,j2,j3

fj1,j2+1,j3 − fj1,j2,j3

fj1,j2,j3+1 − fj1,j2,j3

 . (3.2)

So we can regard the structure tensor as a weighted average of the outer product of

the local gradients at the neighborhood of the voxel.

The eigenvalue decomposition of the structure tensor SK(fi) gives an idea about

the neighborhood. Let λ1 ≥ λ2 ≥ λ3 be the three eigenvalues of the structure matrix

[65]. We have three cases:

1. λ1 � λ2 ≈ λ3: the area around the voxel is sheet-like (a surface in 3D), in

which case we have one large eigenvalue and two small ones.
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2. λ1 ≈ λ2 � λ3: the area around the voxel is line-like (or resembles a tube or

filament), in which case we have two large eigenvalue and a small one.

3. λ1 ≈ λ2 ≈ λ3: the area around the voxel is isotropic, in which case we have three

almost equal eigenvalues. It might be that it is a constant area in which case

the eigenvalues are very small, or that the changes are equal in all directions

(an isotropic region) in which case they might have larger values.

3.2.2 Definition

The STP regularizer was introduced by [66, 65]. It includes the standard TV as a

special case, when the smoothing kernel is a Dirac delta i.e. it is a local structure

tensor at each voxel [65]. Intuitively, the STP tries to estimate the volume such that

its structure tensor is low rank, by minimizing the deviation of voxel values in the

region around it. We will introduce the STP and develop its solver by extending it

from the case of images in [66, 65] to 3D volumes and by employing more efficient

proximal algorithms for its computation.

The STP at a voxel i is defined as the `p norm of the square roots of the eigenvalues

of the structure tensor SK(fi) defined in Eq. (3.1). Let Λ (SK(fi)) ∈ R3 be the vector

of eigenvalues of SK(fi):

STPp(fi) = ‖
√

Λ (SK(fi))‖p =

(
3∑
j=1

(√
λj

)p) 1
p

. (3.3)

In the case when the kernel is the Dirac delta K(q) = δ(q), the STP becomes the

standard isotropic TV regularizer i.e. the `2 norm of the gradient vector [65] because

the structure tensor simplifies to the outer product of the gradient

Sδ(fi) = ∇fi∇fTi
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which has a rank of 1 and only one non-zero eigenvalue λ1 whose value equals to the

gradient magnitude square (its trace):

STPp(fi) =
√
λ1 = ‖∇fi‖2.

In general, however, the structure tensor will aggregate information in the neighbor-

hood of the voxel that will help in having a better regularization of the volume.

Next, we will define how to represent the STP in a form that fits Eq. 1.1 in

Chapter 1. Define the “patch-based Jacobian” [65] as a linear map JK : Rn → Rnl×3

between the space of volumes and a set of weighted gradients that are computed from

the l-neighborhood of each of the n voxels. We can write the patch-based Jacobian

at voxel i as JK(xi) ∈ Rl×3 by stacking the weighted local gradients side-by-side:

JK(fi) =

[
κj1∇fj1 · · · κjl∇fjl

]T
∈ Rl×3, (3.4)

where {j1, . . . , jl} = N (qi) denotes the indices of the neighbors of voxel i (including

i itself), and κjk =
√
K(qi − qjk). The patch-based Jacobian for the whole volume

JKf ∈ Rnl×3 is now formed by stacking "local" components JK(fi) on top of each

other

JKf =


JK(f1)

...

JK(fn)

 ∈ Rnl×3. (3.5)

Using this linear operator JK , Equation 3.1 can be rewritten as follows:

SK(fi) = JK(fi)
TJK(fi), (3.6)

which means that the singular values of JK(fi) are actually equal to the square root
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of the eigenvalues of SK(fi)

σ (JK(fi)) =
√

Λ (SK(fi)), (3.7)

where σ (JK(fi)) ∈ R3
+ is the vector of singular values of patch-based Jacobian JK(fi).

From Eq. (3.3) and (3.7) we get the definition of STPp as

STPp(f) =
n∑
i=1

‖JK(fi)‖Sp , (3.8)

where ‖B‖Sp is the p−Schatten norm of B i.e. the `p norm of its singular values

‖B‖Sp = ‖σ (B) ‖p. (3.9)

There are usually three options for Sp [28]:

1. p = 1 is equivalent to the nuclear norm i.e. the sum of singular values of the

matrix:

S1(B) =
∑
i

|σi(B)| = ‖B‖∗.

2. p = 2 is equivalent to the Frobenius norm:

S2(B) =

√∑
i

σ2
i (B) = ‖B‖F .

3. p =∞ is equivalent to the spectral norm i.e.

S∞(B) = max
i
|σi(B)| = ‖B‖2.

Now we can write this regularizer in a more compact compound norm:

STPp(f) = ‖JKf‖1,p
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where the (1, p) norm for a matrix J = JKx ∈ Rnl×3 is defined as

‖J‖1,p = ‖JKf‖1,p =
n∑
i=1

‖Ji‖Sp , (3.10)

where Ji ∈ Rl×3 represents the patch-based Jacobian at some voxel i.

Now, we can define the regularizer function g(·) as

g(JKf) = λ‖J‖1,p. (3.11)

3.2.3 Proximal Operator for STP

To solve the reconstruction problem we need to solve

min
f
‖Af − p‖2

2 + λSTPp(f) ≡ min
f
‖Af − p‖2

2 + λ‖JKf‖1,p, (3.12)

where

f(f) = ‖Af − p‖2
2 (3.13)

represents the `2 data fidelity term assuming Gaussian measurement noise, and

g(Kf) = λSTPp(f) (3.14)

is the regularization term where λ is the trade-off parameter with linear mapping

K = JK . We will first start with the (1, p) norm, whose dual norm is the (∞, q) [67]

defined as

‖J‖∞,q = max
i=1...n

‖Ji‖q ∀J ∈ Rnl×3 (3.15)

with q such that 1
p

+ 1
q

= 1. Now we can write (3.14) as in [68]

‖J‖1,p = max
H∈B∞,q

〈H,J〉Rnl×3 (3.16)
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where

〈H,J〉Rnl×3 =
∑
i

tr(HT
i Ji) (3.17)

is the inner product in Rnl×3 that induces the norm

‖H‖2
Rnl×3 =

√
〈H,H〉Rnl×3 , (3.18)

and B∞,q is the unit ball for the dual norm defined as

B∞,q , {H ∈ Rnl×3 : ‖Hi‖Sq ≤ 1 ∀i = 1, . . . n}. (3.19)

Algorithm 1 Tomography with STP regularizer
Require: λ, η, τ, θ ∈ R, p ∈ Rm, l ∈ N
1: Initialize: f̄ (0) = 0
2: for t = 1 . . . T do
3: Solve

Yt+1 = proxηg∗
(
Yt + ηJK f̄ t

)
= ΠλB∞,q

(
Yt + ηJK f̄ t

)
4: Solve

f t+1 = proxτf
(
f t − τJ∗KYt+1

)
using Algorithm 2 with input q = f t − τJ∗KYt+1 and parameter τ .

5: Update
f̄ t+1 = f t+1 + θ

(
f t+1 − f t

)
6: end for

return volume reconstruction f ∈ RN = argminf ‖Af − p‖22 + λSTPp(f).

Using (3.16) we can write (3.14) as

λ‖J‖1,p = λ max
H∈B∞,q

〈H,J〉Rnl×3

= max
H∈B∞,q

〈λH,J〉Rnl×3

= max
V/λ∈B∞,q

〈V,J〉Rnl×3

= max
V∈λB∞,q

〈V,J〉Rnl×3 (3.20)
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where we defined V = λH =⇒ H = V/λ and λB∞,q is the norm ball of radius λ i.e.

λB∞,q , {H ∈ Rnl×3 : ‖Hi‖Sq ≤ λ ∀i = 1, . . . N}. (3.21)

Using (3.20) we can write (3.12) as the following saddle point problem [68]

min
f

max
H∈λB∞,q

〈H,JKx〉Rnl×3 + ‖Af − p‖2
2, (3.22)

which is equivalent to

min
f

max
H
‖Af − p‖2

2︸ ︷︷ ︸
f(f)

+ 〈H,JKf〉Rnl×3 − ıλB∞,q(H)︸ ︷︷ ︸
g∗(H)

(3.23)

where ıλB∞,q is the indicator function of the norm ball of radius λ

ıλB∞,q(H) =


0 H ∈ λB∞,q

∞ otherwise
(3.24)

and g∗(·) is the convex conjugate of g(·) [28]

g∗(H) = max
J∈Rnl×3

〈H,J〉 − g(J).

Note that solving Eq. (3.23) is equivalent to solving Eq. (3.14), and we will use the

efficient primal-dual CP algorithm [26] to solve it. We will need to define the proximal

operators [28, 5] of f and g∗:

• The proximal operator for f(f) is

proxµf (q) = argmin
f
‖Af − p‖2

2 +
1

2µ
‖f − q‖2

2. (3.25)

which can be solved directly using the SART proximal operator .
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• The proximal operator for g∗(H) is

proxηg∗(H) = argmin
J

ıλB∞,q(J) +
1

2η
‖J−H‖2

F (3.26)

which is the projection on the convex set λB∞,q, and decomposes over the n

components Hi of H. The projection of Hi is defined as

ΠλB∞,q(Hi) = qΣ̂VT (3.27)

where Hi = qΣ̂VT is its SVD and Σ̂ = diag(σ̂i) with

σ̂ = Πλ`q(σ) (3.28)

which is the projection of the vector of singular values of Hi on the q norm ball

with radius λ. For example, when p = 1, we have q = ∞ and the projection

function simplifies to simple truncation of the singular values of Hi

σ̂ = Πλ`∞(σ) = min (σ, λ) . (3.29)

The steps to solve the reconstruction problem in Eq. (3.12) are outlined in Algorithm

2.

3.3 SART for the Data Term

3.3.1 Data Term Solver

The proximal operator for the data term proxτf (q) has traditionally been solved using

Conjugate Gradient (CG) [69]. In particular, it can be cast as a least squares problem,

and solved using CGLS [70]. However, we find that CG does not in general converge

to the global optimum for the tomography data term proximal operator, although it
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is a convex problem. These problems can be traced back to two factors, that are both

related to the size of the linear system in computed tomography problems:

• CG in general is known to have issues with large systems [71, 72]. Then, it

requires a good preconditioner for large and sparse systems. For tomography,

preconditioning is usually not an option, since it is infeasible to store the system

matrix A, and CG is instead used in a matrix-free fashion. In fact support

for matrix-free operation is one of the primary motivators for using CG in this

context, but it limits the choice of preconditioner to e.g. Jacobi preconditioning,

which is not very effective for tomography matrices.

• As another consequence of needing to operate in matrix free mode, the matrices

themselves are laden with numerical noise. Specifically, solving the least squares

problem with a system matrix ATA requires the procedural implementation of

two operations: A · f (projection) and AT · f∗ (backprojection), where f is

a volume and f∗ is the set of projection images. Because of slight numerical

discrepancies between the implementations of these two procedural operators,

the resulting matrices are not generally exact transposes of each other. CG does

tend to be more sensitive to this issue than other solvers.

3.3.2 SART

For the SART algorithm, the update equation for each voxel fj in the volume f is:

f
(t+1)
j = f

(t)
j + α

∑
i∈S c

(t)
i aij∑

i∈S aij
, (3.30)

where

c
(t)
i =

bi − b̂
(t)

i∑
k aik

(3.31)

is the normalized correction factor for ray i that measures the residual between the
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measured projection value bi and the current estimate at iteration t:

b̂
(t)

i =
∑
k

aikf
(t)
k , (3.32)

α is a relaxation parameter usually 0 < α < 2, S is a set of projection rays under

consideration, and aij is the element in row i and column j of the system matrix A and

defines the contribution to ray sum i from voxel j. Basically the update operations

in the equation can be decomposed into three steps [73]:

1. Forward projection: computes the estimated projection b̂
(t)

i for each ray i

from the current volume f (t) (Eq.(3.32)). This corresponds to a volume render-

ing operation.

2. Correction: computes c(t)
i , the normalized deviation of this estimate from the

true projection bi, where the correction is normalized by the contribution of this

ray to all the voxels it goes through (Eq.(3.31)).

3. Backprojection: where this correction factor is distributed back to all the

voxels that contribute to this ray sum (Eq.(3.30)).

3.3.3 Definition

We now show how to use the SART algorithm to solve the data term proximal operator

proxλf (q). In particular, we want to solve:

proxλf (q) = argmin
f
‖Af − p‖2

2 +
1

2λ
‖f − q‖2

2. (3.33)

Recall that SART solves a minimum norm problem. By introducing new variables:

y =
√

2λ(p −Af) and z = f − q, and after further manipulations, it can be shown



39

that solving the optimization problem in Equation (3.33) is equivalent to solving:

miny,z

∥∥∥∥∥∥∥
 y

z


∥∥∥∥∥∥∥

2

2

subject to:
[

I
√

2λA

] y

z

 =
√

2λ (p−Aq) ,(3.34)

which can be written as:

minf̃

∥∥∥f̃∥∥∥2

2
subject to: Ãf̃ = p̃, (3.35)

where f̃ ∈ Rm+n, Ã ∈ Rm×m+n, and p̃ ∈ Rm. This is now an under-determined linear

system, and can be solved using SART.

Algorithm 2 summarizes the steps for the modified SART to solve the proximal

operator.

Algorithm 2 SART For Solving The Data Term
Require: A ∈ Rm×n, q ∈ Rn, λ ∈ R, α ∈ R, p ∈ Rm
1: p =

√
2λp, A =

√
2λA

2: Initialize: y(0) = 0, f (0) = q
3: for t = 1 . . . T do
4: for projections S ∈ S1 . . .SN do

y
(t+1)
j = y

(t)
j + αc

(t)
j for j ∈ S

b̂
(t+1)

i =
∑
k

aikf
(t)
k + y

(t)
i

c
(t+1)
i =

bi − b̂
(t+1)

i∑
k aik + 1

f
(t+1)
j = f

(t)
j + α

∑
i∈S c

(t+1)
i aij∑

i∈S aij
for j = 1 . . . n

5: end for
6: end for

return volume reconstruction f ∈ Rn

3.3.4 Algorithm

Although we introduced new variables y and z and increased the dimensionality of

the problem from n to n + m, we can solve the modified SART efficiently with very
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little computational overhead. Instead of solving SART explicitly for the optimal y?

and z?, we can manipulate the algorithm to solve it directly for the optimal f?. In

particular, the Eq. (3.30) for the augmented system Ãf̃ = p̃ becomes (by substituting

all variables)

f̃
(0)
j = 0,

f̃
(t+1)
j = f̃

(t)
j + α

∑
i∈S

b̃i−
∑
k ãik f̃

(t)
k∑

k ãik
ãij∑

i∈S ãij
, (3.36)

which can be expanded in terms of y, z, and A as

y
(t+1)
j = y

(t)
j +

α
∑

i∈S
b̃i−
√

2λ
∑
k aikz

(t)
k −y

(t)
i√

2λ
∑
k aik+1

δij

1
,

z
(t+1)
j = z

(t)
j + α

∑
i∈S

b̃i−
√

2λ
∑
k aikz

(t)
k −y

(t)
i√

2λ
∑
k aik+1

√
2λaij

√
2λ
∑

i∈S aij
,

where δij = 1 if i = j and 0 otherwise. Using the fact that z = f − q and simplifying

we get

y
(t+1)
j = y

(t)
j + α

∑
i∈S

√
2λbi −

√
2λ
∑

k aikf
(t)
k − y

(t)
i√

2λ
∑

k aik + 1
δij,

f
(t+1)
j = f

(t)
j + α

∑
i∈S

√
2λbi−

√
2λ

∑
k aikf

(t)
k −y

(t)
i√

2λ
∑
k aik+1

√
2λaij

√
2λ
∑

i∈S aij
.

Algorithm 2 summarizes the steps for the modified version of the SART algorithm

used to solve the proximal operator. We note the following:

1. The initialization is different since we need to initialize y and f .

2. The update for y is very fast because only one index yj is updated for every

projection pixel i = j.

3. The update for f is very similar to standard version of the SART with the
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exception of the term y
(t)
i in the formula for c

(t)
i .

3.4 Implementation Details

Chambolle-Pock Primal-Dual algorithm. We calculate the norm of matrix [74]

K to set the optimal values for µ and η in our PSART framework for faster conver-

gence. The parameter θ is set to 1 in all experiments.

STP regularizer. To compute the STP, we used a truncated 3D Gaussian kernel

with support of 3× 3× 3 voxels (i.e. l = 27) and standard deviation σ = 0.5 voxels

. The linear mapping JK that computes the patch-based Jacobian is not stored

explicitly, and is computed on the fly using discrete forward differences and scaling.

In particular, we can decompose JK ∈ R3nl×n into two operators

JK = CD

where D ∈ R3n×n is a discrete forward-difference matrix that computes local gradients

for the voxels and C ∈ R3nl×3n extracts the patch-based Jacobian for each voxel over

its neighborhood and scales them appropriately using the kernel K(·). The adjoint

J∗K = D∗C∗ is also computed on the fly.

However, the output of the application of the linear map JK to the volume f , i.e.

the patch-based Jacobian JK(f), needs to be stored in the memory. In particular,

for every voxel fi, we need to store a matrix JK(fi) ∈ Rl×3 that has the weighted

local gradients at its l − 1 neighbors and itself (e.g. l = 27 for a neighborhood of

3 pixels in each dimension). This means that we need a storage of 82 times the

size of the volume to be reconstructed (81 for JK(f) plus 1 for the volume itself).

Moreover, the temporary and slack variables in Algorithm 2 have also to be stored.

In the experiments, the largest volume reconstructed has 690× 668× 776 voxels, and

the memory required for storing the volume and the patch-based Jacobian is 109 GB
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Table 3.1: Parameters for the X-ray CT data.
zone plate Artificial rose Plumeria Toothbrush

SID (mm) 1800 536.9627 697.0378 243.1662
SDD (mm) 5000 983 983 983

Detector pixel 1024×1024 1916×1536 1916×1536 1916×1536
Detector pixel size (mm) 1 0.127 0.127 0.127

Input pixel 160 168×135 120×96 1916×1536
Input pixel size (mm) 6.4 1.4484 2.027 0.127

Image downsampled factor 6.4× 11.4× 16× 1×
X-ray penetration (kV ) NA 31 25 32
X-ray intensity (µ$A$) NA 725 860 421

Voxel size (mm) 0.5 0.2775 0.3605 0.0314
Number of projections 180 120 180 180

using single-precision (4-byte) floating point numbers.

3.5 Experiments

The experiments were run on a machine with two Intel Xeon E5-2697 processors (56

cores overall) and 128 GB of RAM. We present two kinds of experiments:

1. focusing on sparse view reconstruction using the 3D Shepp-Logan phantom and

the scans of the rose in Fig. 1.1(c).

2. focusing on super resolution using a simulated 3D Fresnel zone plate, scans of

the artificial rose, the plumeria flower, and the toothbrush((a),(b), and (d) in

Fig. 1.1, respectively).

3.5.1 Sparse-View Reconstruction

We first validate our choice of SART as the solver for the data term in Eq. (1.1).

We run experiments comparing SART head-to-head with Conjugate Gradient (CG)

in a sparse-view setting, using the TV regularizer in both cases. In particular, we

show the reconstruction quality, measured in PSNR and SSIM, as a function of the

number of projections available. We use the implementation provided in RTK and



43

Table 3.2: Parameters used with each method. Time elapsed with each method
denotes the computing time for each main loop iteration.

Zone plate Artificial rose Plumeria Toothbrush
FDK Time elapsed (s) 22.2 8.4 - -

SART

Iter. No. 15 20 - -
Relax. param. α 0.3 0.1 - -
Time elapsed (s) 150 44 - -

PCG-TV

Main loop iter. 40 30 25 20
Nested CG iter. 6 4 4 6
Nested TV iter. 1 1 1 1
Prior parameters α 0.8 55 35 0.1
ADMM param. β 500 8 8 1
Time elapsed (s) 242 36 33 1158

PSART-TV

Main loop iter. 20 25 15 15
Nested SART iter. 1 1 1 1
Nested TV iter. 1 1 1 1
Prior parameters λ 0.003 0.08 0.03 0.1
CP parameters µ,
(µ= τ)

0.15 0.1 0.1 0.1

Time elapsed (s) 98 35 33 1182

PSART-SAD

Main loop iter. 20 25 15 15
Nested SART iter. 1 1 1 1
Nested SAD iter. 1 1 1 1
Prior parameters λ 0.003 0.08 0.03 0.1
CP parameters µ,
(µ= τ)

0.15 0.1 0.1 0.1

Time elapsed (s) 114 42 38 1228

PSART-STP

Main loop iter. 25 16 28 25
Nested SART iter. 1 1 1 1
Nested STP iter. 1 1 1 1
Prior parameters λ 0.03 0.5 0.03 5.5
CP parameters µ
(µ= τ)

0.3 0.3 0.3 0.3

Time elapsed (s) 326 142 95 2347
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PSNR=31.19, SSIM=0.9793
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Figure 3.1: A slice sample with different number of projections from a 3D Shepp-
Logan (a) and scanned rose (b). The PSNR and SSIM values are shown at the top of
each image. For each data, we compare PCG-TV (top) with our proposed PSART-
TV method (bottom). For Shepp-Logan data, 90, 60, 45, and 30 projections as input.
For the real scanned rose, 90, 60, 45 were used projections as input.

compare to our framework using the SART proximal operator solver. The size of the

3D Shepp-Logan volume is 300 × 300 × 300 with voxel size of 1 × 1 × 1 mm, while

the volume size of the rose is 436× 300× 365 with voxel size of 0.3× 0.3× 0.3 mm.

More details for the parameters used in the experiments are shown in Table 3.1 and

Table 3.2.

As Fig. 3.1 shows, SART as a solver for the data term provides better quality

than CG, which is expected given the known limitations of CG, whereby it is prone

to overfitting the projection noise in the data, which becomes even more pronounced

when the number of projections is smaller.

Additional comparison between PCG and PSART results in sparse view tomo-

graphic reconstruction scenario is shown in Figure 3.2. Interestingly, we found that

the proximal operator for the data term leads to a strongly convex optimization prob-

lem and therefore should have a unique optimal solution. However, CG in practice

struggles to find it. This is quite well known in the tomography community (which

is why SART and other methods remain popular for this application). For example

the Figure 3.2 shows results for comparing different solvers for the proximal opera-

tor. We can see that in all settings all methods seem to converge against a similar
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result (albeit at different speeds), except for CG (grey), which stalls at a much lower

value. Note that this behavior is observed across different implementations of CG

and CGLS. For example in our submission we use the CG implementation from RTK

[75] (as well as the projection/backprojection implementation from the same source),

in the figure we show results from the ASTRA toolkit [76], and we also have results

from our own CG implementation. So the issue for CG is quite reasonable.

3.5.2 Super Resolution Experiments

Now we run experiments to compare the new regularizer in a super-resolution setting.

We chose the following algorithms for our comparison:

• PSART-STP: this is our complete framework using the Structure Tensor prior.

• PSART-SAD: this is our framework with the previously used SAD (Sum of

Absolute Differences) prior [77]. It was shown before [21] that SAD performs

better than TV, and so we chose it as the best alternative prior to compare to

STP.

We compare results from our framework to state-of-the-art algorithms and com-

parable implementations in RTK, namely:

• Cone Beam Filtered Back Projection (FDK) [34], as the FDK algorithm is still

the most commonly used method in practical CT scanners [78].

• Plain SART with no priors (SART).

• ADMM with ATV prior (PCG-TV) using Conjugate Gradient (CG) [6].

The initial volume for all methods is set to 0. For choosing the hyper parameters in

all the algorithms, we experiment with a range of values and pick the ones with the

best performance.
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Figure 3.2: Comparison of iterative solvers. Plots show SNR per iteration. Relaxation
parameter α = 1, 2.0, and 0.1 are represented with solid, dashed, and dotted lines.



47

(a) FDK (b) SART (c) PCG-TV (d) PSART-SAD (e) PSART-STP (f) Reference

Figure 3.3: 2D slice from the reconstructed 3D Fresnel zone plate (top) and its Sobel
filtered visualization (bottom). The green ring in each image represents the smallest
feature we can extract according to the Nyquist limit. PSNR and SSIM of slice
images (top) from (a) to (e): FDK (17.5978, 0.9354), SART (19.5440, 0.9582), PCG-
TV (22.0659, 0.9756), PSART-SAD (22.6293, 0.9781), PSART-STP (24.8331,
0.9864), Reference volume. The display window is [0, 0.8]. For Sobel filtered images,
smoother features in the superresolution frequencies for the PSART results indicate
a better suitability for post-processing tasks such as segmentation.
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Figure 3.4: RMSE of the reconstructed volume as a function of iteration (left) and
running time (right) for the various methods.

First, we use a synthetic volume dataset to demonstrate the super-resolution ca-

pabilities of the PSART framework. Specifically, we show a cone-beam tomographic

reconstruction of a 3D version of the Fresnel zone “plate” (a 2D cross-section is shown

in Fig. 3.3(f)). After adding Gaussian noise with standard deviation σ = 2, the

projection images are downsampled with the scale factor as 6.4 using bicubic inter-

polation, which are the input for our experiments. We run the SART algorithm with

180 projections with the original size until convergence (15 iterations), and considered

the resulting reconstruction the reference volume for numerical comparisons.
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Fig. 3.3 (top) shows a visual comparison of the different reconstruction methods,

together with the obtained PSNR and SSIM values. As can be seen, the PSART

framework, with SART as a solver for the data fidelity term outperforms the other

state-of-the-art methods, even when used in combination with the SAD regularizer.

The use of the STP provides an additional quality boost. In particular, we note the

improved reconstruction quality for frequencies above the Nyquist limit for the 2D

pixel sampling rate (green circle).

These results are further confirmed in Fig. 3.3 (bottom). Since tomographic re-

construction is often just the first step in an image analysis pipeline, we tested how

robust and reliable the super-resolution information is for further processing such as

image segmentation. As a stand-in for more sophisticated segmentation methods,

we applied a 3D variant of the Sobel filter [79] to extract the boundaries between

the rings. Smoother results from the Sobel filter indicate that it will be easier to

trace thin structures through the volume in a segmentation process. We can again

see that PSART generates significant super-resolution information, with PSART-STP

performing best.

Fig. 3.4 shows the evolution of the RMSE plotted against the iteration and running

time during the zone plate volume reconstruction for each method. The PSART

methods (PSART-SAD and PSART-STP) converge faster than PCG-TV in terms

of running time, and PSART-STP converges slower than PSART-SAD but finds a

solution with lower RMSE.

We ran another round of experiments on real datasets that were scanned using a

Nikon X ray CT, namely artificial flowers, a plumeria flower, and a toothbrush. These

objects have the structural features we are interested in modeling i.e. thin sheets and

thin tubes.

The reconstructed volume size for artificial rose is 415×314×393. 120 original-

size projection images are used as input for PSART-STP and the best reconstructed
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(a) FDK (b) SART (c) PCG-TV

(d) PSART-SAD (e) PSART-STP (f) Reference

Figure 3.5: a-f: Representative slice visualization in the sagittal plane for the volume
and its closeup view for the artificial flower data reconstructed by FDK, SART, PCG-
TV, PSART-SAD, PSART-STP, and the reference volume, respectively.

(a) FDK (b) SART (c) PCG-TV (d) PSART-SAD (e) PSART-STP (f) Reference

Figure 3.6: Representative slice visualization in the axial plane for (f): the reference
volume and (a)-(e): the volumes reconstructed by FDK, SART, PCG-TV, PSART-
SAD, and PSART-STP, respectively. From top to bottom: volume visualization, its
edge detection, and the closeup views.
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result is used as the reference volume for our comparison. Fig. 3.5 shows recon-

struction results from different methods in the sagittal plane, and the edge detection

results from applying Sobel filter are provided in Fig. 3.9. We can see clearly that our

PSART-SAD and PSART-STP achieve better performance than existing methods.

Fig. 3.6 shows the results in the axial plane. The reconstructed volume size for the

plumeria is 406×259×336. Fig. 3.7 (a) shows the comparison to the state-of-the-art

PCG-TV method. For better visualization and comparisons, we generated a reference

volume by running the PSART-STP method with 360 original images as input until

convergence.The reconstructed volume size for the toothbrush is 690 × 668 × 776.

Fig. 3.7 (b) shows the comparison between PCG-TV and the proposed PSART-STP.

Again, compared to PCG-TV, our method achieves shaper results.
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(a) Plumeria flower (b) Toothbrush

Figure 3.7: Reconstruction results for the real flower (a) and toothbrush (b) in the
sagittal, axial, and coronal planes, respectively.

We compared PSART-TV with PCG-TV on three different datasets and verified

that SART outperforms CG to solve the data term in the scenario of super resolution.

As shown in Figure 3.8, PSART-TV achieves visually better results on an artificial

rose, a zone plate pattern, and a real rose.

Figure 3.9 shows the edge detection results from applying Sobel filter in the sagittal
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Figure 3.8: Reconstructed results comparison between PSART-TV and PCG-TV.

(a) PCG-TV (b) PSART-SAD (c) PSART-STP (d) Reference

Figure 3.9: a-d: Representative slice visualization in the sagittal plane for edge de-
tection on a volume reconstructed by PCG-TV, PSART-SAD, PSART-STP, and the
reference volume, respectively.
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Table 3.3: PSNR and SSIM results from different reconstruction methods.
Method Metric Zone Plate Artificial rose Plumeria Toothbrush

PCG-TV PSNR 22.07 26.83 28.73 27.04
SSIM 0.976 0.958 0.963 0.934

PSART-TV PSNR 22.18 27.00 28.87 27.09
SSIM 0.976 0.958 0.964 0.934

PSART-SAD PSNR 22.63 27.53 28.98 27.62
SSIM 0.978 0.961 0.969 0.938

PSART-STP PSNR 24.83 29.93 30.54 31.30
SSIM 0.986 0.973 0.983 0.973

plane for artificial rose. The size of the volume is 415× 314× 393. 120 original-size

projection images are used as input for PSART-STP and the best reconstructed result

is used as the reference volume for the comparison.

In Table 3.3, we show the detailed metrics measured on the reconstructed results

using different methods, namely PCG-TV, PSART-TV, PSART-SAD, and PSART-

STP. The visualization of the reconstructed results are included in our paper. Specif-

ically, in our measurements, the volumes reconstructed from high resolution projec-

tions and a full number of projection images for each data set are treated as ground

truth. The metrics PSNR and SSIM are calculated as quantitative performance mea-

sure. We can observe that our proposed PSART-STP achieves the best performance

compared to the other three methods.

In summary, for both simulated and real scanned data, our PSART reconstructions

(PSART-SAD and PSART-STP) consistently give better results than the equivalent

PCG-TV. PSART-SAD works better than PCG-TV, confirming earlier results about

the SAD regularizer [21, 77]. Our PSART-STP method produces the best results in

terms of both quantitative (PSNR and SSIM) and qualitative comparisons (visualiza-

tion of volume and edge detection filter), allowing for super-resolved reconstruction

of thin structures shown in Fig. 1.1.
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Table 3.4: Segmentations Results, the threshold parameter is adjusted so that the
results from PCG-TV and PSART-SAD are close to the Nyquist limit.

Threshold Nyquist
Limit

PCG
-TV

PSART
-SAD

PSART
-STP

Ground
Truth

0.55 6 7 7 11 17
0.6 6 5 5 10 17
0.65 6 4 4 8 17

0
.6

5
0

.6
0

0
.5

5

PCG-TV PSART-SAD PSART-STP Ground Truth

Figure 3.10: Segmentation results from different methods. From top to bottom: the
threshold parameters are 0.55, 0.60, and 0.65, respectively, making the reconstructed
results of PCG-TV and PSART-SAD closed to the Nyquist limit. From left to right:
different reconstructed methods: PCG-TV, PSART-SAD, and PSART-STP, respec-
tively.



54

3.5.3 Segmentation Results

In this part, we show an additional quantitative evaluation on the zone plate data

set. We compare the proposed PSART-STP with PSART-SAD and PCG-TV. We

use standard image processing algorithms to segment the data. We simply threshold

the result and run a connected component algorithm. We check how many rings are

correctly reconstructed. A ring is correctly reconstructed if it has no gaps, is not

broken into multiple pieces, and if it does not merge with adjacent rings. We report

the number of correctly extracted rings in Table 3.4 and visualize the results in Fig.

3.10 (The five outmost rings are cut away for better visualization). We can make the

following observations:

1. Our method is the best for all threshold values.

2. For higher threshold values, the performance of all methods degrades.

3. We can extract rings over the Nyquist limit.

3.6 Conclusions

We have presented a flexible proximal framework for robust 3D cone beam recon-

struction of super-resolved thin features. Our two main contributions are (a) intro-

duction of the 3D structure tensor as a regularizer for the tomographic reconstruction

problem, and (b) the use of SART for the data-fidelity subproblem in the proximal

framework. We have experimentally demonstrated that the 3D structure tensor prior

is best suited for reconstructing specific structural features such as thin sheets and

filaments, and that using SART provides better reconstructions than other solvers,

especially in the case of under-determined tomographic reconstruction from a small

number of projections.

We have experimentally compared our framework with the popular RTK open-

source software toolkit, both on real and simulated datasets, using different state-of-
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the-art priors. We showed the robustness of our algorithms in terms of reconstruction

quality.

In the future, we plan to extend our framework by adding a GPU version providing

a higher level of parallelism.
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Chapter 4

Space-Time Tomography

4.1 Introduction

X-ray computed tomography (CT) is a valuable tool for analyzing objects with inter-

esting internal structure or complex geometries that are not accessible with optical

means. Unfortunately, tomographic reconstruction of complex shapes requires a mul-

titude (often hundreds or thousands) of projections from different viewpoints. Such

a large number of projections can only be acquired in a time-sequential fashion. This

significantly limits the ability to use x-ray tomography for either objects that undergo

uncontrolled shape change at the time scale of a scan, or else for analyzing dynamic

phenomena, where the motion itself is under investigation.

In this chapter, we present a non-parametric space-time tomographic method for

tackling such dynamic settings. Through a combination of a new CT image acquisition

strategy, a space-time tomographic image formation model, and an alternating, multi-

scale solver, we achieve a general approach that can be used to analyze a wide range

of dynamic phenomena. We demonstrate our method with extensive experiments on

both real and simulated data.

4.2 Low Discrepancy View Sampling

Computed tomography requires obtaining x-ray projection images of the target under

different observation angles. In cone-beam tomography, the most common sampling

strategy for obtaining these projections is that the target undergoes a full circle of
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rotation relative to the x-ray source and sensor, and images are taken in regular

intervals. That is, the angles θk of the kth projection are given as

θk = θ0 + k · 2π/Np, k = 0 . . . N − 1, (4.1)

where Np is the total number of projections, and θ0 is some starting angle. In the

following, we will call such a scan sequence a linear scan round, or just round for

short.

While this simple strategy works well for static targets, we seek a more uniform

distribution of angles vs. time in the case of dynamic targets. Several acquisition

strategies were proposed in the literature with this goal in mind. The closest to

our approach is the interlaced view sampling approach by Mohan et al. [80], who

proposed to divide the total number of projections Np into Nsf groups consisting

of Nθ projections each (Figure 4.1, right). Each group of projections is used to

reconstruct a different volume, corresponding to a time frame in an animation of the

deforming object.

Within each frame, the projection angles are distributed according to a low dis-

crepancy sequence, which considerably improves the sampling of angle vs. time com-

pared to the simple linear strategy. However, this approach still has several downsides

that we would like to address in this thesis:

• In Mohan et al.’s approach [80] the tradeoff between Nsf and Nθ is a parameter

that needs to be set according to the speed of the deformation (many frames

with a small number of projections for fast motions vs. few frames with a large

number of projections for slow motion). This might mean having to repeat

scans until the best tradeoff is found. In comparison, we seek a strategy that

is independent of the speed of motion, and only depends on the capabilities of

the hardware.
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Figure 4.1: Comparison between our acquisition strategy (a and c) and interlaced
view sampling method [80] (b and d). The parameters taken for this comparison
are: Ns = Nθ = 8 and Nsf = 4. The acquired viewing angles for each round are
represented by red circles (a) or green circles (b). The grey circles correspond to
the previously acquired angles. The plots (c and d) represent the viewing angles vs.
projection index for the first five rounds.

• In interlaced view sampling, the sequence of angles repeats from frame to frame,

so that static or slow moving parts of the geometry do not benefit from ad-

ditional information as the number of frames increases. Since the number of

projections per frame can be small, reconstruction quality will suffer as a result.

Instead, we seek an approach where all of the Np projection angles are unique

in order to extract the maximal amount of information from each additional

projection.

• The interlaced view sampling strategy cannot be implemented on all CT hard-

ware without changes to control software. For example, the scanner used in

our experiments only supports linear scan rounds as discussed above, with a

minimum number of Nmin = 10 projections per round. We aim for a sampling

strategy that takes such restrictions into account by decomposing naturally into

linear scan rounds.

For our space-time tomography method, we propose to split the total sequence of
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Np projections into Nr rounds, where each round consists of Nmin projections that

are spaced ∆θ = 2π/Nmin apart. Note that in our approach, the rounds should be

as short as possible on a given CT hardware, and the number of rounds should not

be confused with the number of frames in the space-time reconstruction. We choose

the starting angle θ0,i for each round i according to a low discrepancy distribution

over the range [0,∆θ[ to uniformly cover all directions over time (see Figure 4.1, left).

Specifically we choose the base-2 Van der Corput sequence [81], which for a given

index i ≥ 0 is defined as

h2(i) =
∞∑
j=0

aj
2j+1

with i =
∞∑
j=0

aj · 2j, (4.2)

where (aj) is the binary representation of i. h2(i) is always in the interval [0, 1[. The

starting angle for the ith round is then given as θ0,i = h2(i) · 2π/Nmin, and the angle

of the kth projection in the ith round is given as

θk,i = θ0,i + k · 2π/Nmin. (4.3)

We note that this strategy simplifies to just the Van der Corput sequence over

the full circle if the CT scanner supports “rounds” with just a single image. However,

even if the scanner imposes a minimum length for rounds, with our scheme it can

still be used to image deformable phenomena, so long as the motion is small over

Nmin successive frames. All results in this thesis are obtained for Nmin = 10. We

also note that the sampling strategy is completely decoupled from the magnitude

of the deformation, and that in particular the number of reconstructed frames in

the space-time reconstruction is independent of the number of rounds and can be

chosen post-capture. Moreover, since all projection angles are unique, each additional

image provides extra information for a high-quality reconstruction, even in the case

of stationary or partially stationary geometry.
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4.3 Image Formation Model

Our image formation model considers a 3D object undergoing continuous deformation

over time. We represent this object as a continuous 4D density function h(x, y, z, t).

This density function can be discretized into a sequence of Nk frames, where each

frame is represented by a voxel grid with Nv voxels. We choose Nk � Np and

assume that each frame represents an approximately static geometry that can be

reconstructed at least at low spatial resolution and low quality by a short sequence of

Nθ successively captured projections. In our implementation, we choose Nθ = Np/Nk,

however one could also choose larger values of Nθ, so that projections contribute to

multiple frames.

After regrouping all voxels in each frame into a column vector, the 4D density

volume is described by a vector in RNvNk : f = {f0, f1, . . . , fNk−1}, where ft ∈ RNv

represents the 3D volume at the tth time step. With these assumptions, the basic

tomography problem on the sequence of frames can be expressed as



A1

. . .

At

. . .

ANk


︸ ︷︷ ︸

A

·



f1

...

ft
...

fNk


︸ ︷︷ ︸

f

=



p1

...

pt
...

pNk


︸ ︷︷ ︸

p

, (4.4)

where At ∈ RNθM×Nv is the matrix that models the Radon transform operator for

the Nθ projections contributing to the tth frame. M is the number of pixels for a

projection image. pt ∈ RNθM is the vector of the measured data (sinogram).

Joint optimization framework. In general, this computed tomography reconstruc-

tion is an ill-posed inverse problem, especially since only a few projections are used
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for the reconstruction of each frame (for the results in this thesis, Nθ ranges from

10 to 60). This problem can be alleviated by aggregating information across frames,

using the regularized optimization framework shown in Equation 5.6. This frame-

work jointly reconstructs the 4D volume f as well as the deformation fields u =

{u0,u1, . . . ,uNk−2} between successive time frames. Recently, this joint motion esti-

mation and image reconstruction approach has successufuly been used in other appli-

cations, like in dynamic image reconstruction [82] and fluid flow estimation [14, 83].

(f∗,u∗) = argmin
f ,u

Nk∑
t=1

‖Atft − pt‖2
2

+ κ3

Nk−1∑
t=1

‖∇T ft +∇Sft · ut‖1 (4.5)

+ κ1

Nk∑
t=1

‖∇Sft‖Hε
+ κ2

Nk∑
t=1

‖∇T ft‖2
2

+ κ4

Nk−1∑
t=1

∑
i=x,y,z

‖∇Sut,i‖Hτ

Here, the operators ∇S and ∇T represent respectively the spatial and temporal dis-

crete gradient, ut represents the deformation vector field at time t.

The first term in Equation 5.6 corresponds to the least-square data fitting term,

derived from Equation 5.1. The second term is an L1 volume correlation term, similar

to a 3D version of the Horn-Schunck style brightness constancy term [84] in optical

flow. As discussed in Section 4.4 below, we use a multi-scale version of optical flow [85]

which does not have a closed form representation, but is capable of dealing with larger

deformations than basic Horn-Schunck.

The remaining terms are regularizers for the volume and the deformation field, re-

spectively. On the third line of Equation 5.6 are two terms for regularizing the spatial

and the time dimensions of the reconstructed volumes. For the spatial regularization

we use the Huber penalty [86] on the spatial gradient over the reconstructed volumes,
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which is parameterized by a positive parameter ε. The idea of this term is similar to a

total variation (TV) prior, except that the Huber penalty prevents the usual staircase

artifacts introduced by a TV prior by not penalizing small gradients. Finally, on the

last line we introduce a spatial regularization of the deformation field, also utilizing

the Huber penalty.

4.4 Solver

Solving the joint optimization problem in Equation 5.6 is challenging, especially be-

cause of the optical flow prior. Indeed, this term is neither linear nor convex. More-

over, it involves both variables f and u. We address these issues by solving the

optimization problem in an alternating way as shown in Algorithm 6.

We first initialize the 4D volume (f) by applying a variant of the SART algorithm

[7] independently for each frame, where the individual projections are processed in a

random order to improve convergence [15]. Then, our algorithm alternates between

estimating the deformation field (u) for each pair of successive frames, and refining

the reconstruction of f .

In addition, our alternating joint optimization framework, given in Algorithm 6,

follows a multi-scale coarse-to-fine scheme [85]. The deformation field is estimated

first for the coarsest scale, then the estimation is propagated step-by-step to the

finest levels. For each scale (s), the deformation field is initialized by up-sampling

the previous result obtained with a coarser scale. This multi-scale strategy aims to

take into account the large deformations in the optical flow prior. In Algorithm 6,

the finest and the coarsest scales are respectively obtained for s = 1 and s = Nscales.

The operators ↑ and ↓ respectively perform cubic up- and down-sampling by a factor

of ρ, and the down-sampling operator also includes a Gaussian smoothing.

Detailed explanations of the deformation field estimation and the volume recon-

struction and the associated operators Fh, Gh, Fu, and Gu are provided in the fol-
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Algorithm 3 Space-Time tomography
1: procedure ST-Tomography(Fh, Gh, Fu, Gu, ρ)
2: Initialize u = 0, and f by using the SART algorithm
3: for i from 1 to maximum outer iteration do
4: // generate multi-scale data
5: f1 ← f , u1 ← u
6: for s from 1 to Nscales − 1 do
7: f s+1 ←↓ f s
8: us+1 ← ρ ↓us
9: end for

10:
11: // update deformation field variables
12: // from the coarsest scale to the finest
13: for s from Nscales − 1 to 1 do
14: us ← EstimateDeformations(Fhs(u

s), Ghs(u
s))

15: us−1 ← 1
ρ
↑us

16: end for
17: u← u1

18:
19: // update 4D volume variables
20: f ← ReconstructVolumeDensity(Fu, Gu)
21: end for
22: return f and u
23: end procedure
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lowing.

4.4.1 Deformation Field Estimation.

For estimating the deformation field between two volumes, we adapt the multi-scale

optical flow approach introduced by Meinhardt-Llopis et al. [85] to include additional

regularizers and to work on 3D volumes rather than 2D images.

At each scale s, we estimate the residual deformation between frame ft and a

backwards warped version of frame ft+1, where the warping is performed using the

previously estimated low resolution deformation field us+1
t . We denote this backward-

warped frame as warp(ft+1, ↑us+1
t ), and define the following function

Gh(us) =κ3

Nk−1∑
t=1

∥∥(warp(ft+1, ↑us+1
t )− ft)

+∇Swarp(ft+1, ↑us+1
t ) · (ust− ↑us+1

t )
∥∥

1
(4.6)

+κ4

Nk−1∑
t=1

∑
i=x,y,z

∥∥∇Sust,i
∥∥

Hτ

Based on Equation 5.6, the optimization problem for each scale is then given as

us,∗ = argmin
us

Gh(us). (4.7)

This approach corresponds to a first-order Taylor approximation of the non-linear

warping function, and was first proposed by Meinhardt-Llopis [85]; we refer to their

work for a detailed derivation and discussion. In order to ensure high accuracy results,

the BFECC method [87] was selected for all our warping operations.

Due to the presence of the L1-norm and the Huber penalty in Equation 6.5 we re-

formulate this optimization in the first-order primal-dual framework (CP algorithm),

introduced by Chambolle and Pock [26]. The strategy proposed by this algorithm,
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Algorithm 4 CP-based method for deformation field estimation
1: procedure EstimateDeformations(Fh, Gh)
2: while not converged do
3: // update slack variable
4: wj+1 ← proxλ1G∗h(wj + λ1Khūj)

5: // update deformation field
6: us,j+1 ← proxµ1Fh

(us,j − µ1K
T
hwj+1)

7: // update dual variable
8: ūj+1 ← 2 · us,j+1 − us,j

9: end while
10: return us

11: end procedure

consists in splitting the optimization problem into different sub-problems that are

solved independently in the form of proximal operators. The pseudo-code shown in

Algorithm 9, summarizes the CP algorithm used to solve the Equation 6.5, where w

and ū are respectively the slack and the dual variables. proxλ1G∗h and proxµ1Fh
are

the proximal operators, based on the functions Fh(u) = 0 and Gh as defined above.

Since Fh(u) is a constant function, its proximal operator is simply the identity. The

derivation of proxλ1G∗h is given below in detail.

First, we simplify the notations, by denoting:

w̃j = wj + λ1Khūj

g̃j = gj + λ2Kuh̄j

b̃t = warp(ft+1, ↑us+1
t )− ft −∇Swarp(ft+1, ↑us+1

t )· ↑us+1
t



66

we insert whole function into G, thus we have: Fh(u) = 0 and

Gh(Khus) =κ3

Nk−1∑
t=1

∥∥(warp(ft+1, ↑us+1
t )− ft)

+∇Swarp(ft+1, ↑us+1
t ) · (ust− ↑us+1

t )
∥∥

1
(4.8)

+κ4

Nk−1∑
t=1

∑
i=x,y,z

∥∥∇Sust,i
∥∥

Hτ

where the operator Kh is defined as:

Kh =


∇T
S 0 0 ∇xwarp(ft+1, ↑us+1

t )

0 ∇T
S 0 ∇ywarp(ft+1, ↑us+1

t )

0 0 ∇T
S ∇zwarp(ft+1, ↑us+1

t )


T

=



K11

K12

K13

K14


(4.9)

Hence:

w̃j = wj + λ1



K11

K12

K13

K14


ūj =



w̃j+1
1

w̃j+1
2

w̃j+1
3

w̃j+1
4


(4.10)

Now it can be shown that the problem is equal to solve a saddle problem :

min
x

max
y

Kh · y + 0−G∗h(y), (4.11)

Incorporating it into CP algorithm [26], we obtain:

wj+1
1,2,3 = proxλ1G∗h


w̃j+1

1

w̃j+1
2

w̃j+1
3

 (4.12)

wj+1
4 = proxλ1G∗h(w̃j+1

4 ) (4.13)
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Gh(·) is the Huber penalty function. Therefore, the proximal operator of G∗h(·)

is a point-wise shrinkage operation similar to the case of the TV norm [26] with an

additional multiplicative term Hf1 :

Hf1 =
1

1 + λ1 · ε1 κ3κ4

The first term of Gh(.) in Equation 1 is an affine linear L1 norm and the proximal

operator can be solved [5] directly as:

wj+1
4 = min(1,max(w̃j+1

4 + λ1(b̃t +∇Swarp(ft+1, ↑us+1
t ) · ūj),−1))

With this, proxλ1G∗(·) (line 4 in Algorithm 2 ) is defined. The second proximal

operator in the same algorithm, proxµ1Fh
(·) is simply the identity since Fh(u) = 0.

4.4.2 Volumetric Reconstruction

After the deformation field estimation, the 4D volume density (f) is reconstructed

using the optimization framework given in the Equation 4.14, which follows directly

from Equation 5.6.

f∗ = argmin
f

Nk∑
t=1

‖Atft − pt‖2
2

+ κ3

Nk−1∑
t=1

‖∇T ft +∇Sft · ut‖1 (4.14)

+ κ1

Nk∑
t=1

‖∇Sft‖Hε
+ κ2

Nk∑
t=1

‖∇T ft‖2
2

In order to deal with large-scale deformations, the implementation of the volume

update in practice uses volume warping instead of the Horn-Schunck-style energy
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term, just as in the deformation estimation. That is, we approximate

∇T ft +∇Sft · ut ≈ warp(ft+1,ut)− ft. (4.15)

Including this term in the volume reconstruction is what allows for aggregation of

information from projections across frames, and is the reason for improved volume

reconstruction quality.

Algorithm 5 CP-based method for tomographic reconstruction
1: procedure ReconstructVolumeDensity(Fu, Gu)
2: while not converged do
3: // update slack variable
4: gj+1 ← proxλ2G∗u(gj + λ2Kuh̄j)
5: // update volume variable
6: f j+1 ← proxµ2Fu

(f j − µ2K
T
ugj+1)

7: // update dual variable
8: h̄j+1 ← 2 · f j+1 − f j

9: end while
10: return f
11: end procedure

As before, a first-order primal-dual algorithm is employed, since Equation 4.14

also contains the Huber penalty and the L1-norm. The used scheme for solving the

Equation 4.14 is provided in Algorithm 7, where g and h̄ are respectively the slack

and the dual variables. proxλ2G∗u and proxµ2Fu
are the proximal operators for the

volume reconstruction. The function Fu is defined as the first term of the objective

function in Equation 4.14, while Gu consists of the remaining terms of the same

objective function.

Gu(Kuf) =

Nk∑
t=1

‖∇Sft‖Hε1
+
κ2

κ1

Nk−1∑
t=1

‖∇T ft‖2
2

+
κ3

κ1

Nk−1∑
t=1

‖warp(ft+1,ut)− ft‖1 (4.16)
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Thus the operator Ku is given by

Ku =

(
∇S, ∇T , W

)T
=


K21

K22

K23


and

g̃j = gj + λ2


K21

K22

K23

 h̄j =


g̃j1

g̃j2

g̃j3

 (4.17)

where W is a warping operator representing the volume warping term warp(·, ·).

Note that for the sake of notational simplicity we are abusing the linear operator

notation to also describe the non-linear W. Specifically, we denote the adjoint of the

image warping operator as WT . If W is the backward warp from frame i+1 to frame

i, the WT is the forward warp from frame i− 1 to frame i.

Incorporating these definitions into the CP algorithm [26], we obtain:

gj+1
1 = proxλ2G∗u(g̃j1)

gj+1
2 = proxλ2G∗u(g̃j2) (4.18)

gj+1
3 = proxλ2G∗u(g̃j3)

Similar to Equation 4.12, the solution for Equation 4.18 is a point-wise shrinkage

operation multiplied by a Huber factor Hf2. For Equation 4.18, the solution is:

gj+1
p =

κ2

κ2 + 2κ1λ2

g̃jp p = 1, 2, 3 (4.19)
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The proximal operator for data term Fu(·) is

proxλ2Fu
(u) = argmin

f
‖Af − p‖2

2 +
1

2λ2

‖f − u‖2
2. (4.20)

This is a least squares problem, and we use SART solving this function iteratively in

a matrix free manner[77].The SART algorithm is applied as a solver for the proximal

operator of Fu(f) instead of the traditional conjugated gradient (CG) method, since

the CG solver usually requires good preconditioners to be stable, and is generally

more sensitive to measurement noise. The update equation for each voxel f ′j in the

volume f ′ is:

f
′(t+1)
j = f

′(t)
j + ϕ

∑
i∈S

√
2λ2pi−

√
2λ2

∑
k aikx

(t)
k −y

(t)
i√

2λ2
∑
k aik+1

aij∑
i∈S aij

. (4.21)

where t is the iteration, ϕ is a relaxation parameter, S is a set of projection rays under

consideration, and aij is the element in row i and column j of the system matrix A and

defines the contribution to ray sum i from voxel j, and pi is the measured projection

value. In practice, ϕ is set as 0.5, and 3 iterations of plain SART algorithm are

applied as initialization for the proposed optimization framework.

4.5 Experiments

In this section, we first quantitatively assess our reconstruction method using a sim-

ulated deforming object. Then, we demonstrate its applicability to six selected de-

formation phenomena: flow of a high-viscosity fluid, wilting of a rose, re-hydration

of a dried mushroom, rising of a dough, magnification of lentil/lupin seeds soaked in

water, and dissolution of crystal sugar in water.

We perform experiments on a synthetic dataset to obtain quantitative results for

comparisons with alternative acquisition schemes and reconstruction methods. The

volume is based on a high-quality CT scan of a static copper foam, depicted in

Figure 4.2, on which we impose a synthetic deformation. The volume resolution in
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these experiments was 125× 250× 125.

4.5.1 Quantitative Evaluation

b ca

Figure 4.2: Synthetic deformation for a copper foam volume with an initial size of
125×250×125. (a) Initial volume obtained with real CT acquisition. The deformation
is a uniform compression, where the top edge moves downwards at a constant speed,
and the bottom edge is stationary, resulting in a linear velocity gradient throughout
the volume. Frames (b) and (c) frames 150 and 300 of this sequence.

Uniform compression. The deformation in these experiments is a uniform com-

pression in the vertical direction (Figure 4.2), where the top edge moves downwards

by 0.2 voxels between successive projection images. While this is a very simple, non-

physical motion, it does allow us to observe a range of different velocities in a single

experiment, with v = 0.2 voxels/∆t at the top edge, v = 0 at the bottom edge, and a

linear ramp of velocities inbetween. This allows us to collect quality statistics for dif-

ferent horizontal slabs of the volume to analyze the impact of deformation velocity on
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the quality of reconstructions for different algorithmic choices and parameter settings.

In the following comparisons, we consider the volume generated at the mid-time frame

as the ground truth for that time frame.

a b c

Figure 4.3: Synthetic deformation for a copper foam volume. (a) Initial volume
obtained with real CT acquisition. The deformation is a uniform rotation, where the
volume rotates from left to right. Frames (b) and (c) frames 150 and 300 of this
sequence.

Rotation. We rotated the volume between successive projections with a fixed angle

φ. Figure 4.3 shows frames 150 and 300 of the sequence with φ = 0.1◦. Different values

of φ were given in the Table 4.1, and demonstrate that the method starts breaking

down around values of φ > 0.3◦. As stated in the paper, notice that these results can

not necessarily be generalized to arbitrary data, since the performance of our method

also depends on the amount of local volume structure.

Table 4.1: Calculated PSNR [dB], and SSIM for different rotation velocities [◦/∆t].
Metric 0.1 0.2 0.3 0.4 0.5
PSNR 34.81 30.56 26.15 19.76 16.68
SSIM 0.95 0.88 0.79 0.67 0.54
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Impact of the acquisition strategy. First, we study the impact of the view

sampling strategy on our space-time reconstruction method. From a total number of

Np = 160 projections we reconstruct Nk = 5 frames (i.e. we use Nθ = 32 projections

per frame). We test three different view sampling strategies: (a) a single linear round

with Np = 160 projections, (b) the strategy of Mohan et al. [80] with Nθ = 32,

and (c) our low discrepancy sampling, where we use Nr = 5 rounds of Nmin = 32

projections each, since a power of two value for Nmin makes our method more directly

comparable to Mohan et al.’s method. On all datasets, we attempt our full space-time

tomographic reconstruction method.

Table 4.2 shows the numerical results of this experiment separately for five different

regions of the volume, corresponding to different velocities of the deformation. Two

numerical metrics are collected on the data, namely: Peak SNR (PSNR), and SSIM

index. For SSIM comparisons, a binary mask is added to allow us to focus on the

geometric comparison. As expected, all the metrics indicate improved reconstruction

with decreasing speed of deformation for all sampling strategies. Our low discrepancy

strategy offers the best performance at all speeds, with the difference being larger on

the fastest moving parts, where the advantages of a good sample distribution in both

in space and time are the most evident.

Table 4.2: Interaction of the sampling strategy with our reconstruction method.
PSNR [dB], and SSIM are applied.

Region Metric Linear Mohan Our
Top PSNR 18.34 23.83 28.08
(fastest) SSIM 0.53 0.75 0.84

PSNR 21.54 25.27 29.15
SSIM 0.68 0.80 0.88

Center PSNR 25.43 28.17 31.45
(medium) SSIM 0.78 0.87 0.92

PSNR 28.32 31.44 33.57
SSIM 0.84 0.93 0.96

Bottom PSNR 30.28 33.23 34.52
(slowest) SSIM 0.89 0.96 0.97
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Comparison of different reconstruction algorithms. While the previous experiment

used our reconstruction method with different sampling strategies, we now compare

different reconstruction methods and study in detail the impact of each prior on the

reconstructed quality. The methods we compared are:

• plain SART,

• Rudin-Osher-Fatemi total variation denoising model [88], implemented by solv-

ing it in a primal dual scheme [26], and using SART as the solver for data term

(SART-ROF),

• SART-Huber (SART-H), where the TV term is replaced by the corresponding

Huber variant,

• SART-Huber&Temporal smoothing prior (SART-H&T), but no optical flow

warping, and

• our full method (Ours).

Considering the structural complexity and relative motion of this simulated data,

we choose Nθ as 30, thus we have 10 frames of volumes in total, the numeric results for

each metric shown in the Table 4.3 are averaged over all 10 frames. As shown in Table

4.3, the three methods that rely solely on spatial reconstruction (SART, SART-ROF,

and SART-H) perform significantly worse than the two methods with using some

form of temporal regularization (SART-H&T and Ours). However, even within that

latter group, the advantage of our full model including optical flow warping is evident.

Analyzing the results for the individual horizontal slices, we note that the errors get

worse from bottom to top, but our method degrades much slower than the comparison

approaches.

Failure case determination. In order to explore the failure cases of our method, we

conduct a compression experiment with larger velocities than before (0.9 voxels/∆t
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Table 4.3: Calculated PSNR [dB], and SSIM for different reconstruction methods:
SART, Rudin-Osher-Fatemi (SART+TV), SART+H(uber), SART+H&T(emporal)
smoothing, and our full method.

Region Metric SART ROF H H&T Ours
Top PSNR 19.53 21.83 21.88 23.58 28.15
(fastest) SSIM 0.65 0.71 0.71 0.76 0.83

PSNR 21.79 23.13 23.17 24.17 29.03
SSIM 0.72 0.77 0.77 0.82 0.88

Center PSNR 26.67 27.53 27.58 28.69 31.96
(medium) SSIM 0.83 0.86 0.86 0.89 0.93

PSNR 29.23 30.09 30.07 32.32 33.92
SSIM 0.89 0.91 0.92 0.93 0.96

Bottom PSNR 30.65 31.07 31.07 32.81 34.35
(slowest) SSIM 0.91 0.93 0.93 0.94 0.96

at the top edge of the volume).

Table 4.4: Calculated PSNR [dB], and SSIM for different compression velocities
[voxels/∆t].

Metric (0.0-0.1) (0.1-0.3) (0.3-0.5) (0.5-0.7) (0.7-0.9)
PSNR 33.77 27.15 22.52 18.39 15.14
SSIM 0.94 0.81 0.72 0.59 0.48

The Table 4.4 shows how the quality of our reconstruction degrades with faster

velocities. For example, if the deformation is larger than 0.5 voxels between suc-

cessive projections, the PSNR drops below 20. This corresponds to approximately

15 voxels for one time frame of our reconstruction, since we are using 30 projections

to reconstruct each time frame. Another experiment was done by rotating the volume

between successive projections with a fixed angle φ. Different values of φ were tested,

and demonstrate that the method starts breaking down around values of φ > 0.3◦.

It must be emphasized that these results cannot necessarily be generalized to arbi-

trary data, since the performance of our method also depends on the amount of local

volume structure. However, overall our synthetic experiments demonstrate that the

performance of our method deteriorates gracefully as the speed of motion increases.
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4.5.2 Qualitative Evaluation

Table 4.5: Parameters used in the acquisition and for the optimization, and total run
times per sub-problem (summed over all outer iterations) for each of the six datasets.
The parameters κ1 = 0.05 and κ4 = 1.2 were fixed for all datasets.
Dataset Cap. time Nk Nθ Volume size Vox. pitch κ3 κ2 # Outer u-problem f -problem

[h:mm] [mm] iterations [h:mm] [h:mm]
rose 9:32 92 60 510×384×456 0.20 0.2 0.3 6 4:48 3:19
fluid 2:12 152 10 384×304×384 0.24 0.2 0.5 6 4:34 1:21
mushrooms 6:05 200 20 240×190×240 0.34 0.1 0.1 6 5:50 1:07
dough 4:27 132 20 276×221×271 0.20 0.1 0.1 8 4:50 0:51
seeds 5:12 60 50 508×332×506 0.17 0.1 0.1 8 2:38 2:02
sugar 0:43 50 10 475×380×475 0.17 0.1 0.1 8 2:09 0:18

Nθ = 20 Nθ = 40 Nθ = 60 Nθ = 80 Nθ = 120 Nθ = 1380 Nθ = 5520 

Figure 4.4: Comparison of rose slices obtained after SART reconstruction using a
different number of projections (Nθ). The blue and green rectangles highlight the
regions where the differences are the most prominent.

To demonstrate the versatility of our proposed approach in studying a variety

of dynamic phenomena, as shown in Figure 4.5, we apply it to six real experiments

comprising very different types of objects and deformations: (a) a rose undergoing

significant wilting during the 9.5 hour scan process. The wilting was further acceler-

ated by adding salt to the bottom of the stem. (b) Flow of a high viscosity transparent

fluid over a 3D-printed mold. This fluid, with 20 million times the viscosity of water,

has several included air bubbles that move and pop as the fluid fills the mold. (c)

Re-hydration of dried black mushrooms from a melting ice cube. (d) Rising dough,

made from flour and yeast. A hazelnut is placed inside this dough, in order to have

additional internal structures. (e) Hydration of a mixture of lentil and lupin seeds

soaked in water. (f) Dissolution of crystal sugar inside water.

Scanning and Optimization Parameters. All of these phenomena were captured on

the same CT device, a Nikon XT H 225, where the acceleration voltage of the x-ray
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Figure 4.5: Different types of objects and deformations used in the experiments.

tube was in the range of [93 kV, 175 kV ], depending on the dataset. The detector of

this device has a resolution of 1910×1524 pixels, with a pixel size of 0.127×0.127 mm.

Given the different nature of these experiments, their acquisition parameters (capture

time, number of frames) are very different. Table 4.5 provides the value of these

parameters for all datasets.

In our optimization framework some parameters are common for the six datasets.

The weights for the Huber penalty priors are set respectively to: κ1 = 0.05 (In

practice, κ1 ranging from 0.01 to 0.1 yields accurate results) and κ4 = 1.2. For

the multi-scale scheme we choose Nscales = 3, ρ = 0.5 , σ = 0.65 (Algorithm 6).

Otherwise, the scales used in the proximal operators are set to: λ1 = µ1 = 0.3 for

the deformation estimation problem (Algorithm 9), and λ2 = 1.0, µ2 = 0.1 for the

volume density reconstruction (Algorithm 7). In the inner loops we used two iterations

for the SART algorithm and one iteration for the deformation field reconstruction.

Other parameters are specific for each dataset (see Table 4.5 for these parameters).

κ2 controls the temporal coherence of each dataset, and usually to get good results κ2

should be in the range 0.1 to 0.8. Our algorithms were implemented in C++, and were

run on a computer with a dual-core 3.00GHz Intel Xeon E5-2687W processor and 512

GB of RAM. The deformation estimation (u-problem) and the volume reconstruction

(f -problem) run times for one complete iteration are also given in the Table 4.5.

The deformation scale and the complexity of the structures are very different from

one dataset to another. Consequently, we choose different numbers of projections per
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time frame (Nθ) in our reconstructions (see Table 4.5). This parameter is of great

importance, and has to be set carefully in order to obtain accurate reconstructions.

Intuitively, it should be as high as possible to have a better reconstruction of complex

structures in each individual frame, which can then be used for optical flow tracking.

On the other hand, Nθ should be small enough to avoid the "motion blur" caused by

the deformations. In other words, there is a trade-off between spatial and temporal

resolution that requires parameter selection, but unlike in the work of Mohan et

al. [80], this parameter choice is strictly post-capture and can be informed by visually

analyzing the amount of motion in the raw projection images.

Rose dataset. In Figure 4.4 we illustrate the impact of Nθ on the quality of a

standard (3D) SART reconstruction of the wilting rose. This figure shows the same

rose slice obtained using reconstructions with different values ofNθ. The central petals

of this rose are almost static during the scanning process. Thus, the reconstruction

quality of these features improves with an increasing number of projections. This can

also be seen in Figure 1.2-(c). However, when the structures are dynamic, using a

large number of projections yields blurred reconstructions, causing these features to

disappear as their density gets distributed over many voxels. Note that for Figure 1.2-

(c), we use a threshold for the rendering, that is why these dynamic structures look

less blurred in the 3D rendering, but certain features are missing entirely. The blue

and green rectangles in Figure 4.4 illustrate two dynamic features of the rose. One can

notice that forNθ higher than 60, some details of these features are blurred. Therefore,

for this dataset we choose to use 60 projections to reconstruct each time step using

our space-time method. Moreover, Figure 1.2-(f) shows that the reconstructed rose is

quite similar for successive frames (Frames 01-02 and Frames 91-92), which reinforces

our choice of Nθ. For other datasets we also set this parameter empirically, by looking

at the changes in projections of similar angles.
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Frame 10 Frame 40 Frame 65 Frame 90

Figure 4.6: Reconstruction obtained for the wilting rose dataset. A 3D rendering of
the rose is given at four different time frames (first row). The second and the third
rows show respectively a top and a side slices for the same time frames.
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Figure 4.7: Comparison for rose dataset between SART-ROF and our method.

The reconstructions shown in Figure 4.6, and Figure 4.7 demonstrate the accuracy

of our approach. Note that the petals curl in on themselves, creating a quite intricate
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deformation field. Our non-parametric method can handle this situation well, while

fitting an appropriate FEM model to this data would be extremely challenging. De-

spite the high geometric complexity of this dataset, as well as the low contrast in the

projections (see Figure 1.2-(d)), our reconstruction provides sharp details of the rose

during the whole wilting process. This makes our approach very suitable for studying

botanical processes that happen at time scales of the scan process.

fluid mushrooms sugar 
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Figure 4.8: Comparison of three reconstruction approaches for different datasets (from
left to right: fluid, mushrooms and sugar datasets). The first row corresponds to the
SART result. The second row are reconstructions using the SART algorithm with a
Huber penalty and a temporal smoothing prior. The last row shows the reconstruction
obtained with our method.

Fluid dataset. The second dataset (see Figure 4.12 and Figure 4.13) is composed

of a static part (mold) and a dynamic part (high viscosity fluid, (PSF-20,000,000 cSt

Pure Silicone Fluid) that contains internal structures (bubbles). Given the relatively
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Frame	  01	   Frame	  20	   Frame	  40	   Frame	  60	  a 

b 

c 

Figure 4.9: Reconstruction obtained for the lentils/lupin seeds dataset. (a) and (b)
Captured photographs of the seeds sample before and at the end of the scan. (c) 3D
rendering (top) and slices visualization (bottom) of the obtained result for 4 different
time frames. For these slices the left half corresponds to the reconstruction using a
classical method (SART-ROF); while the right half corresponds to our reconstruction
result.

Frame	  04	   Frame	  15	   Frame	  25	   Frame	  50	  a c 

b 

Figure 4.10: Reconstruction obtained for the crystal sugar dataset. On the left side,
photographs of the sample before (a) and after (b) the scanning process are given.
On the right side (c), a 3D rendering for four time frames is given (top), as well as a
slices visualization for the same time frames (bottom). For these slices the left hand
part corresponds to the reconstruction using a classical method (SART-ROF); while
the right side corresponds to our reconstruction result.

fast motion of the fluid, only ten projections are used to reconstruct each time frame.

Thus, when a SART algorithm is applied on this dataset, the volumes are poorly re-

constructed (see the first column of Figure 4.8). Adding just the spatial priors – the

Nonlinear TV prior (ROF) or the Huber penalty prior – is not sufficient to improve
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Figure 4.11: The visualization of the sugar dataset, SART-ROF is compared with
our method.

the reconstruction quality. Moreover, on the provided video we observe a temporal

incoherence between the retrieved volumes at successive time steps. With our re-

construction, this is solved by adding temporal smoothness and optical flow priors.

The temporal prior ensures a temporal coherence for the reconstructed volumes. In

addition, it allows enriching the angular information, for both the static parts (mold)

and the dynamic parts (fluid), since projections used in successive time frames are

different. The accuracy of the reconstruction is then improved, especially for static

and quasi-static features. In Figure 4.8, we see clearly that the SART-H&T algorithm

(SART algorithm + Huber penalty + temporal prior) has a better reconstruction for

the mold. But since the top of the fluid has large displacements, we observe some

blurring and smearing effects. This is solved in our approach by using the optical

flow prior and the joint optimization framework. Figure 4.8 shows the improvement

of our method in the reconstruction of the dynamic features of the fluid.

Mushroom dataset. Similar observations can be made for the slices representing

the mushrooms dataset shown in the middle column of Figure 4.8. In this data, a

partially frozen ice cube with a liquid water core is placed on a bed of dried mushrooms

(Auricularia auricula-judae). The slice sequence (Figure 4.14-(f)) makes it possible

to follow the complete process of re-hydration of the mushrooms. The first image

illustrates the presence of a water cavity inside the ice, showing that the cube was
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Frame 001 Frame 018 Frame 075 Frame 150

Figure 4.12: Reconstruction obtained for the high viscosity fluid dataset. Two pho-
tographs are given for the before and after scanning process (left). These photos are
accompanied by thumbnail images of the first and last projections. A 3D rendering
is given for four different time frames from two different views (right).

not frozen completely. The water has higher density than ice in the x-ray images, as

is to be expected. The second image shows the beginning of the melting of the ice.

The thickness of the ice is reduced, and liquid water is now present at the bottom of

the container. On the top side of the ice the density is darker than before, while it is

brighter on the bottom side. This shows how the liquid water drains from the cavity

in the ice cube and is replaced by air. In the third image, all the liquid water leaves

the cavity and ends up on the bottom of the container. The remaining four images

show the continuous re-hydration of the mushrooms from the melting ice. The final

state of this process is illustrated by the photograph in Figure 4.14-(d) and the 3D

rendering in Figure 4.14-(e) and Figure 4.15.

As can be seen in Figure 4.8, the SART and the SART-H&T approaches fail in

reconstructing sharp features, especially for the cavity inside the melting ice. Fig-

ure 4.14-(a),(b) and (c) shows a comparison between the SART, the SART-ROF

algorithms and three different iterations of our approach for the last time frame. At

this stage all the ice has melted, which accelerates the re-hydration of the mushrooms.

The increased rate of deformations in the mushrooms causes a reduction in recon-

struction quality for the SART and SART-ROF algorithms. After few iterations of
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Figure 4.13: Reconstruction obtained for the high viscosity fluid dataset. Two pho-
tographs are given for the before and after scanning process (left). These photos are
accompanied by thumbnail images of the first and last projections. A 3D rendering
is given for four different time frames from two different views (right).
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SART SART-ROF Ours (Iteration 1) Ours (Iteration 2) Ours (Iteration 6)

Figure 4.14: Reconstruction obtained for the dried black mushrooms dataset. A
comparison of different reconstruction methods at one time frame is shown for 2
slices in (a) SART,(b) SART-ROF and (c) Our method with 1 iteration (left), 2
iterations (middle) and 6 iterations (right). Images (d) and (e) represent respectively
a photograph and a 3D rendering of the last time frame. Finally, a time sequence
of the same slice illustrates the steps of the melting ice and the re-hydration of the
mushrooms in (f).

our algorithm the result is accurate.

Dough dataset. The fourth dataset corresponds to a rising dough shown in the

photographs in Figure 4.17-(a) and (b). In comparison to the rose, the projections

of the dough have a good contrast (see Figure 4.17-(d)). In addition, the dough ini-

tially has a relatively simple overall geometric shape comparing to the rose. Thus,

the classical method reconstructs the external shape with good accuracy (see Fig-

ure 4.17-(e) and (Y)). However as the dough rises, the yeast creates air bubbles of

different sizes. Many air bubbles are too small to be geometrically resolved by the

CT scanner. Their impact is visible through a change in the absorption coefficient of

the dough. Other bubbles, however, are developing at a macroscopic scale, and show

up as internal, sponge-like structures in the geometry. In the classical reconstruction

method, these structures are blurred out due to the low projection count. Our space-

time reconstruction (see Figure 4.17-(f) 4.17,and (Y′)), however, is able to recover
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Figure 4.15: Slice visualization and comparison for mushrooms data.
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these bubbles quite well.

f 
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Figure 4.16: Reconstruction obtained for the rising dough dataset. Images (a) and
(b) show photographs of the dough directly before and directly after the scanning
process. Traditional CT reconstructions from all 132 frames (d) in the scan sequence
show significant distortions due to misalignment of features in the x-ray projections
(c). While the deformation is gradual enough to be negligible over shorter sequences
of 20 successive images, this number of projections is too small for reconstructing
accurately the internal structures of the dough (e, Y). By comparison, our full space-
time reconstructions algorithm yields a time sequence of highly detailed volumes for
different time steps (f , Y′).
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Figure 4.17: The visualization of the dough dataset, SART-ROF is compared with
our method.

Seeds dataset. Figure 4.9 illustrates the results obtained for the reconstruction of

the seeds dataset. Before the scan, the seeds were soaked in water for several minutes,

but the water was then mostly drained for the actual scan. By absorbing water these

seeds increase in size, and push the other seeds upward. The slices in Figure 4.9 point

up that the magnification of seeds is more important for those in the bottom of the
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container. We can notice also that at the last frame, all the water is absorbed.

For this dataset, the impact of the "motion blur" is clearly seen on the SART-

ROF reconstruction (left side of the slices). This artifact it is well corrected using

our approach.

Sugar dataset. The last experiment consists of imaging the dissolution of sugar

crystals in water. A comparison of different reconstruction methods (SART, SART-

ROF, SART-H&T and ours) is also given for this dataset in the right column in

Figure 4.8, as well as in Figure 4.10. Our reconstruction outperforms the other

methods for this dataset as well, by yielding sharper features. When comparing the

slices corresponding to Frame 04 and 50 in Figure 4.10, we notice the density of the

water increases slightly over time. This can be explained by the presence of dissolved

sugar molecules in the water at the Frame 50. Finally, in the provided video we can

see some temporal incoherence in the beginning of the sequence of this dataset. For

this case, we are out of the scope of our method since the deformation time scale is

smaller than the scanning time for ten projections (here Nθ = 10).

4.6 Conclusion

We have presented a method for space-time tomographic reconstruction of objects

that undergo significant deformations during the scanning process. We demonstrate

our method on a wide variety of input data, ranging from deforming surfaces (e.g.

rose, mushrooms) to volumes with changing internal structure (e.g. rising dough).

The success of our method relies on two novel contributions. First, we devise a new

sampling strategy for selecting a sequence of viewing angles from which to obtain the

x-ray projections. This strategy provides a dense, approximately uniform coverage

of angles vs. time, and can be implemented on commercial x-ray CTs without mod-

ifications. Furthermore, the sampling strategy does not require any data-dependent
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parameter selection and can naturally handle both static objects as well as deforma-

tions of various magnitudes and speeds.

The second component of our method is a joint image formation model and op-

timization method for simultaneously recovering a sequence of shapes over time, as

well as the deformation fields between them. By jointly solving for both variables, we

successfully transfer information between time steps of different deformation states,

and are able to overcome quality and resolution issues that would result from indepen-

dent reconstructions of each frame. Our method is non-parametric; we do not require

projections of either the volumes or the motions into basis functions. This makes

it easy to apply our method to a wide range of geometries with varying topologies

without manual tweaking.

The limitation of the approach is that we still have to assume a relatively small

motion at the scale of a small number of projections (10-60 in our examples). Our

method does not work if there already is significant deformation between two suc-

cessively captured projections. In the next chapter, we will address this situation by

moving to a continuous time scale, in which we respect the exact capture time for

each individual projection image in the optimization method.

Despite this limitation on deformation speed, our method already provides an

efficient and effective means of dealing with deformations in x-ray computed tomog-

raphy. This allows to analyze time-varying phenomena with interesting changes in

internal structure at time scales that could not previously be handled.
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Chapter 5

Warp-and-Project Tomography

In this chapter, we show a new warp-and-project approach for dynamic tomographic

reconstruction, which is designed for larger deformations even between successive pro-

jections. The method not only estimates the volume densities over time, but also the

motion field. We also decouple the frame rate of the reconstructed volume sequence

from the acquisition times for the captured projections. Finally, the temporal sam-

pling is also adaptive, since additional volumes are reconstructed during periods of

rapid motion.

5.1 Introduction

In Chapter 4, we present a non-parametric Space-Time tomographic method (ST-

tomography) to scan and analyze deforming objects and dynamic phenomena. While

this method resulted in marked improvement of the state of the art, it does suffer

from several shortcomings that we address in this chapter: First, ST-tomography

was conceived for the case of relatively slow and smooth motion fields, where the

deformation is negligible for short sequences of ≈ 10− 60 successive frames. Second,

the method relies on an explicit trade-off between spatial and temporal reconstruction

quality. Finally, the temporal sampling is uniform, resulting in wasted computational

effort for slow moving periods, as well as poor reconstruction quality for fast moving

periods.
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In this chapter, we propose a new warp-and-project approach for dynamic tomo-

graphic reconstruction. This new method, inspired by ST-tomography introduced in

Chapter 4, relaxes the assumption of slow deformations in order to reconstruct objects

with larger motion even between successive projections, where the ST-Tomography

fails. This new method not only estimates the volume densities over time, but also

the motion field. To this end, we move from a coarsely discretized time axis in ST-

tomography [24] to an essentially continuous time axis, where each projection image

has its own time stamp, and warping is used to align the keyframes with the indi-

vidual projections. We would like to highlight that the complexity of a deformation

has no impact in our comparison to ST-tomography, only the speed of the motion

matters. We also decouple the frame rate of the reconstructed volume sequence from

the acquisition times for the captured projections. Finally, the temporal sampling

is also adaptive, since additional volumes are reconstructed during periods of rapid

motion. These improvements translate into significant improvements in the recon-

struction results, as demonstrated by quantitative comparisons on simulated data, as

well as qualitative comparisons on real data from a number of different application

domains.

In summary, the main contributions of this chapter include:

• a new image formation model for dynamic tomography reconstruction, that

takes into account the deformation occurring between successive captured pro-

jections.

• a temporal decoupling between the reconstructed key frames and the captured

projections.

• a non-uniform temporal up-sampling, which will improve the quality of each

reconstruction.

• a matrix-free solver for the proposed optimization algorithm.
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• a strong evaluation of our approach both on simulated data, controlled experi-

mental data (where a ground truth can be estimated) and several real data sets

highlighting different application scenarios.

5.2 Warp-and-Project Tomography

5.2.1 Image Formation Model

In dynamic x-ray tomography the aim is to reconstruct a 4D volume f that represents

the scanned deforming object, fromNp acquired projections. While previous work [24]

assumed that the object motion between a small number of successive frames is neg-

ligible, we target situations where the motion can be significant even between two

images taken in immediate succession.

Assume that the CT scan consists ofNp projection images p = {p1, . . . ,pj, . . . ,pNp}

taken at times {t1, . . . , tj, . . . , tNp}. For the description in the following we loosely

assume that the projection images are taken at regular intervals, i.e. tj = j · ∆t,

although the framework also works for irregular temporal sampling patterns. Due to

the continuous motion of the scan target, the volume is different at each capture time

tj, and is denoted as f = {fj}. The relationship between the captured projections

and the time varying volumes is then described as
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, (5.1)

where Aj ∈ RM×Nv is the projection matrix for a single projection, mapping the
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volume fj with Nv voxels to a projection image pj withM pixels. Also see Figure 5.1.

We note that Eq. (5.1) is a heavily ill-posed problem that cannot be solved

without additional priors such as motion models, since a single 2D projection image

pj is insufficient for reconstructing a whole 3D volume fj. At the same time, it is often

not necessary to reconstruct all Np volumes to get a good representation of the shape

and its deformation, since the changes can still be gradual and smooth. We therefore

subsample the volumes f into a set of Nk key frames h = {h1, . . . ,hk, . . . ,hNk}

corresponding to times Tk. The output of our reconstruction method is this set of key

frames, together with a set of motion fields u = {u1, . . . ,uNk−1}, where uk describes

the deformation between hk and hk+1. We choose Nk adaptively, starting with a small

number and increasing it until the deformation between key frames is small enough.

Given estimated key frames hk and motion fields uk, we can approximate the

volume at a time tj with Tk ≤ tj < Tk+1 by warping (advecting) the key frame hk

forward in time:

fj ≈ f̃j = warp(hk,
tj − Tk
Tk+1 − Tk

uk). (5.2)

Similarly, we can obtain another estimate by backward warping the next key frame:

fj ≈ f̃j = warp(hk+1,
tj − Tk+1

Tk+1 − Tk
uk). (5.3)

For ease of notation, we introduce warping operators Wf
j and Wb

j that respec-

tively perform forward and backward warping to create two estimates of the inter-

mediate frame f̃j from the previous (resp. next) key frame, i.e. f̃j = Wf
j (hk) and

f̃j = Wb
j(hk+1). The image formation model from Eq. (5.1) then corresponds to two

separate data terms that can be utilized in an optimization-based reconstruction:
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Figure 5.1: Diagram of our method. S0: the key frames and the motion field between
the key frames are initialized to 0. S1: volume reconstruction. The current volume
estimate for a key frame is warped to the time of each X-ray image, and a residual
image is computed by comparing the X-ray Image with the projection of this warped
volume. The residual is then back-projected into 3D, and warped back to the time
of the key frame to update the volume estimate. S2: flow (velocity) reconstruction
between subsequent key frames. S3: temporal up-sampling. New key frames are
inserted where the motion is fast.
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A ·Wf (h) = p and (5.4)

A ·Wb(h) = p (5.5)

For implementing these data terms in an optimization approach, we also require

the adjoint operators Wf,† and Wb,†. However, these are easily implemented as the

corresponding warps in the opposite direction, followed by an averaging of all warped

volumes that contribute to a single keyframe.

Figure 5.1 shows a diagram of this warping-based interpolation of the intermedi-

ate volumes from the neighboring key frames, which is the key distinguishing char-

acteristic of our method compared to the existing state of the art. Without this

warping-based approach, all projections used in the reconstruction of a key frame

are implicitly assumed to have been taken at the same time (i.e. representing the

the same shape). This is the approach taken by Chapter 4, and it results in blurred

reconstructions for faster motions.

5.2.2 Full Optimization Problem

Given the two data terms from above, we can now formulate an objective function

for reconstructing the deforming geometry jointly with the motion field. Due to the

ill-posed nature of this problem, this requires additional regularizers for both the key

frames and the deformation field, which we adopt from the work of [24]:
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min
h,u

Np∑
j=1

∥∥∥AjW
f
j (hj−)− pj

∥∥∥2

2
+

Np∑
j=1

∥∥AjW
b
j(hj+)− pj

∥∥2

2

+w1

Nk−1∑
k=1

‖∇Thk +∇Shk · uk‖1 (5.6)

+

Nk∑
k=1

[
w2 ‖∇Shk‖Hε

+ w3 ‖∇Thk‖2
2

]
+

Nk−1∑
k=1

∑
i=x,y,z

[
w4 ‖∇Suk,i‖Hτ

+ w5 ‖∇Tuk,i‖2
2

]
,

where hj− and hj+ refer to the key frames immediately before and immediately after

projection pj. Here, w1, w2, w3, w4 and w5 are weights of the different terms of the

objective function. The operators ∇T and ∇S correspond to the temporal and spatial

discrete gradient, implemented as one-side divided differences. The first two terms

correspond to the two warping-based data terms. The second line in this objective

function corresponds to a 3D version of the brightness constancy term in the Horn-

Schunck optical flow [84]. In order to deal with large deformations we opted for

a multi-scale implementation of the optical flow [85]. The next two terms in the

third line correspond respectively to the spatial and temporal regularizations of the

density volumes. A Huber penalty [86] is used on the spatial gradient with a positive

parameter ε, while we favor smooth behavior in the time domain with an L2-norm.

Similar regularizations are also used for the deformation field in the two terms of the

fourth line. τ is the positive parameter of the Huber penalty on the spatial gradient

of the deformation field.

The framework that we propose in this chapter is presented in Figure 5.1. A

detailed description of this framework is also given as pseudo-code in Algorithm 6.

First, an initialization of the density volumes and the deformation fields is performed

(Step S0). Then, a Warp-and-Project update scheme (step S1) is applied to improve
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Algorithm 6 Warp-and-Project Tomography
1: procedure WP-Tomography(F 2

h, G
2
h, F

2
u, G

2
u, F

W
u , GW

u , ρ)
2: // Step S0: initialize the key frames and deformation fields.
3: h← 0; u← 0;
4: while not converged do
5: // Step S1: update volumes by comparing the projections
6: // of warped volumes with captured projections
7: h←WarpAndProject(FW

u , GW
u )

8:
9: // Step S2: update deformation field between key frames

10: // from the coarsest scale to the finest
11: // generate multi-scale data
12: h1 ← h, u1 ← u
13: for s from 1 to Nscales − 1 do
14: hs+1 ←↓hs
15: us+1 ← ρ ↓us
16: end for
17: for s from Nscales − 1 to 1 do
18: us ← EstimateDeformations(Fh2s(us), Gh2s(us))
19: us−1 ← 1

ρ
↑us

20: end for
21: u← u1

22: end while
23:
24: // Step S3: temporal up-sample
25: if not converged and motion too fast then
26: h,u← TemporalUpSample(h,u)
27: end if
28:
29: return h and u
30: end procedure
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the quality of the reconstruction of the density volumes. Given the updated volumes,

we re-estimate the deformation fields (Step S2). Finally, new intermediate key frames

may be introduced (Step S3) in order to improve the temporal resolution and the

spatial accuracy. The estimation of the deformation fields is done according to a

multi-scale coarse-to-fine scheme [85]. The deformation fields are first estimated for

the coarsest level (s = Nscales). Then, these fields are up-sampled scale-by-scale using

the operator ↑ and re-estimated at each given scale. The output of this step are the

estimated deformation fields at the finest scale (s = 1). The up-sampling ↑ and the

down-sampling ↓ are done by a factor of ρ, using a cubic interpolation. The steps

(S1, S2 and S3) are repeated in a loop until convergence. For the last iteration, only

the steps S1 and S3 are performed in order to get the best reconstruction at the

last temporal sampling. The operators F 2
h, G

2
h, F

2
u, G

2
u, F

W
u and GW

u will be explained

below.

Step S0: Initialization

In the initialization of the algorithm, we set the deformation fields uk = 0. As a result,

the warping operators simplify to identity operators, which means that in the first

iteration the volume reconstruction (Step S1 below) is static volume reconstruction

without the warp-and-project approach.

We also initialize the number of key frames Nk to be small, giving a coarse tem-

poral resolution, and causing the initial volume estimates to be reconstructed from a

large number of projections.

Step S1: Warp-and-Project based volume update

To solve the joint optimization problem in the Equation 5.6, we split it into two sub-

problems that we solve alternately. The density volumes reconstruction sub-problem

is solved during this current step of our framework. It is described by the following
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minimization problem:

h∗ = argmin
h

Np∑
j=1

∥∥∥AjW
f
j (hj−)− pj

∥∥∥2

2
+

Np∑
j=1

∥∥AjW
b
j(hj+)− pj

∥∥2

2

+w1

Nk−1∑
k=1

‖∇Thk +∇Shk · uk‖1 (5.7)

+

Nk∑
k=1

[
w2 ‖∇Shk‖Hε

+ w3 ‖∇Thk‖2
2

]
With the new data fitting term used in this objective function, the comparison

of the captured pk and the simulated projection of the forward-warped key frame,

AkW
f
khk is performed between pairs of projections corresponding to the same time

ti, and hence represent the same geometric configuration of the scan target. The same

holds for the backward-warped key frame in the second data term.

In the following, we will drop the f and b superscript, and simply refer to the

warping operator as W. To simplify the notation, we will further use the non-linear

W like a matrix, and refer to its adjoint operator as WT .

To solve the optimization problem in Equation (5.7), we use a first-order primal-

dual framework [26] as shown in Algorithm 7. This optimization problem is then split

into two sub-problems, that we solve alternately using proximal operators. The first

sub-problem contains only the least squares data fitting terms of this equation, that

we denote as FW
u . The remaining terms denoted as GW

u , are grouped together into

the second sub-problem.

The Algorithm 7 shows the pseudo-code used to solve the Warp-and-Project

strategy, which is based on the CP-algorithm. The notations g, h̄, proxλ1GW
u
∗ and

proxµ1FW
u

are used respectively for the slack and dual variables, and the proximal
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Algorithm 7 CP-based method for tomographic reconstruction
1: procedure WarpAndProject(FW

u , GW
u )

2: while not converged do
3: // update slack variable
4: gj+1 ← proxλ1GW

u
∗(gj + λ1w2h̄

j)
5: // update volume variable
6: hj+1 ← proxµ1FW

u
(hj − µ1w2g

j+1)
7: // update dual variable
8: h̄j+1 ← 2 · hj+1 − hj

9: end while
10: return h
11: end procedure

operators of the functions GW
u
∗ and FW

u . The operator w2 is defined by:

w2 =

(
∇S, ∇T , W

)T
(5.8)

Since we are using the same priors for the density volumes as [24], the proximal

operator proxλ1GW
u
∗ is also the same, and we refer to their paper for the details.

On the other hand, we proposed a new derivation to solve the proximal operator

proxµ1FW
u
, given by:

proxµ1FW
u

(hv) = argmin
h

‖AWh− p‖2
2 +

1

2µ1

‖h− hv‖2
2. (5.9)

This proximal operator problem is equivalent to solving the following minimization

problem:

argmin
X̂

∥∥∥X̂∥∥∥2

2
(5.10)

subject to: Â · X̂ = p̂.
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where:

p̂ =
√

2µ1 (p−AW · hv)

Â =

[
I
√

2µ1AW

]
(5.11)

X̂ =

[
√

2µ1 (p−AWh) h− hv

]T

In the pseudo-code detailed in the Algorithm 8, we present the solver that we

used for the proximal operator in Equation 5.9. For each key frame k, we warp the

density volume hk to the times tj of its neighboring projections. Then, we project

the obtained volume f̃j using the corresponding viewing angle θj, and we compute the

residual image with respect to the captured projection pj. A correction volume ∆f̃j

is then computed by back-projecting the residual image ∆p. Finally, this correction

volume is warped from the time tj of the jth projection to the the time Tk and used

to update the key frame hk.

One can notice that the proximal operator in Equation 5.9 is very similar to the

case of a linear least squares problem [27] where the solution is given by:

proxµ1FW
u

(hv) =
(

2µ1 (AW)T AW + I
)−1 (

2µ1 (AW)T p + hv

)
(5.12)

Actually, our proposed solver is also quite similar to this solution, except that the

warping operator W and its adjoint are non-linear operators that are implemented

procedurally.

Deformation field estimation (S2)

After reconstructing volume estimates with the warp-and-project strategy, the defor-

mation fields between successive key frames have to be updated. For this purpose,

we solve the deformation field estimation sub-problem derived from the Equation 5.6.
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Algorithm 8 Solver for the proximal operator in Equation 5.9
1: procedure Warping-Correction(u,hv)
2: initialize: α ∈ R, h = hv and q = h− hv = 0
3: for k from 1 to Nk do
4: while not converged do
5: for all j with Tk−1 ≤ tj ≤ Tk+1 do
6: // warp the key frame to a given time (Eqs. 5.2, 5.3)
7: f̃j = Whk
8: // residual in image space
9: p̂j =

√
2µ1

(
pj −Af̃j

)
10: X̂j =

[√
2µ1

(
pj −Af̃j

)
qk

]T
11: ∆pj = p̂j − Â · X̂j

12: // compute the correction volume
13: ∆f̃j = ÂT ·∆pj
14: // warp the residual to key frame and update
15: hk = hk + αWT∆f̃j
16: qk = qk + α∆pj
17: end for
18: end while
19: end for
20: return h
21: end procedure
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This optimization sub-problem is described as follows:

u∗ = argmin
u

w1

Nk−1∑
k=1

‖∇Thk +∇Shk · uk‖1 (5.13)

+

Nk−1∑
k=1

∑
i=x,y,z

[
w4 ‖∇Suk,i‖Hτ

+ w5 ‖∇Tuk,i‖2
2

]
The adopted approach to solve this optimization is the same as in the ST-tomography

framework [24].

Temporal up-sampling (S3)

In the state-of-the-art 4D CT reconstruction methods, the temporal sampling is de-

pendent on the number of captured projections Nθ used to reconstruct the density

volume for one key frame. However, one of the advantages of the proposed warp-and-

project strategy is to decouple the key frames from their association to these sets of

Nθ captured projections. This allows us to adjust the temporal sampling by choosing

the number of key frames, without taking into account the number of captured pro-

jections Nθ needed to initialize the reconstruction of each key frame. Then, we can on

one hand increase the temporal resolution of our reconstruction. On the other hand,

we will increase the accuracy of our reconstruction as we will show in the experiments

section. In addition, the combination between the warp-and-project strategy and the

temporal up-sampling opens the way to the reconstruction with a good accuracy of

fast phenomena, for which the assumption of slow deformation is not valid.

The temporal up-sampling is performed only if a deformation field uk exceeds

at a given threshold velocity. In this case, we introduce an intermediate key frame

between the key frames hk and hk+1. The density volume for this new key frame hk′+1

is computed by warping hk to the time Tk′+1 using the deformation field uk. Moreover,

the deformation field uk, is split linearly into two parts, each covering half the motion.
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For the last outer iteration of our framework (see Algorithm 6), the temporal up-

sampling is skipped. This is to ensure the final density volumes reconstruction result

has been updated by the Warp-and-Project strategy. The obtained temporal sampling

for the key frames is mostly non-uniform. But, with this sampling choice, we reduce

the memory cost for saving the density volumes as well as the deformation fields.

5.3 Experiments

In the following, we first validate our proposed approach by quantitative comparisons

on both simulated data (fluid flow) as well as real data where ground truth is available

from high resolution scanning using a stop-motion approach (copper foam). Then we

show the results of our reconstruction on six different data set, where the deformation

is relatively fast. All these data sets use the low-discrepancy view sequence proposed

in Chapter 4.

In the experiments shown in this section, many parameters are common. For

the multi-scale optical flow calculation, we use Nscales = 3, σ = 0.65, and ρ = 0.5.

The weights for the Huber penalty priors are set to w2 = 0.08 and w4 = 1.2. For

volume density reconstruction, w1 = 0.25, the relaxation parameter α for SART is

set to 0.3, and two inner SART iterations are applied for all methods. For the prox-

imal framework, λ1 = µ1 = 0.3. Our algorithm was implemented in C++. The run

times for density volume reconstruction and flow field estimation are given in the

Table 5.2. Comparisons are made with two reference methods. The first is SART-

ROF, a state-of-the-art static tomographic reconstruction method that incorporates

the Rudin-Osher-Fatemi Total Variation prior [88]. The resulting optimization prob-

lem per frame is solved using a primal dual scheme is then chosen for this optimization

problem, and the SART algorithm is used as the solver for the data term. The sec-

ond reference method is the Space-Time Tomography ST-Tomography introduced

in Chapter 4.
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Figure 5.2: Several frames from the fastest fluid animation.

Synthetic plume data.

Our first validation experiment is done using synthetic fluid flow data, generated by

the mantaflow code [89]. The purpose of this data set is to quantify the quality of

the estimated deformation field, since simulation is the only way to generate dense

ground truth motion. The quality of the volume reconstructions is assessed with real

scans later in this section.

The simulation domain (resolution 100× 150× 100) contains a cylindrical source

emitting a density in a non-uniform way both spatially and temporally. The aim of

this non-uniformity is to introduce some textures inside the plume density. Then,

the emitted density is transported through the domain by a 3D incompressible flow

over 300 time steps. For this experiment, the velocity of the density transport is

controlled by the buoyancy parameter in the domain. We used 5 different values

for this parameter (v = 0.1, 0.41, 0.73, 1.28 and 3.0 voxels/∆t). Frames from the

fastest animation are shown in Figure 5.2. The leftmost image shows the starting

configuration, which is the same for all simulations.

Only the volumes having an odd index have been employed for the reconstruction

of the plumes dynamic, but all 300 simulated volumes are used later for the com-

parison between the different obtained reconstructions and the ground truth. From

each volume with an odd index a projection is computed with view points according

to the low discrepancy view sampling strategy [24] The reconstruction methods (ST-

tomography and our method) are then performed using these 150 projections with
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different strategies to obtain different number of key frames. For St-tomography, we

combine 10 projections together to reconstruct each key frame. For our method, 5

levels of uniform temporal up-sampling are performed to obtain 15, 30, 60, 120 or 150

key frames. Where the level 1 is the level with the smallest number of reconstructed

key frames.

Table 5.1: Numerical comparisons with ground truth data for different algorithms:
average end-point error (EE) in voxels and average angular error (AE) in degrees.

Speed ST- Ours
(voxels/∆t) tomo. L1 L2 L3 L4 L5

3.0 0.58 0.49 0.42 0.36 0.33 0.32
1.28 0.44 0.37 0.32 0.27 0.25 0.21

EE 0.73 0.37 0.32 0.28 0.23 0.21 0.19
0.41 0.31 0.27 0.24 0.20 0.18 0.17
0.1 0.27 0.24 0.21 0.18 0.16 0.15
3.0 17.5 17.1 16.2 14.6 13.9 13.8
1.28 15.8 15.4 14.5 13.3 11.9 11.5

AE 0.73 14.3 14.1 13.3 12.2 11.3 10.9
0.41 13.3 12.9 12.0 11.2 10.7 10.5
0.1 12.7 12.0 11.2 10.7 10.3 10.2

Table 5.1 shows comparisons of the Average Endpoint Error (EE) and the Mean

Angular Error (AE) for the competing methods. EE and AE are standard error

metrics for assessing optical flow methods. Shown are ST-tomography and several

levels of our method. We can see that our method dominates ST-tomography even

after just one iteration, and then continues to improve over the next few iterations as

the adaptive temporal sampling and the warp-and-project method improve the motion

estimates. Furthermore, the method degrades gracefully with increased speed.

In-situ transformations of a copper foam.

To perform quantitative evaluation of the volume reconstructions, we turn to real

X-ray images of copper foam. This dataset is inspired by composite material analysis

in mechanical engineering, where the deformation characteristics of such metal foams
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and similar kinds of materials are being investigated. Two controlled transformations

(translation and compression) were conducted using a CT5000 5kN compression load

stage (Deben UK Ltd., Suffolk, UK). This stage contains two parallel surfaces: a fixed

one (top) and a moving one (bottom). The latter is controlled with high precision

using a software interface. This setup allows us to capture high quality scans of many

poses of the deformation using a stop-motion approach.

Vertical translation of the copper foam. For this experiment, a thin slice of

copper foam (dimensions: 8.69× 8.42× 1.73 mm3) was set on the moving part of the

compression stage. The fixed part of the stage has been removed for this experiment.

The sample was scanned for 42 different positions, using 90 view angles each time.

Between successive position the sample was translated by 0.1 mm.

10 mm 

Figure 5.3: The translation of the copper foam. First row: captured projections,
second row: reconstructed volumes at time frame 2, 12, 30, 40.

The Figure 5.3 illustrates 4 positions of the sample during the translation. While

the first row shows projections of the sample at the same viewing angle, the second
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row shows the obtained reconstruction of the copper foam using the SART-ROF

algorithm. This reconstruction is very accurate, since the object is static for each

position, and we use a large number of projections. For the following comparison of

the different reconstruction methods these reconstructed volumes are considered as

the ground truth volumes for the copper foam at each position.

For the dynamic reconstructions, from each position only 6 projections are used.

Moreover, the projections from each 5 successive positions are combined in one time

frame for the SART-ROF and the ST-tomography as well as for the initialization of

our method. After convergence, the SART-ROF and the ST-tomography approaches

reconstruct only 8 volumes, but with our method a volume is reconstructed for each

position of the copper foam.

Ground Truth 
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Figure 5.4: Absolute error for SART-ROF, ST-Tomography and ours for time frame
25.

For one intermediate volume the absolute error is given in Figure 5.4 between

the ground truth and the different reconstruction methods. This figure shows the

improved accuracy of our reconstruction compared to the state-of-the-art methods.

Compression of the copper foam. In this experiment, we scanned the foam

crumpling under a compressive force using the setup shown in Figure 5.5. This

is a real-world scenario that is of interest in mechanical engineering applications.

In order to obtain ground-truth data, we again employed a stop-motion scanning

strategy, this time acquiring 192 individual scans with 60 projections each. To test

our method against the competing approaches we then selected 1 projection for each
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(a) 

(b) 

(c) 

Sensor Compression stage 
X-ray source 

(d) 

Figure 5.5: (a-b): The height (mm) of the copper foam before and after the compres-
sion process, respectively. The total displacement during the compression is 3.77mm,
uniformly distributed over 192 scans. 60 projections are obtained for each scan. (c):
the states of the foam after 192 scans. (d) The Micro-CT setup for the in-situ com-
pressions of the foam.

scan according to the low-discrepancy sequence. Results for a single frame are shown

in Figure 5.6. The top row shows the reconstructions, while the bottom row shows

the error of the different methods. We can see that our new method significantly

reduces the reconstruction error compared to both SART-ROF and ST-tomography.

Please also refer to the video.

To quantify this effect further, we show numerical results in Figure 5.7 and Ta-

ble 5.3. Figure 5.7 plots the PSNR of each key frame for SART-ROF, ST-tomography,

and several iterations of our method. As expected, the stationary reconstruction by

SART-ROF has the worst performance, with ST-tomography generating a 2− dB gain

on average. Our warp-and-project method is slightly superior to ST-tomography even

in the first, and then continues to improve by 2−3 dB over the next 4 iterations. This

is because the adaptive insertion of key frames allows for more accurate estimations

of the motion field, which in term allows for better reconstructions of the volume

densities with the warp-and-project approach. Table 5.3 shows numerical results of
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Figure 5.6: Algorithm comparison for the compression of copper foam. First row:
results from different reconstruction methods compared to ground truth, second row:
the absolute error for time frame 150.
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Figure 5.7: PSNR values of the volume reconstructions for each key frame. We
compare SART-ROF, ST-tomography, and several iterations of our method. Please
see text for details.
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the same experiment, aggregated over all frames, but with separate statistics for the

top, middle, and bottom parts of the volume. These exhibit different motion speeds

since the foam is only compressed from the bottom, while the top edge is stationary.

To test multiple virtual scan speeds, we also performed reconstructions in which every

second time step is skipped.

Table 5.2: Parameters used in the acquisition and for the tomographic reconstruction.
Dataset # of Cap.time Nθ Keyframes Vol. size S1 step S2 step # w3 w5

proj. [h:mm] (Ours) [h:mm] [h:mm] iter.
rock 800 1:22 20 80 400×500×400 4:42 6:30 5 0.3 0.05
fungus 600 0:38 30 128 250×300×250 2:20 4:36 4 0.2 0.03
hydro-gel 640 0:43 16 70 423×320×423 3:15 5:20 5 0.3 0.05
liquids 600 0:46 30 120 180×200×180 3:44 5:50 4 0.1 0.03
pills 30 0:03 3 30 400×200×400 1:40 2:45 5 0.1 0.03

Table 5.3: Calculated PSNR [dB], and SSIM for different reconstruction methods:
SART-ROF, ST-Tomography, and our method.

Region Top
(slowest)

Center
(medium)

Bottom
(fastest)

Sampling 1: 192 projections
Metric PSNR SSIM PSNR SSIM PSNR SSIM
SART-ROF 29.14 0.68 26.27 0.56 24.11 0.28
ST-Tomo. 32.11 0.72 27.85 0.64 24.68 0.41
Ours (level 1) 32.28 0.72 28.48 0.65 24.90 0.46
Ours (level 2) 32.72 0.75 29.10 0.67 26.25 0.53
Ours (level 3) 33.32 0.77 29.93 0.68 28.08 0.56
Ours (level 4) 33.74 0.78 30.57 0.70 29.18 0.61
Ours (level 5) 33.78 0.78 30.87 0.72 29.35 0.62

Sampling 2: 96 projections
SART-ROF 28.55 0.65 23.61 0.24 21.31 0.19
ST-Tomo. 31.41 0.69 24.76 0.47 23.14 0.36
Ours (level 1) 31.51 0.69 25.14 0.50 23.39 0.37
Ours (level 2) 31.86 0.71 26.29 0.56 23.95 0.39
Ours (level 3) 32.43 0.72 27.84 0.60 24.45 0.43
Ours (level 4) 32.59 0.72 28.88 0.63 24.72 0.44
Ours (level 5) 32.88 0.73 29.08 0.64 24.87 0.46

We also provide qualitative results on a number of fast-moving data sets. The

algorithm parameters for the individual dataset are shown in Table 5.2 along with

the reconstruction times. In addition to the visual results presented here, we also
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encourage the reader to consult the video for the full time-varying reconstruction

results.

Rising dough. The first data set is a scan of fast rising dough, shown in Fig-

ures 5.10, 5.9, and 5.8. As the dough rises due to the yeast secreting CO2 gas, we

see bubbles forming at both microscopic scales and mesoscopic scales. The micro-

scopic bubbles manifest themselves as a change in the density of the dough, while the

meso-scale bubbles result in drastic topology changes of the dough that are resolved

well with our method, but are blurred out in the comparison method (see slices in

Figure 5.9).

Frame 001 Frame 017 Frame 105

Figure 5.8: Rising dough reconstructed by our method. First row: direct volume
rendering. Second row: bubble surfaces.
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Figure 5.9: Comparison between SART-ROF, ST-tomography and Ours for a slice
visualization of the dough dataset.
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Figure 5.10: 3D reconstructions of the dough dataset, with corresponding 2D X-ray
images, as well as before-and-after photographs.

Capillarity effect in porous rock. The next experiment is a standard test de-

ployed in geology, and specifically oil and gas exploration [47]. The goal of such

studies is to measure the porosity or the permeability of rock samples in order to

quantify the ability of the rock to store oil. Here, a cylindrical sample of the rock is

placed in a dish with bottom dipped into a liquid contrast agent. Due to capillary

action, the liquid is absorbed into the sample, over the duration of the scan (one hour

and 22 minutes). A 3D visualization of this experiment showing the absorbed liquid

can be found in Figure 5.11 and Figure 5.12.

Dried snow fungus. Next, we show the re-hydration of dried mushrooms (tremella

fuciformis, Figure 5.13). A direct comparison with the reference methods shows

significantly improved detail and reconstruction quality compared to both SART-

ROF and ST-tomography. Note that the first iteration of our algorithm produces

approximately similar results to ST-tomography, but later iterations improve the

result due to both the added key frames and the warp-and-project method using the

estimated motion fields.

High viscosity liquids. In Figure 5.14 we show an experiment where solid objects

were dropped into a high viscosity fluid and sink to the bottom under gravity. In this

case the motion is fast enough to violate the assumption of negligible deformation
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Frame 02 Frame 07 Frame 72 Frame 45 

(a) (b) (c) 

(d) 

Figure 5.11: Reconstruction results for the porous rock dataset. Images (a) and (c)
represent respectively the rock before and after the scan. Some representative CT
projections are given in (b). The rendering results in (d) show the absorption of liquid
over time.

Frame 01 Frame 05 Frame 10 Frame 17

Figure 5.12: Rendering results for the rock from our method.

between successive frames, which ST-tomography is based on. As a result, the shapes

are blurred out and fine detail is lost, while our method manages sharp reconstructions

of the solid.

Pills dissolved in water. In many medical pills, the drug is coated with a protec-

tive hull that dissolves in water, releasing the drug at a designed rate. Figure 5.15
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Figure 5.13: Re-hydration of dried tremella fuciformis. This process results in a
rapid volume expansion, which is not well captured by comparison methods, while
our method manages to reconstruct fine detail. From left to right: slice visualizations,
3D renderings, acquired projections during scanning and photographs of the sample.

shows the results of capturing this process in a CT scan. This is a challenging data

set, since the motion is initially quite fast, and the drug particles are quite small.

The whole sequence is only 3 minutes long and consists of 30 projections. As with

the previous datasets, we can see that our method produces crisper, more detailed

results than the comparison methods.

Hydro-gel balls. Finally, in Figures 5.16 and 5.17 we show 2D slice visualizations

and 3D renderings of Hydro-gel balls (Orbeez) absorbing water. Since the density of

the water and the Hydro-gel balls is very similar, there is very little contrast between

the two in the X-ray images or in the reconstruction. However, we can again see

that the rapid absorption of water and the associated volume change create fast

motions that cannot reliably be reconstructed by the competitor methods, whereas

our approach produces sharp, clearly defined shapes for the balls.

5.4 Conclusion

In summary, we have presented a new method, warp-and-project tomography, for to-

mographic reconstruction of deforming objects. We perform quantitative comparisons

on simulated data, as well as qualitative comparisons on real data from a number of
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SART-ROF ST-Tomography Ours 

Figure 5.14: Metal objects being dropped into a high viscosity liquid. Our method
produces the sharpest reconstructions.

different application domains. These experiments clearly show a significant improve-

ment in the reconstruction quality compared to the state-of-the-art in both static and

dynamic tomographic reconstruction.
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Figure 5.15: Pills dissolving in water. This is our fastest dataset with only 30 pro-
jections captured in 3 minutes.

We observed two major limitations of our method. First, the tracking algorithm

requires features in order to work. If we are scanning a nearly feature-less volumetric

object, the reconstruction of the motion field will only work on the boundary, but

not inside the feature-less region. Second, our method will degrade with increasing

speed of motion and an increasing geometric complexity of the volume. For example,

objects that have a lot of high frequency details generally require more scans in

a static reconstruction. For these objects our method can only work with slower

motions. Also as a minor limitation, we do not consider motion blur during the

acquisition of a single frame.
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Figure 5.16: Slice rendering of water absorption by Hydro-gel balls.

Frame 16 Frame 26 Frame 35 Frame 67 

Figure 5.17: 3D rendering of water absorption by Hydro-gel balls.

We believe that the developed method has significant applications in many do-

mains. In fact the metal foam and rock data sets are already starting point of ap-

plications in mechanical engineering and geology / oil and gas exploration. In the

future we plan on deeper investigations of these applications in collaboration with

domain experts. We also intend to combine the method described here with other

X-ray tomography techniques such as phase contrast imaging, in order to boost the

contrast in certain problematic data sets, such as the hydro-gel balls.
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Chapter 6

Applications

In this chapter, some additional applications directly based on the tomographic work

introduced in previous sections are given.

One interesting extension from X-ray tomography is the fluid imaging application,

in which the images are captured from a few optical cameras (2-3 in our example)

with a similar geometry setting to tomography. The soot and fuel data presented

in this chapter are captured from the Clean Combustion Research Center (CCRC),

while the mixing fluid is imaged by High-Speed Fluids Imaging Laboratory, both at

KAUST.

We take the captured soot data as an example for fluid imaging. Three high-speed

cameras have surrounded a burner at 0, 45, and 90 degrees, respectively. The cameras

are well aligned so they match pixel to pixel and high-speed images of a turbulent

flame then be captured. After imaging the soot field, the extinction measurements

from the 3 angles are obtained. To validate the accuracy of reconstruction quality

later, a 2D "slice" of soot volume fractions (SVF), located at 127 degrees, for every

180th frame is also provided. Figure 6.1 and Figure 6.2 are the input images (after

post-processing) at some time step from the captured videos.

Considering the specific properties of fluid imaging, such as the flow is always

incompressible, the reconstructed quality can be further improved by incorporating

such natural properties into the optimization framework. We show how the incom-

pressible flow could be interpreted as a prior and by leveraging it in our optimization

framework, the unprecedented results can be obtained in this section.
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Figure 6.1: From left to right: captured projection for low density soot data at 0, 45,
and 90 degree. Rightmost is obtained SVF slice.

Figure 6.2: From left to right: captured projection for high density soot data at 0,
45, and 90 degree. Rightmost is obtained SVF slice.
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6.1 Pipeline overview

From the video sequence obtained by the three cameras (Fig. 6.1 and 6.2), 3D re-

construction of the extinction field and 4D reconstruction of the velocity field was

accomplished using a variant of the Space-Time tomography (ST-Tomography) al-

gorithms shown in Chapter 4 and 5 . This 4D tomography framework is based on

a variational approach that jointly estimates the density field (extinction field) and

the velocity field. In this method, an objective function is defined that combines a

data-fitting term with different spatial and temporal regularizers. The data-fitting

term ensures a good fit of the reconstructed density field with the extinction mea-

surement video. The first regularizer is a 3D version of the Horn-Schunck optical flow

model [84], Next, the proposed divergence free prior is applied on the flow estimation

of the soot. This prior combines both the density and velocity fields to ensure density

consistency between successive frames. At the same time, it allows 3D tracking of

density gradients and therefore provides a powerful tool to estimate the velocity field.

In this chapter, we assume negligible soot formation or oxidation between successive

frames since soot formation and oxidation is a process that typically takes several

milliseconds whereas the frame rate was several orders of magnitude faster. A multi-

scale scheme of the optical flow is applied, to deal with large deformations discussed

in [24]. Furthermore, we implemented spatial smoothness penalties on both the ex-

tinction and velocity fields to retrieve a more plausible solution, especially in regions

of uniform extinction where the optical flow priors are less efficient. Next, a temporal

smoothness filter was added to the density field to improve the quality of the result.

The framework begins by initializing each time step using the simultaneous al-

gebraic reconstruction technique (SART) algorithm to construct a 3D extinction

field [7]. Following initialization, the framework estimates the flow field by calcu-

lating the frame-to-frame deformation in the extinction field. The framework then

iterates between refinement of the optical density reconstruction and the frame-to-
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frame flow field. This variational approach for estimating velocity fields was recently

introduced in PIV measurements with encouraging results [83].

Divergence-free constraint. In fluid dynamics, the advection theory for a con-

served quantity, which is described mathematically by continuity equation, presents

the relations between scalar field f , time step t, and flow velocity u as:

ft +∇ · (fu) = 0

with a simple product rule operation, we have:

ft +∇f · u + f∇ · u = 0 (6.1)

where ∇· is the divergence operator. We call Equation 6.1 the energy-conserving (or

mass-conserving) equation.

If the flow is incompressible (divergence-free), then we have

ft + u · ∇f = 0 (6.2)

w.r.t ∇ · u = 0 (6.3)

Interestingly, we note that Equation 6.2 is exactly the partial differential equation

form of optical flow under the common brightness constancy constraint [84]. In our

framework, we apply a 3D variant version of optical flow motion estimation, with

additional sparse prior and pressure projection prior (i.e. divergence-free constraint).

Details are provided in the next section.

Optimization framework. The optimization framework for dynamic fluid recon-

struction is quite similar to the framework with [24, 25], except the flow motion
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estimation part, in which physical-based divergence-free prior is applied:

G3
h(us) =

Nk−1∑
t=1

∥∥(warp(ft+1, ↑us+1
t )− ft)

+∇Swarp(ft+1, ↑us+1
t ) · (ust− ↑us+1

t )
∥∥

1
(6.4)

+l1

Nk−1∑
t=1

∑
i=x,y,z

∥∥∇Sust,i
∥∥

Hτ
+ l2 DIV(us)

The optimization problem for each scale is then given as

us,∗ = argmin
us

G3
h(us). (6.5)

Due to the presence of the L1-norm and the Huber penalty in Equation 6.5 we re-

formulate this optimization in the first-order primal-dual framework (CP algorithm),

introduced by Chambolle and Pock. The strategy proposed by this algorithm, con-

sists in splitting the optimization problem into different sub-problems that are solved

independently in the form of proximal operators. The pseudo-code shown in Algo-

rithm 9, summarizes the CP algorithm used to solve the Equation 6.5, where w and

ū are respectively the slack and the dual variables. proxλ1G∗h and proxµ1F 3
h
are the

proximal operators, based on the functions :

G3
h(us) =

Nk−1∑
t=1

∥∥(warp(ft+1, ↑us+1
t )− ft)

+∇Swarp(ft+1, ↑us+1
t ) · (ust− ↑us+1

t )
∥∥

1
(6.6)

+ l1

Nk−1∑
t=1

∑
i=x,y,z

∥∥∇Sust,i
∥∥

Hτ

F 3
h(us) =DIV(us) (6.7)

Gregson et. al [14] presents how to cast pressure solver that is integral to many

fluid simulators as a proximal operator. We utilize this concept and adapt the
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Algorithm 9 Primal dual solver for velocity retrieving
1: procedure VelocityRetrieving(F 3

h, G
3
h)

2: while not converged do
3: // update slack variable
4: wj+1 ← proxλ1G3∗

h
(wj + λ1Khūj)

5: // update deformation field
6: us,j+1 ← proxµ1DIV(us,j − µ1K

T
hwj+1)

7: // update dual variable
8: ūj+1 ← 2 · us,j+1 − us,j

9: end while
10: return us

11: end procedure

divergence-free term to our primal-dual optimization framework, written as:

proxµ1DIV(x∗) =argmin
x∈ΦDIV

‖x− x∗‖2
2

=ΠΦDIV(x∗). (6.8)

The adopted approach to solve line 4 in Algorithm 9, and scalar densities reconstruc-

tion are the same as in the ST-tomography framework [24].

6.2 4D Soot Imaging of a Combustion Process

Figure 6.3 and 6.4 shows the final frame of the reconstructed volume (the same

frame as shown in Figure 6.1 and Figure 6.2 respectively). Image visualization for

the reconstruction was done using Avizo. In the reconstruction, local extinction (K)

values are scaled up by a factor of 100. Following image reconstruction, image noise

related to the noise found in the corners of Figure 6.2 was removed by thresholding

data outliers found outside of the soot zone. From the results, we can see clearly

that the reconstruction quality of low-density soot is better than the higher one.

Considering that only 3 views provided, the shown results are still encouraging.
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Figure 6.3: Reconstruction results for low density soot by proposed divergence-free
based 4D tomography technique. Left: Reconstructed volume. Middle, front slice
visualization. Right: Top view slice visualization.

Figure 6.4: Reconstruction results for high density soot by proposed divergence-free
based 4D tomography technique. Left: Reconstructed volume. Middle, front slice
visualization. Right: Top view slice visualization.
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6.3 4D Imaging of a Mixing Fluid Process

In this section, we focus on the 3D reconstruction of mixing fluid. As shown in

Figure 6.5 (left), there are only two cameras, at 0 and 90 degrees respectively, in the set

up of fluid capture, making it more challenge. Though it is a quite ill-posed problem,

with our physically plausible reconstruction method as described in this Chapter.

The results with significant improvement can already be obtained. Figure 6.5 (b)

show the input projection images after post-processing, with 200 time steps in total.

The reconstructed results is shown in Figure 6.5 (c).

(a) (b)

(c)

Figure 6.5: (a): the set up for the capture of high speed fluid imaging. (b): captured
projection images from the camera at 90 degree.(c): Reconstruction result from pro-
posed method. There are 200 time frames in total.

6.4 4D Imaging of a Fuel Injection Process

In this section, we show how our technique retrieves 4D volumetric fuel spray results

with high quality. Fuel evaporation and fuel-air mixing in engine affect combustion

efficiency and emission, which is definitely a promising research direction. As shown in

Figure 6.6 and Figure 6.7 (a), with different conditions, the output projection images

will be quite different. We assume that when a certain condition is fixed, every time

we inject the fuel, the images we captured at each angle are similar to each other.
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With this assumption, in each fixed condition, we do injections at five different angles

(i.e., -60, -30, 0, 30 and 60 degrees, respectively). For validation, at each angle there

are two injections will be obtained. The reconstructed results at one time step can

be observed in Figure 6.8 and Figure 6.7 (b). Figure 6.6 shows five time steps for one

condition from our reconstruction framework.
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Figure 6.6: From left to right: captured spay data with different conditions. First
row: top view. Second row: side view.

(a) (b)

Figure 6.7: (a): two condition captured from the experiment. (b): the volumetric
result from our reconstruction method.

Figure 6.8: visualization of reconstructed volumes at different time steps.
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6.5 View Synthesis for Visible Light Tomography

Finally, we conducted a pilot study on the view synthesis (i.e., projections interpola-

tion) for visible light tomography.

Observations. Assume parallel beam for simplicity, for visible light tomography,

especially for the capture of the natural phenomenon by optical means, compared to

traditional projection images, there are some fascinating features:

• The captured phenomenon is involved with (semi-) transparent material, no

occlusion, with segment-free background, constant lighting condition with all

captured videos at different sparse angles, which is similar to a tomographic

setting.

• The predictable volumetric motion: The fluid is identical to be divergence-free

and smooth.

• The predictable and physically plausible motion for 2D projection pair: For

input videos at each time step, the total energy (not only the brightness) is

constant (i.e., energy-conserving, see Equation 6.1) from different view cameras.

Furthermore, with the assumption of the parallel beam for simplicity, the energy

preserving flow is additionally penalized with larger weight on the direction that

perpendicular to the rotation direction.

With these observations, we propose a novel view synthesis method to improve

the reconstruction quality. From the experiments, the unprecedented results can be

observed from our method. The structure of the pipeline is shown in Figure 6.9.

For each time step: there are three images as input (only two input images at 0

and 45 degrees shown in Figure 6.9 for simplicity). A 3D version multi-scale Horn-

Schunck like flow estimation (with more penalty on the direction that perpendicular

to rotation) then applied on the input image pair. With this calculated flow motion
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and input image pair, a view warping with morph mode technique then applied,

generating a sequence of sharp images. The obtained 45 projections, together with

the masks generated from the forward rendering of tomography, are treated as an

input for the 4D tomography framework described in Chapter 5. With the joint

optimization of volume reconstruction and motion estimation, high-quality density

volumes then obtained.

View Synthesis

Multi-scale flow estimation View warp with morph mode

Mask generation

Tomography layer
(2D->3D)

Projection layer
(3D->2D)

Visual hull masks

Volume 
reconstruction

Motion 
estimation

Output

Input

… …

4D 
tomography

Figure 6.9: The pipeline
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Figure 6.10: the numerical comparison for different methods for projection of re-
constructed volume. The averaged result for total 46 time steps in each camera is
presented.

Results and Analysis. We compare the proposed method (including divergence-

free prior in the volumetric domain and view synthesis in projection domain) to three

strong baselines. The first baseline is a variant of the Rudin-Osher-Fatemi total vari-
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Figure 6.11: The comparison for different methods via slice visualization, display
range [0,255]

ation denoising model [88], implemented by solving it in a primal-dual scheme [26],

and using SART as the solver for data term (SART-ROF) to improve the reconstruc-

tion quality. The appearance transfer-based method for fluid modeling that proposed

by [90] is compared as the third baseline. The last baseline reconstructs fast de-
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forming object with internal structure by X-ray CT scanner via a warp and project

strategy (presented in Chapter 5). The numerical result is presented in Figure 6.10,

the unprecedented reconstruction quality can be observed from our proposed method

for both SSIM and PSNR metrics. Additional visualization comparison is also con-

ducted, as shown in Figure 6.11, which further verify the significant improvement

from our method.

6.6 Tomographic Reconstruction for Nanoscale Chip Data

As a powerful non-destructive tool, the X-ray CT technique can also be used in other

important engineering areas, for instance, design validation and quality control for

integrated circuits. Recently Holler et al [91] successfully reconstructed 3D volumet-

ric chip data with a resolution of 18.9 nm by a ptychographic X-ray laminography

approach. Alternatively, with focused optics, we try to apply tomographic reconstruc-

tion techniques based on the traditional projections, with an even higher resolution.

Figure 6.12: Volume visualization for chip data reconstructed by ST-Tomography-OF
method, only the middle time frame is selected.

To capture and validate this type of nanoscale chip data is very challenging: First,

some obvious deformation, which is mainly caused by sample degradation due to radi-

ation, can be observed during the scanning process. Thus, a 2D alignment operation

on projections as well as 3D alignments on volumes are required. Second, the imag-

ing problem is right at the edge of the physically feasible with the current state of

technology. Therefore, we typically do not have ground-truth data available, making
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it hard to apply any objective metric to measure the reconstruction quality, except

visual comarions.

Figure 6.12 shows an initial result of the reconstructed volume by ST-tomography-

OF method (i.e. ST-tomography method with additional 2D optical flow based align-

ment operation on projection). This dataset was acquired at the Advanced Photon

Source synchrotron facility of the Argonne National Lab by Dr. De Andrade. The

sliced volume comparison is presented in Figure 6.13. The resolution of the captured

projection image is 6.6 nm, while the resolution of reconstructed volumes is 13 nm.

This result shows promise for the use of our techniques to this challenging imaging

problem. In the future we will explore this application in more detail, and develop

tailored solutions to improve on the imaging resolution of nano-CT.

SART-TV-OFST-Tomography-RegST-Tomography SART-TV-Reg ST-Tomography-OF

Slice #1

Slice #2

Slice #3

Figure 6.13: Slice visualization for chip data. From left to right: ST-tomography
method (ST-Tomography), Total variation regularized SART with projection registra-
tion (SART-TV-Reg), ST-tomography with projection registration (ST-Tomography-
Reg), Total variation regularized SART with optical flow based projection alignment
(SART-TV-OF), and ST-tomography with optical flow based projection alignment
(ST-Tomography-OF). From top to bottom: Different slice for the reconstructed vol-
ume by different methods.
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Chapter 7

Conclusion

In this thesis, several new inverse problems related to computational tomography

are introduced and addressed. Chapter 3 focuses on sparse view reconstruction and

super-resolution for X-ray CT imaging. In this chapter we present a flexible and easy

to use framework for 3D CT reconstruction. The framework is based on recently

popular proximal algorithms. We derive the proximal operator for the data term

using SART as a solver. In the experiments, we demonstrate several advantages of

using SART over CG for this sub-problem. Another main contribution of Chapter 3 is

that we extend a structure tensor-based regularizer (i.e., STP) to the 3D case, derive

its proximal operator, and show its effectiveness in reconstructing specific structural

features, such as thin sheets and filaments. We apply our algorithm in a super-

resolution setting, where the input is a sequence of lower-resolution X-ray projection

images and the required output is a higher-resolution volume reconstruction, which

is beyond the Nyquist limit. We validate the efficacy of our algorithms and show

superior reconstruction quality compared to existing popular methods. In the future,

one of the interesting extensions is to reduce the time needed for X-ray CT acquisition,

which will help reduce X-ray radiation, and potential effects of thermally expanding

scanner platforms and the stress relaxation during the mechanical loading.

With the derivations of new proximal operators and additional slack variables

allocated in the memory, the flexibility of our optimization framework allows us to

add additional regularizers on the fly. Based on the 3D optimization framework,

Chapter 4 then adapted this 3D framework to space time reconstruction, with more
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efficient priors in both the spatial and the temporal domain. There are two main

contributions in this chapter: First, a new sampling strategy for the scanning of

moving objects. Our solution is built on using low discrepancy sequences to capture

the projection images. The second key contribution is a joint image formation model

and optimization method for retrieving the reconstructed volumetric results, as well as

the deformation fields between them. With the assumption of relatively small motion

at the scale of 10-60 projections (45-270 seconds in our experiments), an efficient and

effective framework to handle deformations in X-ray computed tomography is then

provided. The method can be used to analyze a wide range of dynamic phenomena,

and we demonstrate it with extensive experiments on both real and simulated data.

Chapter 5 then relaxes the assumption that we made in Chapter 4, regarding ig-

noring the deformation in each time step (10-60 projections in the example). Instead,

with a novel warp and project strategy, we show a significant improvement in the re-

construction quality compared to the state-of-the-art in tomographic reconstruction.

In the future, combining the methods presented in this chapter with other tomogra-

phy techniques, such as phase contrast imaging in order to enlarge the contrast for

improving the reconstruction quality, will be an interesting topic.

With a physically plausible divergence-free prior for motion estimation, as well as

a novel view synthesis technique, in Chapter 6, we present applications to dynamic

fluid imaging (4D soot imaging of a combustion process, a mixing fluid process, a

fuel injection process, and view synthesis for visible light tomography), which further

demonstrates the flexibility of our optimization framework.
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