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Abstract

This paper examines the problem of illumination spec-
tra estimation in multispectral images. We cast the prob-
lem into a constrained matrix factorization problem and
present a method for both single-global and multiple illu-
mination estimation in which a deep unrolling network is
constructed from the alternating direction method of mul-
tipliers(ADMM) optimization for solving the matrix factor-
ization problem. To alleviate the lack of multispectral train-
ing data, we build a large multispectral reflectance image
dataset for generating synthesized data and use them for
training and evaluating our model. The results of simula-
tions and real experiments demonstrate that the proposed
method is able to outperform state-of-the-art spectral illu-
mination estimation methods, and that it generalizes well to
a wide variety of scenes and spectra.

1. Introduction
As an intrinsic physical property of materials, spectral

reflectance is a rich information source for a wide range of

vision tasks, including object recognition and material re-

production, as well as man technical and scientific imaging

problems. However, the acquisition of accurate spectral re-

flectance images requires an extra per-image calibration to

compensate for the illumination conditions in the scene, for

example with a known reference [21] or a dedicated mea-

surement device [2]. Unfortunately this calibration is gen-

erally cumbersome and frequently fails in complex lighting

situations with multiple, different illumination sources.

A practical solution is estimating the illumination spec-

tra from captured multispectral images and separating the

reflectance and illumination spectral for further purpos-

es. This illumination estimation problem is highly under-

determined; thus, regularizations are required to constrain

the solution to satisfy the image priors of multispectral re-

flectances and illumination. Recently, many approaches

have been studied to estimate illumination spectra. Most

of them either utilize the statistics of multispectral images

or extract the specular reflection component to estimate illu-
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Figure 1. The framework of our spectral reflectance and illumina-

tion estimation method.

mination spectra, but don’t sufficiently consider the image

priors of multispectral reflectance and illumination. There

are also some attempts applying convolutional neural net-

works (CNN) to estimate illumination spectra. However, in

our opinion, such methods are not flexible to adapt to var-

ious illumination spectra, and they are limited in the lack

of large image datasets. Moreover, to the best of our knowl-

edge, none of the existing methods can handle multiple illu-

minants in multispectral images. These limitations motivate

us to build a large image dataset of multispectral reflectance

and put forward a flexible illumination estimation method

based on deep neural network (DNN).

Our method leverages a multispectral image dataset

synthesized by using real spectral reflectance images and

illumination spectra to train the network, as shown in

Fig. 1. We cast the illumination estimation problem as

a constrained matrix factorization problem, and propose

an optimization-inspired unrolling multi-stage network to

solve the problem. Our network can achieve more accurate

estimation than previous methods by training on the synthe-

sized dataset and utilizing the non-local prior of reflectance

images, and the low-rank and total-variation (TV) prior of

illumination spectra. The contributions of this paper can be

summarized as follows:

• We present a new take on constrained matrix factor-

ization using a multi-stage loop-unrolled neural net-



work to solve the multispectral illumination estimation

problem. Our data-driven method explicitly learns the

non-local prior from the real captured reflectance im-

ages and improves the estimation accuracy with a low-

rank and a TV regularization on illumination spectra.

The proposed method significantly outperforms exist-

ing approaches.

• We present the first work to handle both single-global

illumination and multiple illumination estimation for

multispectral images. Both simulations on synthesized

multispectral images and experiments on real images

show the high flexibility, effectiveness, and general-

ization ability of our method.

• We build the largest existing spectral reflectance im-
age dataset consisting of 400 high-quality multispec-

tral images, providing a general-purpose benchmark

for the illumination estimation model’s training and e-

valuation.

2. Related Works
Recently, many efforts have been made to study color

constancy of a trichromatic RGB image [6, 19, 30, 26, 13,

1, 31] and illumination spectral estimation [17, 18, 16, 15,

28, 35, 24]. As for the task of illumination spectral esti-

mation, most of the previous methods are inspired by color

constancy methods, and can be divided into statistics-based

and learning-based approaches.

Statistics-based methods A number of proposed meth-

ods are based on statistical properties of captured scenes,

and estimate illuminantion spectra by exploiting the priors

from such assumptions. In the color constancy problem,

some classical methods assume that illuminantion color can

be directly obtained from the average response of the whole

captured images (Gray-World) [6], from the pixel which has

the maximum spectral response (Max-RGB) [19], or from

the edge pixels in the captured images (GrayEdge) [30].

These assumptions also hold and perform well in spectral

illumination estimation problem [17, 18]. With these as-

sumptions, the intensity of each wavelength channel of the

spectral power distribution (SPD) function is estimated sep-

arately. The limitation of such methods is they usually re-

quire high spectral diversity in the scene, and tend to fail

in scenes with less diversity. Some others assume that the

specular reflection in the captured images can provide in-

formation of scene illumination [16, 28], but they rely on

non-Lambertian surfaces for extracting the specular com-

ponent. In addition, the low-rank property of spectral re-

flectance is also exploited to constrain the separation of il-

lumination and reflectance spectra [35]. However, exclu-

sively relying on a single assumption is limited and insuf-

ficient for accurate spectral illumination estimation in gen-

eral scenes. Moreover, most of these methods are applied

by using fixed set of hyperparameters, and the estimation

accuracy is sensitive to the choice of hyperparameters and

the specific imaging scenes.

Learning-based methods Illumination color is estimated

via deep learning in the great majority of recent color con-

stancy methods [26, 13, 1, 31]. Taking advantage of large-

scale image data with ground truth illumination color, these

methods can generally achieve higher accuracy with respect

to statistics-based methods.

To extend the use of learning-based model to multispec-

tral domain, a CNN-based method [24] exploits multi-scale

retinex model as the front-end network and estimate the il-

lumination spectrum using a CNN. However, the main dif-

ficulty in applying the above learning-based methods to the

multispectral domain is the lack of large-scale image data

sets of multispectral images with ground truth illumination

spectra. Moreover, since the dimensionality of spectral illu-

mination is much higher than that of 3-channel color illumi-

nation, previous CNN-based methods tend to have difficul-

ties generalizing to illumination spectra that differ from the

training set. Therefore, building large-scale data sets and

designing more flexible network architectures are the two

critical challenges in estimating illumination spectra using

deep learning. Recently, optimization-based loop-unrolled

network have been used with excellent results on various

sensing matrix in image restoration tasks [33, 20]. In this

paper, considering the high dimensionality of illumination

spectra, we will adopt a unrolling network architecture to

deal with the illumination estimation problem.

Most of the above methods assume uniform illumina-

tions across the scene and only focus on estimating a

single-global illumination. Multiple illumination estima-

tion can handle spatially varying illumination in more gen-

eral scenes.

Multiple illumination estimation A straightforward s-

trategy to handle multiple illuminations is to cluster pix-

els into superpixel regions according to the possible illu-

mination and the associated reflectance [10], and then ei-

ther apply single-illuminantion estimation methods [9] or

seek for references in the dataset [14] to estimate pixel-wise

illumination locally. Other clustering-based methods esti-

mate local illumination first and exploit conditional random

field [4] and factor graph [23] to optimize their global dis-

tribution. The success of these methods demonstrates that

clustering can help to improve multi-illumination estima-

tion. In addition, some methods [12, 7] impose constraints

on the number of lights that illuminate the scene or on the

smoothness of the varying illuminations across the scene,

which can boost the performance of illumination and re-

flectance separation since the reflectance usually has a much

higher diversity than the illumination in both the spatial and

the color domain. Deep learning-based methods [5, 27] for



the problem are also proposed recently. Our method is in-

spired by the thought of clustering and the used constraints

in the above multiple illumination estimation methods to

deal with multiple illuminations. We will start with the

problem formulation to introduce our multispectral illumi-

nation estimation model.

3. Methodology
3.1. Problem formulation

Let us consider a multispectral image I taken from a mul-

tispectral camera with a resolution of m×n×c, where m×n
denote the spatial resolution of the image, and c denotes the

number of spectral channels in the image. Our method rep-

resents the multispectral image as a two-dimensional mn×c
matrix and aims to decompose it into a per-pixel illumi-

nation spectrum L and a per-pixel spectral reflectance R,

both of which are also represented as matrices of dimen-

sion mn × c. That is, I = L �R, where � represents the

Hadamard product.

It is worth noting that our goal is to handle both single-

global illumination and multiple illumination estimation. In

the case of single illumination estimation, the illumination

spectra vector L is treated as a rank-one matrix that all pix-

els share the same spectrum. While in the case of multiple

illumination estimation, we need to estimate pixel-wise il-

lumination spectra for the image.
Our method regards the illumination estimation as a con-

strained matrix factorization problem:

min
L,R

1
2
||I− L�R||2F + ηr||L||∗ + ηt||L||TV +Q(R),

s.t. L ≥ 0,0 ≤ R ≤ 1,
(1)

where Q(R) denotes a non-local prior of reflectance R,

||L||∗ denotes the nuclear norm of L as a low-rank denois-

ing regularizer of illumination in the spectral dimension,

||L||TV denotes the total variation (TV) regularizer of illu-

mination in the spatial dimension which is defined as the in-

tegral of the absolute gradient, ηr and ηt denote the weight-

ed parameters. The use of a non-local regularizer for re-

flectance takes into account non-local data redundancy and

is motivated by existing RGB illumination estimation meth-

ods that cluster image regions for more robust and accurate

estimation as mentioned in Sec. 2. In the image processing

field, the total variation regularizer penalizes the spurious

detail while preserving the edges in images [25]; the low-

rank regularizer aims at reconstructing images with only a

few basis[29]. The low rank regularization for illumination

is added because scenes are usually illuminated by only a

few distinct illumination sources thus the illumination ma-

trix can be presented as a low dimensional linear combina-

tion of spectra; and the TV regularization is for estimating s-

moothly varying illumination in spatial dimension. Note the

estimated illumination L is constrained to be non-negative,

and the estimated reflectance R is constrained to be within

the range [0, 1] for physical plausibility.

3.2. Optimization
The ADMM algorithm is adapted to efficiently solve the

above optimization problem. Our goal is to unroll the AD-
MM to a multistage network. By introducing auxiliary vari-
ables M, Lr, Lt, and Rq , Eq. (1) is equivalent to:

min
L,R

1
2
||I−M||2F +Q(Rq) + ηr||Lr||∗ + ηt||Lt||TV ,

s.t. M = L�R, Lt,Lr = L, Rq = R,

Lr,Lt ≥ 0,0 ≤ Rq ≤ 1.

(2)

By converting the constrained optimization problem into an
unconstrained one, the augmented Lagrangian for the above
problem is given by:

Lα0,α1,α2,α3(L,R,M,Lr,Lt,Rq; UM,ULr ,ULt ,URq )

=1
2
||I−M||2F +〈UM,M−L�R〉+ α0

2
||M−L�R||2F +Q(Rq)

+〈URq ,Rq−R〉+ α1
2
||Rq−R||2F +ηr||Lr||∗+ηt||Lt||TV

+〈ULr ,Lr−L〉+ α2
2
||Lr−L||2F +〈ULt ,Lt−L〉+ α3

2
||Lt−L||2F ,

(3)

where UM, ULr , ULt
, and URq are Lagrangian multipliers

representing dual variable, α0, α1, α2, and α3 are weighted

parameters.
To minimize Eq.(3) with respect to these variables, AD-

MM divides the problem of Eq.(3) into subproblems for
each variable and alternatively optimizes the variables it-
eratively. The updates of each variable in the k-th iteration
are given by Eq.(4) and Eq.(6).

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R(k+1)←
L(k)�(α0M

(k)+U
(k)
M

)+α1R
(k)
q +U

(k)
Rq

α0L
(k)�L(k)+α1

,

R(k+1)
q ←arg min

0≤Rq≤1

α1
2
||Rq−R(k+1)+

U
(k)
Rq

α1
||2F +Q(Rq),

M(k+1)← I+α0L
(k)�R(k+1)−U

(k)
M

α0+1
,

U
(k+1)
Rq

←U
(k)
Rq

+α1 (R(k+1)−R(k+1)
q ).

(4)

As can be seen, variables R(k+1), M(k+1), and U
(k+1)
Rq

have
closed-form update rules. Note that there is an inequality
constraint 0≤Rq ≤ 1 exists in the update step of variable
Rq , an auxiliary variable Rq+, a dual variable URq+

, and
the corresponding weighted parameter α4 are introduced for
the nonnegative constraint. The variables are updated as
follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

R′(k+1)
q ←

α1R
(k+1)+α4R

(k)
q++U

(k)
Rq+

−U
(k)
Rq

α1+α4
,

R(k+1)
q ←argmin

Rq

||Rq−R′(k+1)
q ||2F + 2

α1+α4
Q(Rq),

R
(k+1)

q+
←clip

(
R(k+1)

q −U
(k)
Rq+

/α4, [0,1]
)
,

U
(k+1)
Rq+

←U
(k)
Rq+

+α4(R
(k+1)
q −R

(k+1)
q+ ).

(5)

Instead of explicitly giving the regularization model Q(·)
and the proximal operator to optimize Rq , we directly learn
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Figure 2. Our deep unrolling network architecture. Each stage contains a matrix factorization (MF) block and three deep denoising blocks

(Low-Rank, Total Variation, and multi-head transformer).

a solver for the proximal operator with a self-attention neu-

ral network block. In this manner, the spatial-spectral re-

flectance image prior is not explicitly modeled but learned

from the network block. The network block will be intro-

duced in the Sec.3.3.

The update rules for the remaining variables are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(k+1)← (α0M
(k)+U

(k)
M

)�R(k+1)+α2L
(k)
r +α3L

(k)
t +U

(k)
Lr

+U
(k)
Lt

α0R
(k+1)�R(k+1)+α2+α3

,

L(k+1)
r ←arg min

Lr≥0

α2
2
||Lr−L(k+1)+

U
(k)
Lr
α2

||2F +ηr||Lr||∗,

L
(k+1)
t ←arg min

Lt≥0

α2
2
||Lt−L(k+1)+

U
(k)
Lt
α2

||2F +ηt||Lt||TV ,

U
(k+1)
Lr

←U
(k)
Lr

+α2 (L(k+1)−L(k+1)
r ),

U
(k+1)
Lt

←U
(k)
Lt

+α3 (L(k+1)−L
(k+1)
t ),

U
(k+1)
M ←U

(k)
M +α0 (L(k+1)�R(k+1)−M(k+1)),

(6)

Again, variables L(k+1), U
(k+1)
Lr

, U
(k+1)
Lt

, and U
(k+1)
M have

closed-form solutions. Note that both the objective func-

tions of the L
(k+1)
r and L

(k+1)
t constrain them to be nonneg-

ative, thus other two sets of auxiliary variable Lr+ , Lt+ ,
dual variable ULr+

, ULt+
, and the corresponding weighted

parameter α5, α6 are introduced to deal with the nonnega-
tive constraint.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L′(k+1)
r ←

α2L
(k+1)+α5L

(k)
r++U

(k)
Lr+

−U
(k)
Lr

α2+α5
,

L(k+1)
r ←argmin

Lr

||Lr−L′(k+1)
r ||2F + 2ηr

α2+α5
||Lr||∗,

L′(k+1)
t ←

α2L
(k+1)+α6L

(k)
t++U

(k)
Lt+

−U(k)
Lt

α2+α6
,

L
(k+1)
t ←argmin

Lt

||Lt−L′(k+1)
t ||2F + 2ηt

α2+α6
||Lt||TV ,

L
(k+1)

r+
←max

(
L(k+1)

r −U
(k)
Lr+

/α5, 0
)
,

L
(k+1)

t+
←max

(
L

(k+1)
t −U

(k)
Lt+

/α6, 0
)
,

U
(k+1)
Lr+

←U
(k)
Lr+

+α5 (L(k+1)
r −L

(k+1)
r+ ),

U
(k+1)
Lt+

←U
(k)
Lt+

+α6 (L
(k+1)
t −L

(k+1)
t+ ).

(7)

To optimize the associated components L
(k+1)
r and L

(k+1)
t ,

we simply apply the soft thresholding operation T (x, τ) =
max(x − τ,0) x

|x| to each update step respectively. A soft

thresholding function is applied to optimize variable Lr:

Lr
(k+1) ←

c∑
i=1

T (Σi, τ
(k)
rank)UiV∗

i , (8)

where U ΣV∗ is the SVD factorization of matrix L′(k+1)
r ,

and τ
(k)
rank denotes the threshold parameter. Similarly, the

Lt is updated as:

Lt
(k+1)=(1−γ(k))L

(k)
t +γ(k)L′(k+1)

t

+ρ(k)DT
(
T (DL

(k)
t ,τ

(k)
tv )−DL

(k)
t

)
,

(9)

where D is the matrix to calculate the image gradient, ρ(k)

denotes a weighting parameter, and τ
(k)
tv denotes the thresh-

old parameter.

3.3. Unrolled network

Based on the mathematical formulation of the estimation

procedure of the problem, we propose unrolling the opti-

mization to construct a K-stages neural network, as shown

in Fig. 2. The network is trained end-to-end to obey the

basic multiplicative model and exploit the proposed priors

simultaneously. Each network stage, consisting of one lin-

ear matrix factorization block and three denoising blocks,

represents one iteration in the optimization. Compared with

using the parameters with fixed values, relaxing the parame-

ters can accelerate the convergence of the optimization thus

can reduce the amount of iterations. Besides, the optimal

parameters can also help understanding the real contribu-

tion of the blocks in each iteration. We will show the benefit

brought by optimized parameters in the ablation study.

In the matrix factorization block, the variables (L, Lt,

Lr, Lt+, Lr+, R, Rq , Rq+, M, ULt
, ULr

, ULt+
, ULr+

,

URq
, URq+

, UM) are updated with seven trainable parame-

ters αi (i = 0, · · · , 6), according to Eq.(4)(5)(6)(7). The il-

lumination variable Lr and Lt are updated through the low-

rank and TV denoising blocks respectively, with trainable

parameter τrank, τtv , and ρ according with Eq. (8) and Eq.

(9). Therefore, each stages contains ten trainable weight or

threshold parameters.
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Figure 3. The architecture of our multiscale transformer for re-

flectance image denoising. Red dashed line denotes patches ex-

traction and tensor reshaping. m × n × c means c channels with

height m and width n,
(
m
r
× n

r

)
×cr2 means

(
m
r
× n

r

)
extracted

patches with c channels and the spatial resolution r×r. ⊗ denotes

matrix multiplication. ⊕ denotes element-wise addition.

The reflectance variable Rq is updated through the

transformer-based denoising block as shown in Fig. 3.

Transformer is a widely used architecture which adopt-

s nonlocal self-attention mechanism for various vision

tasks [11], and the superiority of the nonlocal attention

on image restoration have been shown in previous litera-

tures [22, 34]. In our network, the multi-head-transformer-

based blocks efficiently search coherent patches from the in-

put reflectance image to extract deep features, cluster them

according to their similarity in a soft manner, and finally im-

prove each patch across different scale to reduce the noise

caused in the optimization. The self-attention mechanism

is both effective and flexible in reflectance image denois-

ing since it can benefit from the redundancy among patches

and have no constraint on the spectral contents; while oth-

er denoising architectures, such as residual convolutional

blocks, despite having hundreds of parameters of the trans-

former, show very little improvement in reflectance image

denoising when embedded in our network.

One difficulty of the factorization method is the exis-
tence of degenerate trivial solutions. To avoid such solu-
tions, most of the previous methods use a cosine similarity
loss of illumination to train or evaluate their models. How-
ever, this loss is sensitive to image noise in low-intensity
pixels. To ensure the robustness of the proposed method
and force the estimated reflectance to satisfy the prior of re-
al reflectance, we choose the weighted combination of mean
square error (MSE) of the scaled estimated illumination and
reflectance as our loss function, expressed as:

L = ||sLe−Lgt||22 + φ1 ||Re/s−Rgt||22 + φ2| log(s)|
with s =

〈Lgt,Le〉
〈Le,Le〉 ,

where s denotes the scale of illumination, φ1 and φ2 denote

the weighting parameters (we set φ1 = 0.2 and φ2 = 0.001
empirically), Lgt and Le denotes the ground truth and es-

timated illumination, Rgt and Re denotes the ground truth

and estimated reflectance. Note that the third term forces

the scale to be 1 as close as possible to enhance the robust-

ness of the network and avoid trivial solutions.

We construct a five-stage unrolling network, which ran

on an NVIDIA GeForce GTX 1080 Ti GPU. We built our

model using Pytorch and trained it up to 40 epochs. For

optimization, Adam is employed with a batch size of 2 and

a learning rate of 3 × 10−4. The computation of a single

image can be accomplished in three seconds.

4. Simulations and Experiments

4.1. Spectral dataset

We captured 400 high-quality multispectral images as

our training reflectance data (see Fig. 4(a)). The images,

consisting of a mixture of indoor and outdoor scenes, are ac-

quired using a compact scanning-based hyperspectral cam-

era: Specim IQ. The captured images have a spatial reso-

lution of 512 × 512 pixels and 204 spectral bands ranging

from 400nm to 1000nm. From these images we synthesized

a large training set with a range of different simulated illu-

mination conditions.

To prepare the data for training, the reflectance spectrum

at each pixel is computed from the measured multispectral

image using a white reference chart. We uniformly sampled

the spectra in the visible range from 400nm to 700 nm in-

to 10 nm intervals, resulting in a total of 31 channels. We

then cropped the reflectance images into 256× 256 subim-

ages to remove the white reference surface. We normalized

the multispectral reflectance in the range of [0,1], and final-

ly randomly selected 320 reflectance images for generating

the training set and tested our method’s performance on the

remaining 80 images. Each set has a balanced number of

indoor/outdoor scenes.

To synthesize the multispectral images under various

simulated illuminations, we constructed our spectral illu-

mination dataset by collecting the SPDs of standard illu-

minants, some artificial light sources from public dataset-

s1, and solar lights from public datasets2. Some samples

are shown in Fig. 4(b). To avoid over-fitting, we excluded

some similar SPDs, selected 40 representative spectra illu-

minations to generate our training set, and selected the other

ten spectral illuminations to generate the test set.

We synthesized the multispectral images dataset by ran-
dom multiplication of the reflectance images and the SPDs
of illuminations. Both single-global illumination and mul-
tiple illumination estimation are simulated. In the case of
single illumination estimation, we directly multiplied the
SPD of a single illumination by a reflectance image to sim-
ulate a captured multispectral image. While in the case of
multiple illumination estimation, we first randomly chose

1 http://galileo.graphycs.cegepsherbrooke.qc.ca/
app/fr/lamps

2http://www.nrel.gov/grid/solar-resource/assets
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Figure 4. (a-b) Representative samples of our dataset. The RGB images are rendered under CIE standard illuminant D65 with the CIE 1964

10◦ standard observer. (c) The operation of synthesizing spatially varying illumination.

three illumination spectra li(i = 1, 2, 3) from the illumina-
tion dataset, and generated three random two-dimensional
sine-based functions wi(x, y) for the spatial distribution of
each illumination. The random spatial distribution function
represents the contribution of each illumination, which is
defined as:

wi(x, y) =
Aisin(ωi1(x+pi1))sin(ωi2(y+pi2))

(ωi1(x+pi1))(ωi2(y+pi2))
(10)

where A, ω, p is the random intensity, frequency, phase

respectively. We normalized the spatial distribution func-

tions wi to w̄i and ensured the sum of the each contribution

be a constant, here we let the sum of the normalized func-

tion
∑

i=1,2,3 w̄i = 1. Our spatially varying illumination is

generated by the linear combination of the three illumina-

tion spectra as shown in Fig. 4(c). Finally we synthesized a

large amount of multispectral images by multiplying the re-

flectance image with the generated illumination for training

and evaluation.

To quantify the estimation accuracy of the methods, we
respectively calculated absolute error ΔS and angular error
ΔA between the ground truth illuminant lg and the esti-
mated illuminant le. The two errors are commonly used in
previous work:

ΔS = ||lg − le · 〈lg ,le〉
〈le,le〉 ||1, ΔA = arccos

( 〈lg,le〉
||lg ||·||le||

)
.

4.2. Ablation study

To sufficiently investigate the contribution of trainable

weight parameters and each denoising block (LR: low-

rank, TV: total-variation, NL: nonlocal self-attention trans-

former) in our unrolling network, we carried out six abla-

tion simulations for estimating multiple illumination on our

dataset. The quantitative results are shown in Table 1.

The results show that the trainable parameters can bring

15 percent absolute error reduction compared with using

fixed values of parameters. It is also evident that the TV and

LR are the two most crucial regularizers in our simulation.

The possible reason is that the two regularizers explicitly

constrains the illumination spectra estimation. Combining

all the three regularizers, our method leads to a significant

improvement in reconstruction quality.

In the ablation study, we attempt to replace the trans-

former in each stage by using a residual block (resblock)

which consists of ten 3× 3 convolution layers and two skip

connections. However, the resblock is largely ineffective in

our optimization framework, which indicates that the block-

s only considering local information are not suitable to deal

with the denoising of reflectance images in our model.

Table 1. Ablation Studies for multiple illumination estimation.

MF TV LR NL
ΔS ΔA

mean std mean std

fixed fixed fixed × 4.23 2.36 0.29 0.23

� × � � 4.35 2.02 0.34 0.27

� � × � 4.21 2.44 0.35 0.26

� � � × 3.63 1.90 0.25 0.19

� � � resblock 3.50 1.85 0.24 0.18

� � � � 2.84 1.37 0.21 0.15

4.3. Single global illumination estimation

Estimating a single, global illumination spectrum is a tra-

ditional problem that assuming the illumination spectrum

distributes uniformly on the captured image. Our approach

can be directly applied to estimate global illumination by

performing an average pooling on the estimated illumina-

tion spectral cube, without resorting to additional learning.

We compared our method with five existing methods,

including GrayEdge [17], LRMF [35], ISNL [28], and P-

WIR [24]. Specifically, GrayEdge is a variant of a classical

color constancy method; LRMF and ISNL either ultilize the

low rank prior of spectral reflectance or extract the spec-

ular reflections to estimate global illumination; PWIR is

a CNN-based method finding the illuminant-invariant fea-

tures in images. Although PWIR can predict full-resolution

images of illumination, it actually uses bicubic interpolation

to achieve the goal, so we classify PWIR as a single global

illumination estimation method.

In the simulation, we compared the five methods with

ours on the two synthesized datasets generated using our

multispectral reflectance images and the CAVE multispec-



Figure 5. Comparison of the five single-global illumination estimation methods. Top: the rendered RGB images of captured multispectral

images. (Left to Right: bicycles, paintings, wall, potatoes, drinks) Bottom: the SPDs of estimated illumination spectra and ground truth.

tral dataset [32] respectively. Fig. 5 shows the comparisons

of the estimated SPDs of the five methods on our dataset.

Our method performs best, regardless of whether the spec-

tra are smooth or have sharp spikes. To our surprise, the

classical GrayEdge method outperforms many of the more

recent methods, but it is unable to match the performance

of our method, especially when estimating smooth illumi-

nation spectra. Although the CNN-based method PWIR is

trained with more parameters than our method, it fails in

most of the cases. We believe this is because the CNN has

difficulties in generalizing to different spectra other than the

ones it has been trained on. We can also observe that ISNL

performs poorly in purely diffuse scenes (e.g. third column

in Fig. 5), and the performance of LRMF is not stable and

highly dependent on the choice of hyperparameters.

Table 2. Comparison of single-illumination estimation methods.

Datasets Methods
ΔS ΔA

mean std mean std

Ours

GrayEdge 2.29 2.42 0.20 0.14

LRMF 4.34 5.40 0.42 0.41

ISNL 3.96 3.06 0.35 0.20

PWIR 3.52 0.62 0.49 0.37

Proposed 1.80 1.33 0.16 0.11

CAVE

GrayEdge 2.48 2.40 0.32 0.26

LRMF 2.81 2.60 0.35 0.27

ISNL 3.72 2.47 0.40 0.29

PWIR 4.62 1.62 0.61 0.37

Proposed 1.87 1.40 0.28 0.24

Table 2 shows the estimation error of the five methods a-

long with the error statistics (mean and standard deviation).

The PWIR and our method are trained on our dataset and

are tested on both datasets to evaluate the generalization a-

bility. The estimation accuracy of our method shows signif-

icantly superior results to others irrespective of the dataset

used. PWIR performs worse on the CAVE dataset than on

our dataset. Together with the low variance of the error on

our dataset this again suggests overfitting of the PWIR CN-

N, and difficulties with generalization to other scenes.

4.4. Multiple illumination estimation

Since there is no existing multiple illumination estima-

tion method for multispectral images besides PWIR, we

compared our method with two state-of-the-art multiple il-

lumination estimation methods for RGB images, by trans-

forming their method from RGB domain to spectral domain.

The two methods are BUTD [8] and AngularGAN [27], in

which BUTD is a method extracting color-invariant struc-

ture in RGB images and mapping colors based on statistic-

s, and AngularGAN is a pixel-to-pixel GAN-based method

with a U-net generator. We trained and compared the three

methods on our dataset and CAVE dataset.

Table 3. Comparison of multi-illumination estimation methods.

Datasets Methods
ΔS ΔA

mean std mean std

Ours

BUTD 4.25 1.21 0.41 0.37

angularGAN 3.77 0.96 0.38 0.30

Proposed 2.84 1.37 0.21 0.15

CAVE

BUTD 4.06 1.54 0.48 0.35

AngularGAN 3.89 1.16 0.41 0.29

Proposed 2.65 1.22 0.31 0.16

As shown in Table 3, the estimated error of our method

is significantly less than those of others. It is worth noticing

that our method even shows competitive results compared

to the results of other methods in the single-illumination es-

timation case. The amount of parameters of our method

is only one-tenth of that of AngularGAN. Acting like an-

other ordinary CNN-based method (PWIR) in the single-

illumination estimation, AngularGAN performs more sta-

ble than others but also easier to get overfitting.

A comparison of illumination estimation angular error

is visualized in Fig. 6. We show the angular error by ren-

dering the estimated reflectance to RGB images with a s-
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Figure 6. Top: RGB images rendered from synthesized multispectral image, and the estimation angular error of the three methods. Bottom:

RGB images rendered from spectral reflectance image of ground truth and the estimated reflectance images estimated by the three methods.
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Figure 7. The comparisons of the estimated illumination spectra and reflectance images. Both scenes were illuminated by two full-

spectrum lamps with filters. We show the estimated spectra of the five illumination estimation methods at the positions of two crosses in

each scene. The reflectance images are rendered to RGB images for visualization.

tandard D65 illumination. Our reflectance images show

a more uniform appearance that indicates a more accurate

multiple-illumination estimation. We can also observe that

the estimation accuracy of BUTD is highly dependent on

the choice of parameters, and it may introduce deviated

color artifacts; while AngularGAN cannot handle spatially

varying illumination well.

4.5. Experiments on Real Images

We compared our method with two single-illumination

methods(GrayEdge and MaxSpec[17]) and two multiple-

illumination estimation methods (BUTD and AngularGAN)

on real multispectral images captured under more than one

illumination. The used multispectral camera is also Specim

IQ with spatial resolution 512×512. The used light sources

include sunlight, halogen lamp, and LED lamp. We added

color filters in front of these light sources to increase the

diversity of the illumination spectra. To obtain the ground

truth of illumination spectra, we attached a few white refer-

ences on the objects of each captured scene.

Two comparisons of the estimated spectral plots and the

RGB images rendered from estimated reflectance images

are given in Fig. 7. Exploiting non-local denoising prior, our

method provides more accurate and clean results than An-

gularGAN and BUTD, and performs much better on large

patches with the same spectral reflectance which is chal-

lenging in illumination estimation problem. It is also ev-

ident that our method provides the most stable estimation

results as the color(spectral reflectance) of the background

wall are consistent in the two scenes.

5. Conclusion

We present an end-to-end unrolling network architec-

ture for solving multispectral illumination estimation prob-

lem. Unlike previous methods, our method can handle both

single-global illumination and multiple illumination estima-

tion, and significantly outperforms previous methods due to

the utilized denoising prior. The promising performance

of the proposed method on synthesized and real images

showed its effectiveness, flexibility, and generalization a-

bility. We constructed a large spectral reflectance image

dataset for training and evaluating, and the community can

use it for future training and analysis work. In the future,

we will enlarge the spectral reflectance image dataset, and

explore the use of hardware encoding [3] to apply spectral

illumination estimation to general imaging systems.
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