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Fig. 1. X-ray tomographic reconstruction of a rose undergoing significant wilting during the scan due to loss of water. Images (a) and (b) show photographs
of the rose directly before and directly after the scanning process. Traditional CT reconstruction (c) from all 5520 projections in the scan sequence show
significant distortions due to misalignment of features. When grouping the projections into 92 frames of 60 projections each (d), the deformation over each
frame becomes negligible, but now the number of projections per frame is insufficient for high-quality reconstruction of the corresponding volumes (e, Y). By
comparison, our full space-time reconstruction algorithm yields a time sequence of highly detailed volumes for different time steps (f , Y′).

X-ray computed tomography (CT) is a valuable tool for analyzing objects

with interesting internal structure or complex geometries that are not ac-

cessible with optical means. Unfortunately, tomographic reconstruction of

complex shapes requires a multitude (often hundreds or thousands) of pro-

jections from different viewpoints. Such a large number of projections can

only be acquired in a time-sequential fashion. This significantly limits the

ability to use x-ray tomography for either objects that undergo uncontrolled

shape change at the time scale of a scan, or else for analyzing dynamic

phenomena, where the motion itself is under investigation.

In this work, we present a non-parametric space-time tomographicmethod

for tackling such dynamic settings. Through a combination of a new CT im-

age acquisition strategy, a space-time tomographic image formation model,

and an alternating, multi-scale solver, we achieve a general approach that

can be used to analyze a wide range of dynamic phenomena.We demonstrate

our method with extensive experiments on both real and simulated data.
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1 INTRODUCTION
Capture of 3D geometry and dynamic phenomena has long been

a topic of interest in computer graphics. While much of the work

in this area has been based on traditional computer vision methods

with either passive or active illumination [Dou et al. 2016; Józsa et al.

2013], tomographic methods have also played an important role in

computer graphics research [Gregson et al. 2014; Ijiri et al. 2014;

Reche-Martinez et al. 2004; Stuppy et al. 2003; Zhao et al. 2011].

In engineering and medicine, x-ray computed tomography has

become a valuable tool for its ability to reveal internal structures

in objects that cannot be sensed by optical means. Tomographic

reconstruction in graphics has been primarily focused on visible

light tomography [Reche-Martinez et al. 2004; Trifonov et al. 2006;

Zheng et al. 2017], although there are a few examples of using x-ray

CTs as well [Stuppy et al. 2003; Zhao et al. 2011]. While visible

light tomography is inherently limited to transparent materials, it

does have the advantage of using regular cameras and light sources,

which makes it feasible to construct multi-camera setups that can be

used to capture dynamic phenomena such as fluids (e.g. [Atcheson

et al. 2008; Elsinga et al. 2006; Gregson et al. 2014, 2012; Hasinoff

and Kutulakos 2007; Ihrke and Magnor 2004]). By comparison, x-ray

CT is typically limited to a single source and sensor array or a very

small number of such sources and arrays, and the required diversity

of view points is created through mechanical motion of either the

sample (typical of industrial CTs) or the source-sensor assembly (as

in medical CTs). Unfortunately, the need for mechanical motion has

so far hindered the ability to use x-ray CTs for imaging dynamic
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phenomena or continuously changing geometries, except in some

very specific setting such as objects that undergo periodic motion

(e.g. beating hearts [Mory et al. 2014]).

In this work, we aim to generalize x-ray CT reconstruction to the

4-dimensional case of space-time reconstruction of continuously

deforming objects and phenomena. We target the general case of

non-periodicmotion, althoughwe do assume relatively slow, smooth

motion fields. Specifically, we assume that the deformation is neg-

ligible when considering a small number of projections (e.g 10-60)

acquired in sequence, but that the motion is significant over the time

it takes to acquire the hundreds or even thousands of projections

needed to scan the whole object at high spatial resolution.

Figure 1 shows an example of such a setting. The scan object is

a rose that undergoes significant deformation due to loss of water

during the scanning process. This deformation makes it impossible

to reconstruct a detailed volume using traditional 3D tomography

methods: reconstructions from short sequences of projections are

severely under-determined and thus lack detail, while reconstruc-

tions from large sequences of frames fail due to misalignment of

the geometry. On the other hand, our 4D space-time tomographic

reconstruction is able to reconstruct not just a single volume but a

full time sequence of highly detailed volumes. It also estimates the

deformation fields between these frames which allows our method

to be used for a full analysis of the wilting process.

The specific technical contributions of this paper are

• a newCT image acquisition strategy based on low-discrepancy

sampling, which improves the distribution of projection an-

gles over time.

• a new image formation model for non-parametric 4D (space-

time) tomographic reconstruction, together with the appropri-

ate regularization strategies for tackling the ill-posed inverse

problem.

• an alternating, matrix-free, multi-scale optimization algo-

rithm for solving this inverse problem

• an experimental evaluation and demonstration of our ap-

proach on a wide range of real data, as well as detailed com-

parisons on simulated data with ground truth.

With these contributions, we demonstrate a versatile, non-parametric

space-time tomographic method that can be used to scan and ana-

lyze a wide range of dynamic phenomena, including de-hydration

and re-hydration of organic objects, raising dough, fluid flows, etc.

We believe this is a major step towards making x-ray CT useful

for analyzing internal structures of objects whose shape change

during scanning cannot be avoided, as well as objects that undergo

deliberate deformations that are to be investigated.

2 RELATED WORK

Scanning of non-rigid and deforming geometries has a long

history in computer graphics and computer vision. Common dy-

namic surface reconstruction methods use template models [Bradley

et al. 2008; De Aguiar et al. 2008], or assume slow deformations

that ensure large overlapping regions between successive scans [Li

et al. 2012; Mitra et al. 2007; Wand et al. 2009]. More recently, new

pipelines allow for real-time 4D reconstruction of non-rigidly de-

forming scenes using a single [Innmann et al. 2016] or multiple [Dou

et al. 2016] RGB-D cameras. However, such work is based on visible

light imaging of surfaces, and is therefore incapable of recovering

internal structures of objects, or complicated shapes with occluded

visibility.

Computed tomography in graphics has been successfully em-

ployed for 3D reconstruction and rendering. In order to obtain a

volumetric rendering of trees, Reche-Martinez et al. [2004] intro-

duced an approach that combines a volumetric opacity estimation

with a view-dependent texturing from different photographs. For

fluid imaging, computed tomography allows the 3D reconstruction

of flames [Hasinoff and Kutulakos 2007; Ihrke and Magnor 2004],

the capture of non-stationary gas flows [Atcheson et al. 2008], the

3D imaging of turbulent fluids [Gregson et al. 2014, 2012], as well

as the the 3D velocity estimation inside a fluid [Elsinga et al. 2006].

After suspending a transparent object inside a fluid with the same

refractive index, Trifonov et al. [2006] realized a tomographic recon-

struction of that object. Tomography was also introduced for other

applications like 3D displays [Lanman et al. 2011; Wetzstein et al.

2011], where multi-layered systems are employed. X-ray computed

tomography has also been used for some applications in graphics,

including the utilization of micro CT images to build volumetric

appearance models for fabrics [Zhao et al. 2011]. In addition, X-ray

tomography has proven to be an excellent tool for flower modeling

[Ijiri et al. 2014] or flower structure analysis [Stuppy et al. 2003].

Numerical methods for tomographic reconstruction can be

grouped into two families: direct methods and iterative methods

[Herman 2009; Kak and Slaney 2001]. Direct methods, like the fil-

tered back-projection (FDK) algorithm [Feldkamp et al. 1984], rely

on the use of the Radon transform and its inverse. On the other

hand, iterative methods propose to solve the discrete formulation of

the reconstruction problem [Herman 2009]. This approach involves

very large matrices, which makes the memory consumption a key

concern. The Simultaneous Algebraic Reconstruction Technique

(SART), proposed by Andersen et al. [1984], is one of the most effi-

cient iterative reconstruction methods. It is based on the projection

method of Kaczmarz, where the reconstructed volume is updated for

each scan view. This approach has modest memory requirements,

and yields better reconstruction results than the FDK algorithm

when the number of used projections is limited [Chlewicki et al.

2001]. Another advantage of iterative methods is their flexibility in

incorporating prior information into the reconstruction process. For

example, a total variation (TV) prior has been used for tomography

reconstruction [Mory et al. 2012; Sidky and Pan 2008].

Discrete deformations refer to the situation where the target can

be scanned before and after it undergoes a deformation, but where

either no deformation is taking place during the scan, or the time

scale of the deformation is very long compared to the scan time,

such as in recent work by Kato et al. [2017] on imaging the growing

process of plants. This scenario often occurs in mechanical engi-

neering and material science, where the primary goal is to measure

the displacement through of a target structure before and after me-

chanical loading, in order to retrieve the strain field. To estimate

this strain field, Digital Volume Correlation (DVC), essentially a 3D

variant of optical flow [Schreier et al. 2009], is widely employed
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Fig. 2. Comparison between our acquisition strategy (a and c) and interlaced view sampling method [Mohan et al. 2015] (b and d). The parameters taken for
this comparison are: Ns = Nθ = 8 and Nsf = 4. The acquired viewing angles for each round are represented by red circles (a) or green circles (b). The grey
circles correspond to the previously acquired angles. The plots (c and d) represent the viewing angles vs. projection index for the first five rounds.

[Bay et al. 1999; Hild et al. 2014; Lachambre et al. 2015; Morgeneyer

et al. 2013; Verhulp et al. 2004].

Periodic deformations. For medical CT imaging, the deformation

time scale is smaller than the scan time, however, the motion is often

cyclic, with a period corresponding to a heart beat or respiratory

cycle. Based on this observation, several approaches proposed a 4D

reconstruction of the heart or thorax [Chen et al. 2012; Sonke et al.

2005], by regrouping the scans into different phases of the cycle

and then reconstructing each phase independently, using only the

relevant x-ray projections. In order to get a good reconstruction for

all phases, the total number of scans should be sufficiently large,

which mandates a longer irradiation time and a higher radiation

dose for the patient. To address this issue, Mory et al. [2014] pro-

posed a 4D iterative reconstruction with spatial and temporal total

variation regularization. This technique is applied on all projections

together. The quality of the yielded reconstruction still suffers from

the angular undersampling for each cardiac phase. Another recent

approach consists of estimating and iteratively compensating the

motion that occurs during a cycle, in order to obtain a 4D recon-

struction [Taubmann et al. 2015]. The motion estimation is realized

using a pair-wise 3D/3D image registration. A major limitation of

this approach lies in the low accuracy of the generated 3D volumes

representative of each cardiac phase. Finally, one common limitation

of all presented 4D CT reconstruction approaches is their reduced

applicability to specific deformation phenomenon.

General deformations. There has been some limited work on

handling general deformations during a tomographic scan, and ob-

taining a true 4D tomographic reconstruction. A first approach

consists of compensating for known time-dependent transforma-

tions of the scanned object [Desbat et al. 2007]. Another approach

is to project the volume densities into a finite element basis, and

then track deformations of the finite elements over time [Neggers

et al. 2015; Roux et al. 2008]. This can be used in digital volume

correlation to speed up the distortion estimation between two static

frames, but such concepts can also be used as regularizers in contin-

uously deforming objects. Unfortunately, finite elements are very

cumbersome to fit to geometries with complex topologies, such

as the rose in Figure 1. Recent work like e.g [Leclerc et al. 2015;

Taillandier-Thomas et al. 2016] first scans a high-quality template

geometry, and then requires only a few projections per deformation

state to track the motion. This approach will fail if the object is

not stationary long enough to obtain the template. Our method, by

comparison, is non-parametric and does not require a template.

Finally, Mohan et al. [2015] combine a new acquisition strategy

with a 4Dmodel-based iterative reconstruction (MBIR). This method

is perhaps most closely related to ours, as it involves a maximum a

posteriori optimization of a penalized likelihood objective function

with temporal and spatial smoothness penalties. However, their

method requires careful tuning of the acquisition strategy to the

range and speed of deformations in a given dataset, making it diffi-

cult to scan an arbitrary deformation in a single setting.

3 LOW DISCREPANCY VIEW SAMPLING
Computed tomography requires obtaining x-ray projection images

of the target under different observation angles. In cone-beam to-

mography, the most common sampling strategy for obtaining these

projections is that the target undergoes a full circle of rotation rela-

tive to the x-ray source and sensor, and images are taken in regular

intervals. That is, the angles θk of the kth projection are given as

θk = θ0 + k · 2π/N , k = 0 . . .N − 1, (1)

where N is the total number of projections, and θ0 is some starting

angle. In the following, we will call such a scan sequence a linear
scan round, or just round for short.
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While this simple strategy works well for static targets, we seek a

more uniform distribution of angles vs. time in the case of dynamic

targets. Several acquisition strategies were proposed in the literature

with this goal in mind. The closest to our approach is the interlaced

view sampling approach by Mohan et al. [2015], who proposed to

divide the total number of projections N into Nsf groups consisting

of Nθ projections each (Figure 2, right). Each group of projections

is used to reconstruct a different volume, corresponding to a time

frame in an animation of the deforming object.

Within each frame, the projection angles are distributed according

to a low discrepancy sequence, which considerably improves the

sampling of angle vs. time compared to the simple linear strategy.

However, this approach still has several downsides that we would

like to address in our work:

• In Mohan et al.’s approach [2015] the tradeoff between Nsf
and Nθ is a parameter that needs to be set according to the

speed of the deformation (many frames with a small number

of projections for fast motions vs. few frames with a large

number of projections for slow motion). This might mean

having to repeat scans until the best tradeoff is found. In

comparison, we seek a strategy that is independent of the

speed of motion, and only depends on the capabilities of the

hardware.

• In interlaced view sampling, the sequence of angles repeats

from frame to frame, so that static or slowmoving parts of the

geometry do not benefit from additional information as the

number of frames increases. Since the number of projections

per frame can be small, reconstruction quality will suffer as

a result. Instead, we seek an approach where all of the N
projection angles are unique in order to extract the maximal

amount of information from each additional projection.

• The interlaced view sampling strategy cannot be implemented

on all CT hardware without changes to control software. For

example, the scanner used in our experiments only supports

linear scan rounds as discussed above, with a minimum num-

ber of Nmin = 10 projections per round. We aim for a sam-

pling strategy that takes such restrictions into account by

decomposing naturally into linear scan rounds.

For our space-time tomography method, we propose to split the

total sequence of N projections into Nr rounds, where each round

consists of Nmin projections that are spaced ∆θ = 2π/Nmin apart.

Note that in our approach, the rounds should be as short as possible

on a given CT hardware, and the number of rounds should not be

confused with the number of frames in the space-time reconstruc-

tion (see Section 4.1). We choose the starting angle θ0,i for each

round i according to a low discrepancy distribution over the range

[0,∆θ [ to uniformly cover all directions over time (see Figure 2, left).

Specifically we choose the base-2 Van der Corput sequence [Van der

Corput 1935], which for a given index i ≥ 0 is defined as

h2(i) =
∞∑
j=0

aj

2
j+1

with i =
∞∑
j=0

aj · 2
j , (2)

where

(
aj
)
is the binary representation of i . h2(i) is always in the

interval [0, 1[. The starting angle for the ith round is then given as

θ0,i = h2(i) · 2π/Nmin, and the angle of the kth projection in the

ith round is given as

θk,i = θ0,i + k · 2π/Nmin. (3)

We note that this strategy simplifies to just the Van der Corput

sequence over the full circle if the CT scanner supports “rounds”

with just a single image. However, even if the scanner imposes a

minimum length for rounds, with our scheme it can still be used

to image deformable phenomena, so long as the motion is small

over Nmin successive frames. All results in this paper are obtained

for Nmin = 10. We also note that the sampling strategy is com-

pletely decoupled from the magnitude of the deformation, and that

in particular the number of reconstructed frames in the space-time

reconstruction (Section 4.1) is independent of the number of rounds

and can be chosen post-capture. Moreover, since all projection an-

gles are unique, each additional image provides extra information

for a high-quality reconstruction, even in the case of stationary or

partially stationary geometry.

4 SPACE-TIME TOMOGRAPHY
Given the sampling scheme from the previous section, any sequence

of successively acquired projections with at least Nmin images pro-

vides a full coverage of the angular space. Furthermore, if that

sequence is short enough that the deformation is negligible, then

all projections in the sequence are consistent with a specific defor-

mation state of the target and can be thought of as representing a

frame of the deforming volume. Short sequences however usually

do not contain sufficient information for high-resolution volume

reconstructions as the resulting linear system is under determined

by several orders of magnitude, depending on the volume resolution

and the number of projections in the sequence. We therefore pro-

pose a full 4D, space-time image formation model that aggregates

information from all N projections, properly compensated for the

deformation to represent each frame in the animation.

In the following, we present the 4D image formation model, be-

fore discussing how to solve the resulting optimization problem in

Section 4.2.

4.1 4D Image Formation Model

Image formation model. Consider a 3D object undergoing con-

tinuous deformation over time. We represent this object as a con-

tinuous 4D density function f (x ,y, z, t). This density function can

be discretized into a sequence of Nt frames, where each frame is

represented by a voxel grid with Nv voxels. We choose Nt ≪ N and

assume that each frame represents an approximately static geometry

that can be reconstructed at least at low spatial resolution and low

quality by a short sequence of Nθ successively captured projections.

In our implementation, we choose Nθ = N /Nt , however one could

also choose larger values of Nθ , so that projections contribute to

multiple frames.

After regrouping all voxels in each frame into a column vector,

the 4D density volume is described by a vector in RNvNt
: f ={

f0, f1, . . . , fNt−1

}
, where ft ∈ RNv

represents the 3D volume at

the t th time step. With these assumptions, the basic tomography

, Vol. 1, No. 1, Article . Publication date: April 2018.



Space-time Tomography for Continuously Deforming Objects • :5

problem on the sequence of frames can be expressed as

©­­­­­­­­«

A1

. . .

At
. . .

ANt

ª®®®®®®®®¬︸                                    ︷︷                                    ︸
A

·

©­­­­­­­­«

f1
...

ft
...

fNt

ª®®®®®®®®¬︸   ︷︷   ︸
f

=

©­­­­­­­­«

p1

...

pt
...

pNt

ª®®®®®®®®¬︸    ︷︷    ︸
p

, (4)

where At ∈ R
NθM×Nv

is the matrix that models the Radon trans-

form operator for the Nθ projections contributing to the t th frame.

M is the number of pixels for a projection image. pt ∈ RNθM is the

vector of the measured data (sinogram).

Joint optimization framework. In general, this computed tomog-

raphy reconstruction is an ill-posed inverse problem, especially

since only few projections are used for the reconstruction at each

frame (for the results in this paper, Nθ ranges from 10 to 60). This

problem can be alleviated by aggregating information across frames,

using the regularized optimization framework shown in Equation 5.

This framework jointly reconstructs the 4D volume f as well as
the deformation fields u =

{
u0, u1, . . . , uNt−2

}
between successive

time frames. Recently, this joint motion estimation and image recon-

struction approach has successufuly been used in other applications,

like in dynamic image reconstruction [Burger et al. 2018] and fluid

flow estimation [Gregson et al. 2014; Xiong et al. 2017].

(f∗, u∗) = argmin

f,u

Nt∑
t=1

∥At ft − pt ∥22

+ κ1

Nt−1∑
t=1

∥∇T ft + ∇S ft · ut ∥1 (5)

+ κ2

Nt∑
t=1

∥∇S ft ∥Hϵ + κ3

Nt∑
t=1

∥∇T ft ∥22

+ κ4

Nt−1∑
t=1

∑
i=x,y,z



∇Sut,i 


Hτ

Here, the operators∇S and∇T represent respectively the spatial and

temporal discrete gradient, ut represents the deformation vector

field at time t .
The first term in Equation 5 corresponds to the least-square data

fitting term, derived from Equation 4. The second term is an L1 vol-

ume correlation term, similar to a 3D version of the Horn-Schunck

style brightness constancy term [Horn and Schunck 1981] in optical

flow. As discussed in Section 4.2 below, we use a multi-scale version

of optical flow [Meinhardt-Llopis et al. 2013] which does not have

a closed form representation, but is capable of dealing with larger

deformations than basic Horn-Schunck.

The remaining terms are regularizers for the volume and the

deformation field, respectively. On the third line of Equation 5 are

two terms for regularizing the spatial and the time dimensions

of the reconstructed volumes. For the spatial regularization we

use the Huber penalty [Huber 2011] on the spatial gradient over

the reconstructed volumes, which is parameterized by a positive

parameter ϵ . The idea of this term is similar to a total variation (TV)

prior, except that the Huber penalty prevents the usual staircase

artifacts introduced by a TV prior by not penalizing small gradients.

Finally, on the last line we introduce a spatial regularization of the

deformation field, also utilizing the Huber penalty.

4.2 Solver
Solving the joint optimization problem in Equation 5 is challenging,

especially because of the optical flow prior. Indeed, this term is

neither linear nor convex. Moreover, it involves both variables f
and u. We address these issues by solving the optimization problem

in an alternating way as shown in Algorithm 1.

We first initialize the 4D volume (f) by applying a variant of the

SART algorithm [Andersen and Kak 1984] independently for each

frame, where the individual projections are processed in a random

order to improve convergence [Trifonov et al. 2006]. Then, our

algorithm alternates between estimating the deformation field (u)
for each pair of successive frames, and refining the reconstruction

of f .

Algorithm 1 Space-Time tomography

1: procedure ST-Tomography(Ff ,Gf , Fu,Gu, ρ)
2: Initialize u = 0, and f by using the SART algorithm

3: for i from 1 to maximum outer iteration do
4: // generate multi-scale data

5: f1 ← f , u1 ← u
6: for s from 1 to Nscales − 1 do
7: fs+1 ←↓fs

8: us+1 ← ρ ↓us

9: end for
10:

11: // update deformation field variables

12: // from the coarsest scale to the finest

13: for s from Nscales − 1 to 1 do
14: us ← EstimateDeformations(Ffs (us ),Gfs (us ))
15: us−1 ← 1

ρ ↑u
s

16: end for
17: u← u1

18:

19: // update 4D volume variables

20: f ← ReconstructVolumeDensity(Fu,Gu)
21: end for
22: return f and u
23: end procedure

In addition, our alternating joint optimization framework, given

inAlgorithm 1, follows amulti-scale coarse-to-fine scheme [Meinhardt-

Llopis et al. 2013]. The deformation field is estimated first for the

coarsest scale, then the estimation is propagated step-by-step to the

finest levels. For each scale (s), the deformation field is initialized by

up-sampling the previous result obtained with a coarser scale. This

multi-scale strategy aims to take into account the large deformations

in the optical flow prior. In Algorithm 1, the finest and the coarsest

scales are respectively obtained for s = 1 and s = Nscales . The

operators ↑and ↓respectively perform cubic up- and down-sampling
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by a factor of ρ, and the down-sampling operator also includes a

Gaussian smoothing.

Detailed explanations of the deformation field estimation and the

volume reconstruction and the associated operators Ff , Gf , Fu, and
Gu are provided in the following.

4.2.1 Deformation field estimation. For estimating the deforma-

tion field between two volumes, we adapt the multi-scale optical

flow approach introduced by Meinhardt-Llopis et al. [2013] to in-

clude additional regularizers and to work on 3D volumes rather

than 2D images.

At each scale s , we estimate the residual deformation between

frame ft and a backwards warped version of frame ft+1, where the

warping is performed using the previously estimated low resolution

deformation field us+1

t . We denote this backward-warped frame as

warp(ft+1,↑us+1

t ), and define the following function

Gf (u
s ) =κ1

Nt−1∑
t=1



(warp(ft+1,↑us+1

t ) − ft )

+∇Swarp(ft+1,↑us+1

t ) · (u
s
t− ↑u

s+1

t )




1
(6)

+κ4

Nt−1∑
t=1

∑
i=x,y,z




∇Sust,i 



Hτ

Based on Equation 5, the optimization problem for each scale is then

given as

us,∗ = argmin

us
Gf (u

s ). (7)

This approach corresponds to a first-order Taylor approximation

of the non-linear warping function, and was first proposed by

Meinhardt-Llopis [2013]; we refer to their work for a detailed deriva-

tion and discussion. In order to ensure high accuracy results, a

BFECC method [Kim et al. 2005] was selected for all our warping

operations.

Algorithm 2 CP-based method for deformation field estimation

1: procedure EstimateDeformations(Ff ,Gf )
2: while not converged do
3: // update slack variable

4: wj+1 ← proxλ1G∗f
(wj + λ1Kf ūj )

5: // update deformation field

6: us, j+1 ← proxµ1Ff (u
s, j − µ1KT

f w
j+1)

7: // update dual variable

8: ūj+1 ← 2 · us, j+1 − us, j

9: end while
10: return us

11: end procedure

Due to the presence of the L1-norm and the Huber penalty in

Equation 7we reformulate this optimization in the first-order primal-

dual framework (CP algorithm), introduced by Chambolle and Pock

[2011]. The strategy proposed by this algorithm, consists in splitting

the optimization problem into different sub-problems that are solved

independently in the form of proximal operators. The pseudo-code

shown in Algorithm 2, summarizes the CP algorithm used to solve

the Equation 7, where w and ū are respectively the slack and the

dual variables. proxλ1G∗f
and proxµ1Ff are the proximal operators,

based on the functions Ff (u) = 0 and Gf as defined above. Since

Ff (u) is a constant function, its proximal operator is simply the

identity. The derivation of proxλ1G∗f
is given in the Supplemental

Material. The operator Kf is defined as follows:

Kf =
©­­«
∇TS 0 0 ∇xwarp(ft+1,↑us+1

t )

0 ∇TS 0 ∇ywarp(ft+1,↑us+1

t )

0 0 ∇TS ∇zwarp(ft+1,↑us+1

t )

ª®®¬
T

(8)

4.2.2 Volumetric reconstruction. After the deformation field esti-

mation, the 4D volume density (f) is reconstructed using the opti-

mization framework given in the Equation 9, which follows directly

from Equation 5.

f∗ = argmin

f

Nt∑
t=1

∥At ft − pt ∥22

+ κ1

Nt−1∑
t=1

∥∇T ft + ∇S ft · ut ∥1 (9)

+ κ2

Nt∑
t=1

∥∇S ft ∥Hϵ + κ3

Nt∑
t=1

∥∇T ft ∥22

In order to deal with large-scale deformations, the implementation

of the volume update in practice uses volume warping instead of

the Horn-Schunck-style energy term, just as in the deformation

estimation (Section 4.2.1). That is, we approximate

∇T ft + ∇S ft · ut ≈ warp(ft+1, ut ) − ft . (10)

Including this term in the volume reconstruction is what allows for

aggregation of information from projections across frames, and is

the reason for improved volume reconstruction quality.

Algorithm 3 CP-based method for tomographic reconstruction

1: procedure ReconstructVolumeDensity(Fu,Gu)
2: while not converged do
3: // update slack variable

4: gj+1 ← proxλ2G∗u (g
j + λ2Ku¯f j )

5: // update volume variable

6: f j+1 ← proxµ2Fu (f
j − µ2KT

ugj+1)

7: // update dual variable

8:
¯f j+1 ← 2 · f j+1 − f j

9: end while
10: return f
11: end procedure

As before, a first-order primal-dual algorithm is employed, since

Equation 9 also contains the Huber penalty and the L1-norm. The

used scheme for solving the Equation 9 is provided in Algorithm 3,

where g and
¯f are respectively the slack and the dual variables.

proxλ2G∗u and proxµ2Fu are the proximal operators for the volume

reconstruction, their derivations are provided in the Supplemental

Material. The function Fu is defined as the first term of the objective
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function in Equation 9, while Gu consists of the remaining terms of

the same objective function. The operator Ku is given by

Ku =
(
∇S , ∇T , W

)T
. (11)

whereW is a warping operator representing the volume warping

term warp(·, ·). Note that for the sake of notational simplicity we are

abusing the linear operator notation to also describe the non-linear

W . Specifically, we denote the adjoint of the image warping operator

asWT
. IfW is the backward warp from frame i + 1 to frame i , the

WT
is the forward warp from frame i − 1 to frame i .

The SART algorithm is applied as a solver for the proximal op-

erator of Fu(f) instead of the traditional conjugated gradient (CG)

method, since the CG solver usually requires good precondition-

ers to be stable, and is generally more sensitive to measurement

noise [Aly et al. 2016].

5 EXPERIMENTS AND RESULTS
In this section, we first quantitatively assess our reconstruction

method using a simulated deforming object. Then, we demonstrate

its applicability to six selected deformation phenomena: flow of

a high-viscosity fluid, wilting of a rose, re-hydration of a dried

mushroom, rising of a dough, magnification of lentil/lupin seeds

soaked in water, and dissolution of crystal sugar in water.

5.1 Quantitative evaluation with synthetic data
We perform experiments on a synthetic dataset to obtain quantita-

tive results for comparisons with alternative acquisition schemes

and reconstruction methods. The volume is based on a high-quality

CT scan of a static copper foam, depicted in Figure 3, on which we

impose a synthetic deformation. The volume resolution in these

experiments was 125 × 250 × 125.

b ca

Fig. 3. Synthetic deformation for a copper foam volume with an initial size
of 125 × 250 × 125. (a) Initial volume obtained with real CT acquisition.
The deformation is a uniform compression, where the top edge moves
downwards at a constant speed, and the bottom edge is stationary, resulting
in a linear velocity gradient throughout the volume. Frames (b) and (c)
frames 150 and 300 of this sequence.

The deformation in these experiments is a uniform compression

in the vertical direction (Figure 3), where the top edge moves down-

wards by 0.2 voxels between successive projection images. While

this is a very simple, non-physical motion, it does allow us to ob-

serve a range of different velocities in a single experiment, with

v = 0.2 voxels/∆t at the top edge, v = 0 at the bottom edge, and a

linear ramp of velocities inbetween. This allows us to collect quality

statistics for different horizontal slabs of the volume to analyze the

impact of deformation velocity on the quality of reconstructions for

different algorithmic choices and parameter settings. In the follow-

ing comparisons, we consider the volume generated at the mid-time

frame as the ground truth for that time frame.

Impact of the acquisition strategy. First, we study the impact

of the view sampling strategy on our space-time reconstruction

method. From a total number of N = 160 projections we reconstruct

Nt = 5 frames (i.e. we use Nθ = 32 projections per frame). We test

three different view sampling strategies: (a) a single linear round
with N = 160 projections, (b) the strategy of Mohan et al. [2015]

with Nθ = 32, and (c) our low discrepancy sampling, where we

use Nr = 5 rounds of Nmin = 32 projections each, since a power of

two value for Nmin makes our method more directly comparable to

Mohan et al.’s method. On all datasets, we attempt our full space-

time tomographic reconstruction method.

Table 1 shows the numerical results of this experiment separately

for five different regions of the volume, corresponding to different

velocities of the deformation. Two numerical metrics are collected

on the data, namely: Peak SNR (PSNR), and SSIM index. For SSIM

comparisons, a binary mask is added to allow us to focus on the

geometric comparison. As expected, all the metrics indicate im-

proved reconstruction with decreasing speed of deformation for

all sampling strategies. Our low discrepancy strategy offers the

best performance at all speeds, with the difference being larger on

the fastest moving parts, where the advantages of a good sample

distribution in both in space and time are the most evident.

Region Metric Linear Mohan Our

Top PSNR 18.34 23.83 28.08

(fastest) SSIM 0.53 0.75 0.84

PSNR 21.54 25.27 29.15

SSIM 0.68 0.80 0.88

Center PSNR 25.43 28.17 31.45

(medium) SSIM 0.78 0.87 0.92

PSNR 28.32 31.44 33.57

SSIM 0.84 0.93 0.96

Bottom PSNR 30.28 33.23 34.52

(slowest) SSIM 0.89 0.96 0.97

Table 1. Interaction of the sampling strategy with our reconstruction
method. PSNR [dB], and SSIM are applied.

Comparison of different reconstruction algorithms.While the

previous experiment used our reconstruction method with different

sampling strategies, we now compare different reconstruction meth-

ods and study in detail the impact of each prior on the reconstructed

quality. The methods we compared are:

• plain SART,
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• Rudin-Osher-Fatemi total variation denoising model [Ge-

treuer 2012], implemented by solving it in a primal dual

scheme [Chambolle and Pock 2011], and using SART as the

solver for data term (SART-ROF),

• SART-Huber (SART-H), where the TV term is replaced by the

corresponding Huber variant,

• SART-Huber&Temporal smoothing prior (SART-H&T), but

no optical flow warping, and

• our full method (Ours).

Considering the structural complexity and relative motion of this

simulated data, we choose Nθ as 30, thus we have 10 frames of vol-

umes in total, the numeric results for each metric shown in the Table

2 are averaged over all 10 frames. As shown in Table 2, the three

methods that rely solely on spatial reconstruction (SART, SART-ROF,

and SART-H) perform significantly worse than the two methods

with using some form of temporal regularization (SART-H&T and

Ours). However, even within that latter group, the advantage of our

full model including optical flow warping is evident. Analyzing the

results for the individual horizontal slices, we note that the errors

get worse from bottom to top, but our method degrades much slower

than the comparison approaches.

Region Metric SART ROF H H&T Ours

Top PSNR 19.53 21.83 21.88 23.58 28.15

(fastest) SSIM 0.65 0.71 0.71 0.76 0.83

PSNR 21.79 23.13 23.17 24.17 29.03

SSIM 0.72 0.77 0.77 0.82 0.88

Center PSNR 26.67 27.53 27.58 28.69 31.96

(medium) SSIM 0.83 0.86 0.86 0.89 0.93

PSNR 29.23 30.09 30.07 32.32 33.92

SSIM 0.89 0.91 0.92 0.93 0.96

Bottom PSNR 30.65 31.07 31.07 32.81 34.35

(slowest) SSIM 0.91 0.93 0.93 0.94 0.96

Table 2. Calculated PSNR [dB], and SSIM for different reconstruc-
tion methods: SART, Rudin-Osher-Fatemi (SART+TV), SART+H(uber),
SART+H&T(emporal) smoothing, and our full method.

Failure case determination. In order to explore the failure cases

of our method, we conduct a compression experiment with larger

velocities than before (0.9 voxels/∆t at the top edge of the volume).

Metric (0.0-0.1) (0.1-0.3) (0.3-0.5) (0.5-0.7) (0.7-0.9)

PSNR 33.77 27.15 22.52 18.39 15.14

SSIM 0.94 0.81 0.72 0.59 0.48

Table 3. Calculated PSNR [dB], and SSIM for different compression veloci-
ties [voxels/∆t ].

The Table 3 shows how the quality of our reconstruction degrades

with faster velocities. For example, if the deformation is larger than

0.5 voxels between successive projections, the PSNR drops below

20. This corresponds to approximately 15 voxels for one time frame

of our reconstruction, since we are using 30 projections to recon-

struct each time frame. Another experiment was done by rotating

the volume between successive projections with a fixed angle ϕ.
Different values of ϕ were tested (see Supplemental Material), and

demonstrate that the method starts breaking down around values

of ϕ > 0.3◦. It must be emphasized that these results cannot nec-

essarily be generalized to arbitrary data, since the performance of

our method also depends on the amount of local volume structure.

However, overall our synthetic experiments demonstrate that the

performance of our method deteriorates gracefully as the speed of

motion increases.

5.2 Qualitative evaluation with real scans
To demonstrate the versatility of our proposed approach in studying

a variety of dynamic phenomena, we apply it to six real experiments

comprising very different types of objects and deformations: (a) a

rose undergoing significant wilting during the 9.5 hour scan process.
The wilting was further accelerated by adding salt to the bottom

of the stem. (b) Flow of a high viscosity transparent fluid over a

3D-printed mold. This fluid, with 20 million times the viscosity of

water, has several included air bubbles that move and pop as the fluid

fills the mold. (c) Re-hydration of dried black mushrooms from
a melting ice cube. (d) Rising dough, made from flour and yeast.

A hazelnut is placed inside this dough, in order to have additional

internal structures. (e) Hydration of a mixture of lentil and lupin

seeds soaked in water. (f) Dissolution of crystal sugar inside water.

Scanning and Optimization Parameters. All of these phenomena

were captured on the same CT device, a Nikon XT H 225, where

the acceleration voltage of the x-ray tube was in the range of

[93 kV , 175 kV ], depending on the dataset. The detector of this de-

vice has a resolution of 1910 × 1524 pixels, with a pixel size of

0.127 × 0.127mm. Given the different nature of these experiments,

their acquisition parameters (capture time, number of frames) are

very different. Table 4 provides the value of these parameters for all

datasets.

In our optimization framework some parameters are common for

the six datasets. The weights for the Huber penalty priors are set

respectively to: κ2 = 0.05 (In practice, κ2 ranging from 0.01 to 0.1

yields accurate results) and κ4 = 1.2. For the multi-scale scheme we

choose Nscales = 3, ρ = 0.5 , σ = 0.65 (Algorithm 1). Otherwise,

the scales used in the proximal operators are set to: λ1 = µ1 = 0.3

for the deformation estimation problem (Algorithm 2), and λ2 = 1.0,

µ2 = 0.1 for the volume density reconstruction (Algorithm 3). In the

inner loops we used two iterations for the SART algorithm and one

iteration for the deformation field reconstruction. Other parameters

are specific for each dataset (see Table 4 for these parameters). κ3

controls the temporal coherence of each dataset, and usually to get

good resultsκ3 should be in the range 0.1 to 0.8. Our algorithmswere

implemented in C++, and were run on a computer with a dual-core

3.00GHz Intel Xeon E5-2687W processor and 512 GB of RAM. The

deformation estimation (u-problem) and the volume reconstruction

(f-problem) run times for one complete iteration are also given in

the Table 4.

The deformation scale and the complexity of the structures are

very different from one dataset to another. Consequently, we choose
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Dataset Cap. time Nt Nθ Volume size Vox. pitch κ1 κ3 # Outer u-problem f-problem
[h:mm] [mm] iterations [h:mm] [h:mm]

rose 9:32 92 60 510×384×456 0.20 0.2 0.3 6 4:48 3:19

fluid 2:12 152 10 384×304×384 0.24 0.2 0.5 6 4:34 1:21

mushrooms 6:05 200 20 240×190×240 0.34 0.1 0.1 6 5:50 1:07

dough 4:27 132 20 276×221×271 0.20 0.1 0.1 8 4:50 0:51

seeds 5:12 60 50 508×332×506 0.17 0.1 0.1 8 2:38 2:02

sugar 0:43 50 10 475×380×475 0.17 0.1 0.1 8 2:09 0:18

Table 4. Parameters used in the acquisition and for the optimization, and total run times per sub-problem (summed over all outer iterations) for each of the six
datasets. The parameters κ2 = 0.05 and κ4 = 1.2 were fixed for all datasets.

Nθ = 20 Nθ = 40 Nθ = 60 Nθ = 80 Nθ = 120 Nθ = 1380 Nθ = 5520 

Fig. 4. Comparison of rose slices obtained after SART reconstruction using a different number of projections (Nθ ). The blue and green rectangles highlight the
regions where the differences are the most prominent.

Frame 10 Frame 40 Frame 65 Frame 90

Fig. 5. Reconstruction obtained for the wilting rose dataset. A 3D rendering of the rose is given at four different time frames (first row). The second and the
third rows show respectively a top and a side slices for the same time frames.

different number of projections by time frame (Nθ ) in our recon-

structions (see Table 4). This parameter is of great importance, and

has to be set carefully in order to obtain accurate reconstructions.

Intuitively, it should be as high as possible to have a better recon-

struction of complex structures in each individual frame, which can

then be used for optical flow tracking. On the other hand, Nθ should

be small enough to avoid the "motion blur" caused by the defor-

mations. In other words, there is a trade-off between spatial and

temporal resolution that requires parameter selection, but unlike in

the work of Mohan et al. [Mohan et al. 2015], this parameter choice

is strictly post-capture and can be informed by visually analyzing

the amount of motion in the raw projection images.
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Frame 001 Frame 018 Frame 075 Frame 150

Fig. 6. Reconstruction obtained for the high viscosity fluid dataset. Two photographs are given for the before and after scanning process (left). These photos
are accompanied by thumbnail images of the first and last projections. A 3D rendering is given for four different time frames from two different views (right).

Rose dataset. In Figure 4 we illustrate the impact of Nθ on the

quality of a standard (3D) SART reconstruction of the wilting rose.

This figure shows the same rose slice obtained using reconstructions

with different values of Nθ . The central petals of this rose are almost

static during the scanning process. Thus, the reconstruction quality

of these features improves with an increasing number of projections.

This can also be seen in Figure 1-(c). However, when the structures

are dynamic, using a large number of projections yields blurred

reconstructions, causing these features to disappear as their density

gets distributed over many voxels. Note that for Figure 1-(c), we
use a threshold for the rendering, that is why these dynamic struc-

tures look less blurred in the 3D rendering, but certain features are

missing entirely. The blue and green rectangles in Figure 4 illustrate

two dynamic features of the rose. One can notice that for Nθ higher

than 60, some details of these features are blurred. Therefore, for

this dataset we choose to use 60 projections to reconstruct each time

step using our space-time method. Moreover, Figure 1-(f) shows
that the reconstructed rose is quite similar for successive frames

(Frames 01-02 and Frames 91-92), which reinforces our choice of Nθ .

For other datasets we also set this parameter empirically, by looking

at the changes in projections of similar angles. The reconstructions

shown in Figure 5 demonstrate the accuracy of our approach. Note

that the petals curl in on themselves, creating a quite intricate defor-

mation field. Our non-parametric method can handle this situation

well, while fitting an appropriate FEM model to this data would be

extremely challenging. Despite the high geometric complexity of

this dataset, as well as the low contrast in the projections (see Fig-

ure 1-(d) and our supplemental video), our reconstruction provides

sharp details of the rose during the whole wilting process. This

makes our approach very suitable for studying botanical processes

that happen at time scales of the scan process.

Fluid dataset. The second dataset (see Figure 6) is composed of

a static part (mold) and a dynamic part (high viscosity fluid, (PSF-

20,000,000 cSt Pure Silicone Fluid) that contains internal structures

fluid mushrooms sugar 
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Fig. 7. Comparison of three reconstruction approaches for different datasets
(from left to right: fluid, mushrooms and sugar datasets). The first row
corresponds to the SART result. The second row are reconstructions using
the SART algorithm with a Huber penalty and a temporal smoothing prior.
The last row shows the reconstruction obtained with our method.

(bubbles). Given the relatively fast motion of the fluid, only ten

projections are used to reconstruct each time frame. Thus, when a

SART algorithm is applied on this dataset, the volumes are poorly

reconstructed (see the first column of Figure 7). Adding just the

spatial priors – the Nonlinear TV prior (ROF) or the Huber penalty

prior – is not sufficient to improve the reconstruction quality, as

shown in the supplementary material. Moreover, on the provided

video we observe a temporal incoherence between the retrieved

volumes at successive time steps. With our reconstruction, this is

solved by adding temporal smoothness and optical flow priors. The

temporal prior ensures a temporal coherence for the reconstructed
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a b c d

e

f

SART SART-ROF Ours (Iteration 1) Ours (Iteration 2) Ours (Iteration 6)

Fig. 8. Reconstruction obtained for the dried black mushrooms dataset. A comparison of different reconstruction methods at one time frame is shown for 2
slices in (a) SART,(b) SART-ROF and (c) Our method with 1 iteration (left), 2 iterations (middle) and 6 iterations (right). Images (d) and (e) represent respectively
a photograph and a 3D rendering of the last time frame. Finally, a time sequence of the same slice illustrates the steps of the melting ice and the re-hydration
of the mushrooms in (f).

f 

Frame 001 Frame 010 Frame 020 Frame 050 Frame 110 d 

Y’ 

Y 

Y’ 

c 

a b 

Y e 

Fig. 9. Reconstruction obtained for the rising dough dataset. Images (a) and (b) show photographs of the dough directly before and directly after the scanning
process. Traditional CT reconstructions from all 132 frames (d) in the scan sequence show significant distortions due to misalignment of features in the x-ray
projections (c). While the deformation is gradual enough to be negligible over shorter sequences of 20 successive images, this number of projections is too
small for reconstructing accurately the internal structures of the dough (e, Y). By comparison, our full space-time reconstructions algorithm yields a time
sequence of highly detailed volumes for different time steps (f , Y′).

volumes (see the supplemental video). In addition, it allows enrich-

ing the angular information, for both the static parts (mold) and

the dynamic parts (fluid), since projections used in successive time

frames are different. The accuracy of the reconstruction is then

improved, especially for static and quasi-static features. In Figure 7,

we see clearly that the SART-H&T algorithm (SART algorithm +

Huber penalty + temporal prior) has a better reconstruction for the

mold. But since the top of the fluid has large displacements, we

observe some blurring and smearing effects. This is solved in our

approach by using the optical flow prior and the joint optimization

framework. Figure 7 shows the improvement of our method in the
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Frame	
  01	
   Frame	
  20	
   Frame	
  40	
   Frame	
  60	
  a 

b 

c 

Fig. 10. Reconstruction obtained for the lentils/lupin seeds dataset. (a) and (b) Captured photographs of the seeds sample before and at the end of the scan.
(c) 3D rendering (top) and slices visualization (bottom) of the obtained result for 4 different time frames. For these slices the left half corresponds to the
reconstruction using a classical method (SART-ROF); while the right half corresponds to our reconstruction result.

Frame	
  04	
   Frame	
  15	
   Frame	
  25	
   Frame	
  50	
  a c 

b 

Fig. 11. Reconstruction obtained for the crystal sugar dataset. On the left side, photographs of the sample before (a) and after (b) the scanning process are
given. On the right side (c), a 3D rendering for four time frames is given (top), as well as a slices visualization for the same time frames (bottom). For these
slices the left hand part corresponds to the reconstruction using a classical method (SART-ROF); while the right side corresponds to our reconstruction result.

reconstruction of the dynamic features of the fluid. In the supple-

mental video improvements on the reconstruction of the mold are

also clearly visible.

Mushroom dataset. Similar observations can bemade for the slices

representing the mushrooms dataset shown in the middle column

of Figure 7. In this data, a partially frozen ice cube with a liquid

water core is placed on a bed of dried mushrooms (Auricularia

auricula-judae). The slice sequence (Figure 8-(f)) makes it possible

to follow the complete process of re-hydration of the mushrooms.

The first image illustrates the presence of a water cavity inside the

ice, showing that the cube was not frozen completely. The water

has higher density than ice in the x-ray images, as is to be expected.

The second image shows the beginning of the melting of the ice.

The thickness of the ice is reduced, and liquid water is now present

at the bottom of the container. On the top side of the ice the density

is darker than before, while it is brighter on the bottom side. This

shows how the liquid water drains from the cavity in the ice cube

and is replaced by air. In the third image, all the liquid water leaves

the cavity and ends up on the bottom of the container. The remaining
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four images show the continuous re-hydration of the mushrooms

from the melting ice. The final state of this process is illustrated by

the photograph in Figure 8-(d) and the 3D rendering in Figure 8-(e).
As can be seen in Figure 7, the SART and the SART-H&T ap-

proaches fail in reconstructing sharp features, especially for the

cavity inside the melting ice. Figure 8-(a),(b) and (c) shows a com-

parison between the SART, the SART-ROF algorithms and three

different iterations of our approach for the last time frame. At this

stage all the ice has melted, which accelerates the re-hydration of

the mushrooms. The increased rate of deformations in the mush-

rooms causes a reduction in reconstruction quality for the SART

and SART-ROF algorithms. After few iterations of our algorithm

the result is accurate.

Dough dataset. The fourth dataset corresponds to a rising dough

shown in the photographs in Figure 9-(a) and (b). In comparison

to the rose, the projections of the dough have a good contrast (see

Figure 9-(d)). In addition, the dough initially has a relatively simple

overall geometric shape comparing to the rose. Thus, the classical

method reconstructs the external shape with good accuracy (see

Figure 9-(e) and (Y)). However as the dough rises, the yeast creates

air bubbles of different sizes. Many air bubbles are too small to be

geometrically resolved by the CT scanner. Their impact is visible

through a change in the absorption coefficient of the dough. Other

bubbles, however, are developing at a macroscopic scale, and show

up as internal, sponge-like structures in the geometry. In the classical

reconstruction method, these structures are blurred out due to the

low projection count. Our space-time reconstruction (see Figure 9-(f )
and (Y′)), however, is able to recover these bubbles quite well.

Seeds datset. Figure 10 illustrates the results obtained for the

reconstruction of the seeds dataset. Before the scan, the seeds were

soaked in water for several minutes, but the water was then mostly

drained for the actual scan. The supplemental video shows the

reconstructed motion of these seeds over the time. By absorbing

water these seeds increase in size, and push the other seeds upward.

The slices in Figure 10 point up that the magnification of seeds is

more important for those in the bottom of the container. We can

notice also that at the last frame, all the water is absorbed.

For this dataset, the impact of the "motion blur" is clearly seen on

the SART-ROF reconstruction (left side of the slices). This artifact it

is well corrected using our approach.

Sugar dataset. The last experiment consists of imaging the dis-

solution of sugar crystals in water. A comparison of different re-

construction methods (SART, SART-ROF, SART-H&T and ours) is

also given for this dataset in the right column in Figure 7 and in

Figure 11. Our reconstruction outperforms the other methods for

this dataset as well, by yielding sharper features. When compar-

ing the slices corresponding to Frame 04 and 50 in Figure 11, we

notice the density of the water increases slightly over time. This

can be explained by the presence of dissolved sugar molecules in

the water at the Frame 50. Finally, in the provided video we can see

some temporal incoherence in the beginning of the sequence of this

dataset. For this case, we are out of the scope of our method since

the deformation time scale is smaller than the scanning time for ten

projections (here Nθ = 10).

6 CONCLUSIONS AND FUTURE WORK
We have presented a method for space-time tomographic reconstruc-

tion of objects that undergo significant deformations during the

scanning process. We demonstrate our method on a wide variety of

input data, ranging from deforming surfaces (e.g. rose, mushrooms)

to volumes with changing internal structure (e.g. rising dough).

The success of our method relies on two novel contributions.

First, we devise a new sampling strategy for selecting a sequence

of viewing angles from which to obtain the x-ray projections. This

strategy provides a dense, approximately uniform coverage of angles

vs. time, and can be implemented on commercial x-ray CTs without

modifications. Furthermore, the sampling strategy does not require

any data-dependent parameter selection and can naturally handle

both static objects as well as deformations of various magnitudes

and speeds.

The second component of our method is a joint image formation

model and optimization method for simultaneously recovering a

sequence of shapes over time, as well as the deformation fields

between them. By jointly solving for both variables, we successfully

transfer information between time steps of different deformation

states, and are able to overcome quality and resolution issues that

would result from independent reconstructions of each frame. Our

method is non-parametric; we do not require projections of either

the volumes or the motions into basis functions. This makes it easy

to apply our method to a wide range of geometries with varying

topologies without manual tweaking.

The limitation of the approach is that we still have to assume a

relatively small motion at the scale of a small number of projections

(10-60 in our examples). Our method does not work if there already

is significant deformation between two successively captured pro-

jections. In the future we believe we can address this situation by

moving to a continuous time scale, in which we respect the exact

capture time for each individual projection image in the optimiza-

tion method.

Despite this limitation on deformation speed, our method already

provides an efficient and effective means of dealing with deforma-

tions in x-ray computed tomography. This allows to analyze time-

varying phenomena with interesting changes in internal structure

at time scales that could not previously be handled.
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