
Supplemental Material for:
Curriculum Learning for ab initio Deep Learned
Refractive Optics
Xinge Yang1, Qiang Fu1, and Wolfgang Heidrich1,*

1King Abdullah University of Science and Technology (KAUST), Saudi Arabia
*Corresponding author: wolfgang.heidrich@kaust.edu.sa

Supplementary Note 1 Technical Details of Differentiable Ray-tracing

Object image Lens Sensor Sensor image
(flipped)

Supplementary Figure1. Our ray-tracing imaging system. The imaging system consists of a 2D RGB image, an optical lens, and an
image sensor. Optical rays start from sensor pixels and pass through the lens. When optical rays hit the object image, we do bilinear
interpolation to calculate the color of each ray and simulate the sensor image.

Differentiable ray tracing1,2 provides a perspective on optical design by directly optimizing the final image quality.
As shown in Fig. S1, we use a ray tracing technique to simulate the sensor image. Optical rays start from sensor
pixels and propagate through the lens via a sequence of intersection and refraction with the lens surfaces. When rays
intersect with the 2D object image, we calculate the color of each ray by interpolating the ray position. Then we do
Monte-Carlo numerical integration to simulate the sensor image. The ray tracing rendering process is designed to be
continuous and differentiable, so we can back-propagate the image error to learn the lens parameters like curvature
and position.

An optical ray can be expressed as

ray = (o,d, λ), s.t. ||d||22 = 1, (1)

where position o and direction d are 3D vectors and d is normalized to have unit length. The wavelength λ is a float
number that is used to take into account the dispersion of the optical lens. We discrete the full spectrum into three
wavelengths (486 nm, 587 nm, and 656 nm) in our experiments. At the beginning of the differentiable ray tracing
process, we sample rays from sensor pixels. Please refer to Supplementary Note 3 for detailed experiment settings.

The ray propagation within the lens can be decomposed into a series of intersections and refractions with each
optical surface. Note that differentiable ray tracing can be used for any type of continuous surface, but in our
experiments, we mainly consider aspheric surfaces

z(r) =
r2

R

(
1 +

√
1− (1 + κ) r2

R2

) + α2r
2 + α4r

4 + · · · ,
(2)

where the optic axis is presumed to lie in the z axis, and z(r) is the sag — the z-component of the displacement of

the surface from the vertex at distance r =
√
x2 + y2 from the axis. R is the radius of curvature (roc), and we often

use its reciprocal curvature c in the practice. κ is conic, and the polynomial coefficients αi describe the deviation of
the surface from the axially symmetric quadric surface. In subsequent calculations, for the sake of generality, we will
use the shorthand notation

S(x, y, z) = 0. (3)

The intersection position of a ray and an optical surface can be solved by

o′ = I(o,d,S) ⇐⇒
{

o′ = o+ d · t
S(o′x, o′y, o′z) = 0

, (4)

where o, d represent the original position and direction of the incident ray, and o′ represents the intersection position,
as shown in Fig S2a. Especially, for a spherical surface where k and αi equal to 0 in Eq. (2), an explicit solution
exists for Eq. (4). But for an aspheric surface where an explicit solution does not exist, we have to iteratively find
the root by Newton’s method. The pseudo-code is shown in Algorithm 1.

Algorithm 1 Newton’s method to solve intersection equation

t← t0
while N < N0 do

t← val(t) ▷ Validation check
o← o+ d · t ▷ Update point
s← S(ox, oy, oz) ▷ Surface residual
dsdt← S ′(ox, oy, oz) · (ȯx, ȯz, ȯz) ▷ Surface derivative using chain rule
δt← min(s/dsdt, δt0) ▷ Newton step bound
t← t− δt ▷ Newton iteration

end while
o′ ← o+ d · t

The implementation of Newton’s method Algorithm 1 follows2, while a validation check is added during Newton’s
iteration to improve the stability of the calculation. Due to the spherical part of aspheric surfaces, the (x, y)
coordinates have a valid range. If the updated (x, y) exceeds this range, a NaN error will be generated, and both the
forward and backward passes will be crashed. Therefore, each time before updating o, we do a validation check and
then update only those points that are valid. In the experiment, we use a small δt0 (usually 3) to constrain the step
size of Newton’ s method, because the shape of the aspheric surface usually changes very drastically. To reduce
memory consumption during the calculation, the first N0 − 1 iterations are executed without gradient tracking. We
only track the gradient information at the last iteration, which is the same as2. Even though the gradient calculated
with this method is biased, experimental results show that it can lead to final convergence and success.

When passing through the boundary of two different mediums, the optical ray will refract and change direction,
as shown in Fig. S2a. This refraction process can be formulated by Snell’s law

d′ = R(o′,d,S) ⇐⇒
{

n = ∇S
n× d′ = µ(λ)n× d,

, (5)

where n is the surface normal vector, d′ represents the refractive direction. µ(λ) is the refractive index related
to medium material and wavelength. The refractive index can be calculated by empirical dispersion formulas like
Sellmeier equation3,4

2/29

µ2(λ) = 1 +
B1λ

2

λ2 − C1
+

B2λ
2

λ2 − C2
+

B3λ
2

λ2 − C3
, (6)

where B1, B2, B3, C1, C2, C3 are Sellmeier coefficients of the material.
Solving Eq. (5) yields an explicit expression of d′

d′ =
√
1− µ(λ)2 [1− (n · d)2]n+ µ(λ)[d− (n · d)n]. (7)

It is worth noting if d and n are normalized then d′ is also normalized. We encourage readers to refer to5,6 for
derivation of Eq. (7).

a

Intersection and refraction

Ray from
sensor

Aggregate

Pixel 2

Pixel 3 Pixel 4

Pixel 1b

Inverse interpolation

Supplementary Figure2. Three calculation steps in differentiable ray tracing. The differentiable ray tracing process consists of a
series of intersections and refractions, and finally interpolation on the object image. a Blue curve. In forward pass, the ray (o,d) intersects the
lens surface(o′) and is refracted(d′) as it passes through the surface. Red curve: In the backward pass, the back-propagated gradient updates
the lens surface to control the intersection position(o′′) and the output ray direction(d′′). b In forward pass, we interpolate the intersection
position(o) on the object image to obtain the color of each ray. In the backward pass, the image error is back-propagated and the ray is directed
to the correct pixel (o′, red arrow).

After passing through the lens, the ray propagates to the object plane. We do a bilinear interpolation on the 2D
object image to calculate the color of the ray

B(o, I) =
[
1− ωi, ωi

] [I(0, 0), I(0, 1)
I(1, 0), I(1, 1)

] [
1− ωj

ωj

]
, (8)

where I is the 2D object image, and o is the intersection position on the object plane, as shown in Fig. S2b. We
gather neighboring four pixels of the intersection point and do interpolation to calculate the illuminance of the ray.
ωi, ωj are the horizontal and vertical distance from the intersection point to pixel I(0, 0). Although a 2D image
is not an accurate representation of a real 3D scene, it has been shown to be useful for many depth-independent
applications1,7–9. We simulate the sensor-captured image with Monte-Carlo numerical integration.

Ĩ(s, t) =
1

spp

spp∑
k=1

B(ok(s, t)), (9)

where Ĩ is the simulated sensor image, (s, t) is the pixel coordinates. The sensor has the same resolution as the
object image, and we scale the physical size of the object image so the simulated image can cover the full sensor and
align with the object image pixel-by-pixel after a flipping operation. For detailed experimental implementations,
please refer to Supplementary Note 3.

In Eq. (9), only valid rays will contribute to the simulation, so the sensor image will be slightly darker than
the object image, especially at the corner. However, this vignetting effect does not provide valid gradients in
backpropagation, so we only average on valid rays to remove vignetting. Combining Eqs. (4), (5), (8) and (9), we get

3/29

Ĩ = B (RMIMRM−1IM−1 · · ·R1I1(o,d), I) , (10)

where M is the number of optical surfaces. Eq. (10) suggests that the forward rendering process can be decomposed
in a sequence of continuous and differentiable operations, which allows us to back-propagate gradients from image
pixels to the lens parameters. In the back-propagation, the ray position o and direction d work as intermediate
variables to pass the gradient between the different surfaces, as shown in Fig. S2a-b. Gradients from sensor pixels Ĩ

with respect to the lens parameters θ, i.e. ∂Ĩ
∂θ , can be computed via

∂Ĩ

∂θ
=

∂Ĩ

∂o

∂o

∂θ
+

∂Ĩ

∂d

∂d

∂θ
. (11)

We developed our differentiable ray tracing model based on2, while a lot of implementation details are optimized
for better performance. Till now, the most basic differentiable model can be used to design lenses, and we can
directly minimize the pixel-level difference between the object image and the simulated image. The loss function can
be then written as

L = ∥Ĩ − I∥22. (12)

Ideally, the rays from the sensor pixels will converge to the corresponding pixel in the object plane. Thus, in
backpropagation, the gradients push the rays toward the correct pixel. The backpropagation can be understood like
this: the interpolation gradients guide the rays to move toward the correct pixels, and interpolation and refraction
gradients bend the optical surfaces to control ray directions. It is worth noting that, although Eq. (8) requires the
ray to fall into the correct square for correct gradients, the low-frequency information in the image can also guide
the ray to move towards the correct direction when it falls outside.

4/29

Supplementary Note 2 Proposed Methods for Differentiable Ray-tracing
The basic differentiable ray tracing approach proposed in1,2 cannot address the significant memory consumption

problem during the optimization of compound lenses with high-resolution images. Additionally, the pixel-based
image loss consistently corrects lens distortion during optimization, which is not always desired, especially when
designing lenses with a large FoV. In this section, we introduce several new features to tackle this issue, including
adjoint rendering, shape correction, and distortion relaxation.

Supplementary Note 2.1 Adjoint Rendering
Memory consumption has long been a problem for differentiable ray-tracing rendering. While existing methods

either compute adjoint derivatives in the forward pass10,11, recompute the optical path12, or simply use small sensor
resolution and spp1. The adjoint derivative calculation method10,11 can greatly reduce memory consumption, but
its implementation is not flexible. In particular, if we change learnable parameters or experimental settings, we
have to recalculate the adjoint derivative. Like12, we propose a so-called “adjoint rendering” approach to solve the
memory problem, while being easy to implement and applicable to any different optical system.

See Fig. S3, where adjoint rendering separates the backpropagation process to reduce memory consumption
without affecting gradients. Like12, the core idea is to re-do the differentiable raytracing to compute the lens
gradient. In practice, we first simulate the sensor image and feed it to the downstream reconstruction network
without recording the gradient information during ray tracing. This step is called “prime rendering”. We then learn
the network parameters by backpropagating the loss function and obtaining a delta image that captures the gradient
of the sensor image. Next, we repeat the differentiable raytracing and back-propagate the delta image to learn the
lens parameters.

Another strategy for saving memory in differentiable raytracing is to divide the rendered image into small
patches and render these patches separately. The optical rays do not interact with each other and intersect the
lens independently, so the total gradient is the sum of the gradients of each ray. This strategy allows us to perform
differentiable ray tracing for high-resolution sensors.

Object image Designed lens Simulated image Reconstruction network Reconstructed image

Forward
Backward

Loss

Loss

Object image Optimized lens Image gradient

Image gradient Optimized network Reconstructed image

a

c

b

Supplementary Figure3. Three stages in the adjoint rendering method. a Prime rendering. At this stage, we perform ray tracing
without tracking gradient information. We simulate the sensor image and feed the image into the reconstruction network. b We back-propagate
image errors to optimize network parameters and capture image gradient (delta image). c Adjoint rendering. We re-render differentiable
raytracing with gradient tracking, then back-propagate the delta image to optimize the lens gradient.

Supplementary Note 2.2 Shape Correction
Due to the instability of the aspheric surface, abnormal geometries such as self-intersections often occur during

training. Avoiding abnormal shapes is necessary for two main reasons: First, abnormal geometries cannot be

5/29

manufactured. Second, rays arriving at abnormal surface areas can back-propagate large gradients, leading to
training crashes. To solve this problem, we used three methods. First, surface radius trimming after each epoch.
Second, an obliquity regularization loss penalizes rays with large angles of incidence. Third, a thickness control loss
to avoid self-intersection.

After each epoch, we trim the radius of each surface. The radius of the surface cannot be optimized during
training, but a large radius usually causes abnormal shapes at the edge and affects the computation of Newton’s
method. Experimental results show that a reasonable radius makes the training process more stable by reducing the
variance. To find a suitable radius for each surface, we first calculated the minimum radius that allows all valid rays
to pass, and then slightly expanded the radius by 5%. This small expansion allows the rays to move towards the
“invalid” regions in the next training.

The obliquity regularization loss can also help to avoid abnormal shapes. It works as follows: the obliquity
regularization loss forces the surface to bend perpendicular to the incident rays so that the surface shape does not
change excessively over the range of the ray distribution. Experimental results show that the obliquity regularization
loss can help to achieve both a smooth surface shape and a smooth ray path, avoiding self-intersection.

Another thickness control loss is used to avoid self-intersection. Specifically, we focus on the self-intersection on
the axis and on the edge. We maximize the thickness loss:

Lthickness =

M−1∑
i=0

min(zi+1(ri+1)− zi(ri), d0), (13)

where z is the surface height (sag) at the distance r, d0 is the hard thickness constraint, and M is the number of
lens surfaces. When zi+1(ri+1) − zi(ri) is larger than d0, this loss function will return all zero gradients. When
zi+1(ri+1) − zi(ri) is smaller than d0, the thickness loss will maximum zi+1(ri+1) − zi(ri) by adjusting the lens
parameters. On the axis, ri+1, ri = 0, we do not allow two surfaces to overlap, so d0 = 0. At the edge, ri+1, ri are
determined by the previous radius trimming operation. We do not want the two surfaces to intersect, and we should
also keep some space for manufacturing, so we can set d0 to a small positive value.

2, pre-warp. “torch.nn.functional.grid_sample”

Gound truth Object image Optical lensLens distortion Simulated sensor image

1, ray-tracing from object space

Supplementary Figure4. Distortion relaxtion in differentiable ray traing. To get distortion-free sensor simulation, first we calculate
the geometric distortion by ray tracing from the object space. For example, if the lens has a barrel distortion, we can get the barrel distortion map
shown in the figure. Then we use the distortion map to resample the ground truth image, which is implemented with the PyTorch built-in
torch.nn.functional.grid sample function. The corresponding resampled image will present a pincushion distortion, which is the
inverse of the barrel distortion. We use this “pre-warpped” image as the object image for image simulation. During the ray-tracing-based
rendering process, two distortions will cancel out and the simulated sensor image will contain no distortion.

Supplementary Note 2.3 Distortion Relaxation
In order to relax distortion and enhance control over other optical aberrations during optimization, it is desirable

to eliminate gradients resulting from distortion effects in back-propagation. Two approaches are available for this
purpose: distorting the object image or undistorting the sensor image. In our experiments, we opted to pre-distort
the object image to avoid the need for an intermediate undistortion operation in the end-to-end pipeline.

To apply distortion to the object image, we trace the chief ray for each sensor pixel and utilize the final position on
the object plane as the reference for each sensor pixel. A straightforward approach is to warp the object image to match
these reference points; however, this forward warping technique is challenging to implement. Instead, we propose an

6/29

alternative method of resampling the inverse mapping table. Specifically, we sample rays from the object plane,
track them to the sensor plane, and compute the centroids of the rays to resample the object image. The resampling
operation is notably simpler to implement using the PyTorch function torch.nn.functional.grid sample.
It is important to note that if the lens exhibits barrel distortion, the size of the pre-distorted object image should be
increased.

7/29

Supplementary Note 3 Implementation Details of Automated Lens Design
Supplementary Note 3.1 Ray Sampling

When sampling rays from the image sensor, it is imperative to sample both their origin and direction.
For the origin sampling, we regard sensor pixels as points rather than squares, with rays originating from these

points. During training, these rays are optimized, converging to the corresponding points on the object image.
Consequently, the pixel-level image error matches the geometrical RMS error, ensuring that the gradient is accurately
interpreted. Notably, since the sensor image and the object image are symmetrical relative to the lens’s optical center,
aligning the simulated image with the ground truth image on a pixel-by-pixel basis requires a specific approach. If
we take the top-left point as the reference I(0, 0) in bilinear interpolation, then we should represent the sensor pixel
using the bottom right point during ray sampling. Failing to do this will result in a one-pixel misalignment between
the simulated sensor image and the object image, compromising optical performance metrics like the PSNR value.

Regarding direction sampling, we aim to enhance sampling efficiency and boost convergence speed. To achieve
this, we first determine the exit pupil and subsequently sample points on it. The exit pupil, a virtual aperture in an
optical system, is derived via ray tracing in our experiments. We then connect the sensor pixels to the sampled
pupil points, normalizing the vectors to determine ray directions. If the number of samples per pixel (denoted as
spp) is insufficient for uniform sampling across the pupil plane, we partition the exit pupil into regions of equal area
and execute random sampling within these regions. For instance, when sampling 32 rays per pixel, we segment the
exit pupil into 8 regions, drawing 4 points from each.

For each epoch, we maintain consistency by using the same set of rays. However, in the subsequent epoch, rays
are resampled. This approach not only minimizes the overall sampling duration but also introduces variance during
training. It’s also worth noting that during adjoint rendering, there is no need to reset the pseudo-seed, as referenced
in12. Instead of regenerating the same set of rays, they can simply be stored and reused.

Supplementary Note 3.2 Object Image and Distortion
The physical size of the object image should be scaled so that the simulated image can cover the entire sensor

area, as shown in Fig. S1. The scale factor is calculated from the optical parameters and is fixed during training. In
the beginning, we have no idea of a good design, so we assume that both the first and second principal points13 is at
the origin (the center of the first lens surface). Then the scale factor is α:

α =
d tan(θ)

r
, (14)

where d is the depth of the object image, r is half the diagonal length of the sensor or the image height, and θ is half
the FoV. If the focal length is given instead of the image height, we can use FoV to convert the focal length to the
image height.

At the beginning of training, we employ a static scale factor (perspective) and prohibit distortion. As a result,
each sensor pixel retains a consistent reference in the object plane. Rays emanating from these sensor pixels are
honed to converge upon these reference points. This robust “hard” reference addresses the challenge of traditional
methods not converging during the initial stages of training.

During the fine-tuning phase, and with a solid design already in place, we can leverage ray tracing to determine
a more precise scale factor. To do this, we sample rays from the sensor, trace them through to the object plane and
ascertain the scale factor by computing the ratio between the sensor coordinates and the object plane coordinates.
To mitigate distortion’s influence, our sampling focuses primarily on the sensor’s central region. Experimental
findings indicate an approximate difference of ∼ 2% between the scale factors derived from both methodologies.
Additionally, in the fine-tuning phase, we allow for some degree of distortion, affording us enhanced control over
other optical aberrations.

To facilitate interpolation for edge pixels, we pad the object image by one pixel. We have observed that this
padding can markedly elevate the optical performance of edges in the final outcome. Absent this padding, the rays
at the edges remain suboptimal. It’s worth noting that certain images feature expansive solid-color regions, often
in the background. These homogeneous expanses fail to yield sufficient gradients, leading the training to become
entrapped in local minima. To counteract this issue, we introduce minor wavelet noise into the training images.

Supplementary Note 3.3 Dataset
We employ the DIV2K dataset14 for our experiments. Nonetheless, any image can serve as training data, as long

as it encompasses a sufficient mix of high and low-frequency information. We remain indifferent to the semantic

8/29

content. While we have experimented with random sinusoidal and Gaussian noise for training purposes, we found
them less effective compared to authentic images. The DIV2K dataset comprises 800 training images and 200 test
images. For each training epoch, we crop and resize these images to align with the sensor’s resolution. Given that
some images have extensive solid color backgrounds, we introduce a minimal amount of wavelet noise. We simulate
the RGB channels individually using distinct ray wavelengths, later integrating them to produce the final simulated
image. For optimization, we chose the AdamW optimizer15, and for adjusting the learning rate, we utilized the
CosAnnealing learning rate scheduler15. Each training phase is initialized with a unique learning rate. Throughout
the training, we typically maintain a batch size of 8.

Supplementary Note 3.4 Automated Lens Design Implementation
Beginning with several planes, we optimize an imaging lens autonomously. The optimization variables encompass

curvature (c), the conic term (k), polynomial terms (αi), and position (d). However, the number of lens elements and
the material designated for each lens element are predefined and remain constant. We select from frequently used
plastic materials suitable for smartphone lenses, including PMMA, COC, POLYSTYR, POLYCARB, OKP4, and
OKP4HT. Another strategy for material selection could involve using proven combinations from existing patents. As
our optimization hinges on the sensor image, we employ design targets like image height in lieu of focal length, along
with FoV and aperture size. To mitigate chromatic aberration, we segment the full spectrum into three wavelengths
(486 nm, 587 nm, and 656 nm) and simulate corresponding image channels.

Random starting point 80.8°, F/2.074.1°, F/2.162.8°, F/2.447.5°, F/2.8 80.8°, F/2.0

Supplementary Figure5. An automated lens design example with curriculum learning. Starting from several planes, we first design
a relatively simple lens (47.5◦, F/2.8), then gradually increase FoV and aperture size to the final target (80.8◦, F/2.0).

For example, consider the design of a 6-element lens with a FoV of 80.8◦, an image height of 7.66 mm, and
F/2.0. For a lens composed of 6 elements and polynomial terms ranging from α2 to α12, there are 108 optimizable
variables (9 per surface for 12 surfaces). As illustrated in Fig. S5, we leverage the curriculum learning approach
to design the lens in stages. Initially, our design objective is a FoV of 47.5◦ and F/2.8. Given the moderate
design complexity at this stage, we can achieve a commendable design simply through weight masking and angle
regularization. During this phase, we disregard sensor noise and vignetting to maintain accurate gradients. After
each epoch, lens shape corrections are made to address invalid surfaces and self-intersections. Here, the adopted
parameters are an image resolution of 256×256, an spp of 32, and a batch size of 16. Subsequently, we elevate the
target FoV, F-number, and sensor resolution while retaining the same sensor size. Concurrently, lens thickness
is reduced to ensure a seamless optical path. Given that the design challenges incrementally rise at each step, a
satisfactory design is always attainable. Ultimately, we escalate the design parameters to the initial goals of FoV
80.8◦ and F/2.0. These stages constitute the main training. During main training, various learning rates such as
lrc = 1e−4, lrk = 1e−1, lrd = 1e−4, and lrα2

= 1e−4 are employed, with an exponential decay of 0.1 for higher
polynomial terms (lrα4

= 1e−5, lrα6
= 1e−6, and so forth). The angle regularization term incorporates a weight

factor of 4, and each stage is trained for 100 epochs. It’s pertinent to highlight that the design path in the curriculum
can be fairly flexible, the only constraint being that the incremental difficulty should be manageable.

Post establishing the FoV and aperture size to the design objective, a fine-tuning phase is initiated to further
elevate imaging performance. During this phase, distortion constraints are relaxed and angle regularization is omitted.
All learning rates are slashed by a factor of 0.1, and the results are fine-tuned at a high resolution (2048×2048) over
50 epochs.

Supplementary Note 3.5 PSF Calculation
After lens design, we evaluate the optical performance with the point spread function (PSF) which characterizes

the optical lens response to a point source of light. Ray tracing through optical lenses is a well-established technique
for obtaining a more accurate point spread function (PSF)2,16–18. This involves tracing a group of rays from a

9/29

point source through the lens group to the sensor plane, resulting in a spot diagram. We can then convert the spot
diagram into sensor pixels and obtain the PSF by:

PSF(op) =

spp∑
k=1

uk · σ(|(op − ok) · êx|/L) · σ(|(op − ok) · êy|/L), (15)

where op denotes the coordinate of the pixel, and ok represents the intersection point of the kth ray with the sensor
plane. The variable spp stands for “samples per pixel”, corresponding to the number of rays emitted from each
point source, which is set to 2048 in our experiments. We assume that the energy of each ray, denoted by uk, is
equal to 1. êx and êy are unit vectors in the sensor plane, and L denotes the physical width of a sensor pixel. The σ
function is defined as:

σ(x) =

{
1− x 0 ≤ x ≤ 1

0 otherwise
, (16)

which assesses a ray’s impact on its surrounding pixels, with a greater impact attributed to rays in closer proximity.
The total impact of a ray on the four surrounding pixels sums to one. By leveraging sub-pixel information, the
σ function can more accurately represent the actual light distribution using a limited number of samples. A
visualization of PSF calculation is presented in Fig. S6.

Spot diagram PSFOptical lens

Ray from
blue object

Spread out

Sensor pixel 2

Sensor pixel 3 Sensor pixel 4

Sensor pixel 1

Supplementary Figure6. PSF calculation with spot diagram. The intersection points of the rach light ray are divided into pixel bins to
calculate the PSF. In our experiments, we does not use the PSF for image simulation, instead, ray tracing from sensor pixels is used to simulate
the sensor image. The PSF is calculated for evaluation purposes only.

10/29

Supplementary Note 4 Additional results for automated lens design
Supplementary Note 4.1 Optical Performance Evaluation for Lens Design Example in Main Paper Fig. 1d

In Fig. S7, we present the optical performance evaluation for each intermediate step in the automated lens design
process (Fig. 1d in the main paper). Throughout the optimization, the RMS spot size consistently decreases until it
reaches a minimal value in the final design. The intermediate designs do not necessarily exhibit optimal optical
performance, as the curriculum learning strategy aims to guide the automated lens design process toward finding a
successful lens design pathway. In the last step, we relax the geometric distortion and fine-tune the lens to achieve
the best optical performance. For the final design, it reaches an RMS spot error of less than 11 µm across various
incident fields. This demonstrates promising optical performance, especially considering that our optical lens was
designed automatically from scratch without any human intervention.

11/29

80
.8

°,
F/

2.
0

74
.1

°,
F/

2.
1

62
.8

°,
F/

2.
4

47
.5

°,
F/

2.
8

80
.8

°,
F/

2.
0

In
cr

ea
se

 F
oV

R
ed

uc
e

F-
nu

m
be

r
In

cr
ea

se
 F

oV
R

ed
uc

e
F-

nu
m

be
r

In
cr

ea
se

 F
oV

R
ed

uc
e

F-
nu

m
be

r
R

el
ae

x
di

st
or

tio
n

Supplementary Figure7. Optical performance evaluation at each intermediate step. The RMS spot size of the lens decreases
throughout the optimization, reaching a promising small value in the final design.

12/29

Supplementary Note 4.2 Automated Lens Design Results for Main Paper Table 1
In Table 1 in the main paper, we conduct an experiment to evaluate the effectiveness of different settings in the

curriculum learning strategy. We select 20 random initial structures for automated lens design. The final designs
from various experiments are presented in Fig. S8, S9, S10, and S11.

The basic differentiable ray tracing method, as presented in dO2, fails to produce successful lens designs without
self-intersection. This failure can be attributed to the need for careful control of highly aspheric lens surfaces.
Introducing an optical regularization loss can help mitigate self-intersection issues, but the final designs may still
suffer from local minima, particularly when large FoV optical rays fail to converge effectively.

The lens design curriculum, however, proves beneficial in guiding the automated lens design process to learn
how to create high-performance lenses from scratch. Nevertheless, challenges persist, such as the occurrence of
degenerated structures like self-intersection. By combining the lens design curriculum with the optical regularization
loss, the automated lens design process can acquire the capability to design high-performance lenses from scratch.

Furthermore, when integrating the lens design curriculum, optical regularization loss, and re-weighting mask, the
automated lens design process demonstrates even better results in designing high-performance lenses from scratch.
This combination results in improved convergence of optical rays in the final designs, leading to lower Avg RMS
spot sizes.

13/29

Curriculum Optical regularization Re-weighting mask

Supplementary Figure8. Automated lens design results using the lens design curriculum, but without optical regularization or
re-weighting mask. Through the progressive increase in lens design task difficulty, the curriculum learning approach can master the design of
high-performance lenses from scratch. However, the lens design process may encounter issues, such as degenerated structures like
self-intersection.

14/29

Curriculum Optical regularization Re-weighting mask

Supplementary Figure9. Automated lens design results using optical regularization, but without lens design curriculum or re-weighting
mask. By incorporating the optical regularization loss, the design process can prevent self-intersection. However, the final designs may
encounter local minima issues, where large FoV optical rays do not converge effectively.

15/29

Curriculum Optical regularization Re-weighting mask

Supplementary Figure10. Automated lens design results incorporating both lens design curriculum and optical regularization, but
without a re-weighting mask. By integrating the lens design curriculum with the optical regularization loss, the automated process can efficiently
design high-performance lenses from scratch.

16/29

Curriculum Optical regularization Re-weighting mask

Supplementary Figure11. Automated lens design results incorporating lens design curriculum, optical regularization, and re-weighting
mask. By integrating these three elements, the automated lens design process is enabled to design high-performance lenses from scratch. This
results in better convergence of the optical rays in the final designs, leading to a reduced Avg RMS spot size.

17/29

Supplementary Note 4.3 A Lens Design Example for 16 Mega-pixel Cellphone Camera

a

c d

b

Supplementary Figure12. Optical analysis of a lens designed by our proposed method. a Lens model with light path. b Simulated
raw captured image at 10 m. The distortion of the image has been corrected in post-processing. c MTF curve of the lens (raw capture) at three
fields. d Spot diagram of three wavelengths at three fields. a,c and d are generated in ZEMAX, and b is simulated raw capture by ray-tracing
based rendering.

Supplementary Table1. Lens data for Fig. S12a.

Surface Radius Thickness Material Semi-diameter Conic α2 α4 α6 α8 α10 α12

1 -93.39 0.433 OKP4 0.800 0.670 0.036 -0.025 -2.876e-3 1.813e-4 3.413e-4 2.614e-4

2 26.52 0.469 1.005 10.410 0.030 -0.014 -1.216e-3 1.000e-4 1.338e-4 -1.586e-4

3 44.08 0.742 PMMA 1.385 3.850 0.072 0.011 -4.667e-4 -1.098e-4 -5.147e-5 -3.879e-6

4 -57.87 0.779 1.465 3.110 -0.052 -6.448e-3 -1.720e-4 -1.775e-5 2.290e-5 4.234e-6

5 33.161 0.618 COC 1.680 5.390 0.027 -2.181e-3 -2.211e-4 9.789e-6 1.997e-5 1.051e-5

6 -26.34 0.344 1.705 2.880 -0.064 -7.112e-4 1.139e-4 1.056e-4 3.191e-5 4.570e-6

7 564.58 0.799 POLYCARB 1.705 2.880 -0.044 -9.870e-3 -5.598e-4 -1.048e-6 1.395e-5 6.905e-6

8 266.52 0.726 1.845 2.880 -0.031 -1.119e-3 -4.588e-4 1.341e-5 2.773e-5 9.080e-6

9 -165.24 0.812 POLYCARB 1.925 0.140 -0.077 -8.639e-3 -5.004e-4 1.284e-6 1.225e-5 2.554e-6

10 -122.50 0.750 2.335 0.170 -0.023 -5.448e-3 -5.920e-4 -3.270e-5 6.387e-6 5.237e-6

11 -20.66 1.168 OKP4 2.440 3.040 -0.103 -2.630e-3 -2.310e-4 1.100e-6 6.402e-6 2.819e-6

12 27.78 1.109 2.985 3.040 -3.607e-3 -5.133e-3 -1.604e-4 2.693e-5 2.499e-6 -3.392e-7

Sensor 3.500

Specifically, we present a 6-element smartphone lens designed using our curriculum learning approach, as
illustrated in Fig. S12. At the optimization’s outset, all lens surfaces are initialized to be nearly flat and are randomly
positioned. For each lens surface, we optimize curvature, position, conic, and polynomial terms from α2 to α12.
During differentiable ray tracing, sensor noise and the vignetting effect are disregarded as they might distort the
correct optical gradients for lens design tasks. The entire process takes about 24 h (main training: ∼8 h; fine-tuning:
∼ 12 h) on a single A100 GPU.

As seen in Fig. S12a, the designed lens bears a resemblance to the shapes of commonly used commercial
smartphone lenses, even though no prior knowledge or human intervention was incorporated during the entire
training process. The design targets are a focal length of 7.00 mm, FoV 57.3◦, and F/4. The lens boasts a total
thickness of 8.68 mm, an effective focal length of 6.47 mm, and a back focal length of 2.73 mm. Furthermore, the lens
has a FoV of 56.8◦, an image height of 7.00 mm, and a numerical aperture of F/4. To assess the optical performance
of our designed lens, we conducted analyses using simulated images and optical objectives. As depicted in Fig. S12c

18/29

and d, the MTF value of the central field at 100 lp/mm stands at 54%. Across the full FoV zone, the MTF value
at 100 lp/mm exceeds 50% in the sagittal plane and 40% in the tangential plane. At 200 lp/mm, the MTF value
surpasses 20% in the sagittal plane and 10% in the tangential plane. The RMS spot radius for three fields (0,
0.707FoV, and FoV) measures 2.004 µm, 2.482 µm, and 2.489 µm, respectively, which is sufficient for 16-megapixel
imaging. This indicates that the entire FoV can be imaged with exceptional clarity. Fig. S12b showcases the
simulated sensor image of the USAF-1951 resolution test target from a distance of 10 m, with magnified details.
Post-processing corrected the distortion in the simulated image. Notably, the lens can discern the finest lines on the
resolution chart, which have a physical separation of approximately 5 cm at a 10 m distance. Table. S1 lists detailed
data for the lens. Four materials were randomly chosen for the lens’s construction.

19/29

Supplementary Note 4.4 More Automated Lens Design Examples
Extensive experimental results demonstrate that our proposed curriculum learning strategy can design compound

imaging lenses from scratch without any external intervention. We provide additional examples (Fig. S13 to S18) of
lenses designed using our approach. The FoV, F-number, and image height are set as design targets.

Supplementary Figure13. Automated lens design example 1.

Supplementary Figure14. Automated lens design example 2.

Supplementary Figure15. Automated lens design example 3.

20/29

Supplementary Figure16. Automated lens design example 4.

Supplementary Figure17. Automated lens design example 5.

Supplementary Figure18. Automated lens design example 6.

21/29

Supplementary Note 5 Additional Results for EDoF Lens Design
Supplementary Note 5.1 End-to-end Training for Computational Lens Design

Supplementary Figure19. End-to-end training pipeline. We jointly optimize the EDoF lens and the image reconstruction network to
produce clear images within the extended depth range. A similarity loss is used to help get depth-independent imaging results. A pixel and a
perceptual loss are used for the best output quality.

To design a computational lens from scratch, we first design an imaging lens and then design the computational
lens based on it. Following the idea of curriculum learning, the difficulty increments at each step are not too large.
For EDoF imaging, two options are adopted: the first is to use an odd polynomial surface in front of the lens, and
the second is to replace an aspheric surface with a hybrid aspheric-odd polynomial surface:

z(r) =
r2

R
(
1 +

√
1− (1 + κ)r2/R2

) + α2r
2 + α4r

4 + · · ·

︸ ︷︷ ︸
aspheric

+

n∑
i=1

(aix
2i+1 + biy

2i+1)︸ ︷︷ ︸
odd-polynomial

,
(17)

where only ai and bi are optimizable lens parameters during the End2End training. It is worth noting that our
differentiable ray tracing can apply to any type of refractive surface, so it can also handle this hybrid surface.

The implementation details and experiment settings mirror those used in automatic lens design. As illustrated
in Fig. S19, we first simulate sensor images and then input these images into the image reconstruction network.
During the end-to-end training stage, we overlook factors like sensor noise, vignetting effects, and the ISP process,
as they typically are not relevant in the lens design phase. Valid lens design gradients are drawn from the optics and
network components, not from sensor noise and other disturbances. These latter elements can skew optimization by
providing biased and imprecise gradients. Our loss function for EDoF imaging is defined as:

L =
∑
d ̸=d′

Lsim(Ĩd, Ĩd′) +
∑
d

[
ω1Lraw(Ĩd, I) + ω2Lrecon(Īd, I)

]
, (18)

where I, Ĩ and Ī represent the object image, simulated image, and reconstruction results, respectively. Hyperpara-
meters ω1 and ω2 are used to balance different loss terms. In our experiments, we set ω1 and ω2 both to 0.1. At
this stage, we optimize all optical and network parameters to learn similar image simulations across varying depths
(Lsim), while also achieving the best simulation quality (Lraw) and the compatibility with the downstream deep
network (Lrecon). In our experiments, we employ the SSIM loss as the similarity loss (Lsim) and the simulation loss
(Lraw). For the reconstruction loss (Lrecon), we use the l2 loss as the pixel loss and the SSIM loss as the perceptual
loss19, which can be written as:

Lrec(Īd, I) = Lpixel(Īd, I) + βLpercep(Īd, I), (19)

where β is set to 0.01 in our experiments. To conserve memory, we randomly select two depths in each iteration
to simulate images as captured by the sensor, as illustrated in Fig. S19. In our experiments, we set α = 0.01 and
ω = 0.2. The initial learning rates are 1e−3 for a1 and b1, 1e

−4 for a2 and b2, and so forth. The initial learning rate

22/29

Supplementary Table2. Reconstruction results of hybrid-surface EDoF lens with manufacturing and
assembling errors.

Lens 100 mm 150 mm 200 mm 300 mm 500 mm 1000 mm 3000 mm 5000 mm 10000 mm

Designed 32.6755/0.9302 33.7975/0.9451 34.2992/0.9501 34.4033/0.9502 34.0311/0.9450 33.4260/0.9363 32.8742/0.9277 32.6502/0.9250 32.5214/0.9230

Lens #1 31.0528/0.9136 33.4283/0.9415 34.1620/0.9488 34.3636/0.9502 34.1408/0.9468 33.6104/0.9395 33.1089/0.9321 32.956/0.9302 32.8651/0.9288

Lens #2 32.1467/0.9267 33.5937/0.9440 34.1018/0.9490 34.1354/0.9485 33.7225/0.9427 33.0772/0.9334 32.4779/0.9241 32.3189/0.9216 32.1836/0.9195

Lens #3 31.1665/0.9155 33.4640/0.9421 34.1638/0.9491 34.3428/0.9502 34.1158/0.9467 33.5688/0.9392 33.0844/0.9320 32.9689/0.9302 32.8792/0.9288

Lens #4 30.7496/0.9099 33.3371/0.9409 34.0920/0.9485 34.2843/0.9498 34.0514/0.9463 33.5043/0.9389 33.0102/0.9315 32.8932/0.9298 32.8002/0.9283

Lens #5 30.2268/0.9033 33.1305/0.9377 33.9421/0.9466 34.1381/0.9479 33.9063/0.9445 33.3598/0.9371 32.8657/0.9297 32.7487/0.9280 32.6557/0.9265

Avg (#1 ∼ #5) 31.0685/0.9138 33.3907/0.9412 34.0923/0.9484 34.2528/0.9493 34.0074/0.9454 33.4241/0.9376 32.9094/0.9299 32.9771/0.9282 32.8768/0.9264

Designed: designed lens without manufacturing and assembling errors.
Lens #1 ∼ #5: designed lens with random manufacturing and assembling errors.
Avg (#1 ∼ #5): average of lens #1 ∼ #5.

for the network stands at 1e−4, and we operate with a batch size of 2. We conduct end-to-end training of the lens
and network for 50 epochs which usually reaches convergence.

After end-to-end lens design, we fix the optical lens and fine-tune the network for the best performance. During
this network fine-tuning phase, we incorporate white Gaussian noise with a standard deviation σ of 0.001. We
also account for manufacturing and assembly errors by introducing minor perturbations to the lens data. The
perturbations are added to the lens parameters. This approach aims to train our network to be more resilient to
such deviations, thereby enhancing the robustness of our proposed models. We fine-tune the network for 100 epochs
with a learning rate of 1e−4 and a batch size of 8.

Supplementary Note 5.2 Manufacturing and Assembly Error Analysis
To simulate common manufacturing and assembly errors, we intentionally introduce perturbations to each optical

surface of the designed lenses. During the network inference stage, we use these perturbed optical lenses for image
simulation, and then measure the reconstruction scores on these images that include errors.

Specifically, for aspherical surfaces, we add perturbations to lens radius r, curvature c, conic term κ, and
aspherical coefficients ai. For cubic-phase plate and hybrid surface, we add perturbations to the odd-polynomial
coefficients ai and bi. The tolerance for each lens parameter is 0.1% of the designed value. Also, for cubic-phase
plate and hybrid-surface, we add a random rotation to the lens element to simulate the assembly error. The rotation
angle is randomly sampled from [−0.5◦, 0.5◦]. To address the random rotation of lens elements, instead of rotating
the lens element itself, we rotate the incident ray positions (o) before calculating intersections and refractions. This
step is equivalent to lens element rotation. After calculating the intersection and refraction, an inverse rotation of
the ray positions is performed to transform the ray positions back.

Since we can not determine the exact manufacturing and assembly errors for each individual lens in practice, we
use the network model trained for the designed lens to infer various perturbed lenses. The reconstruction results are
shown in Table 2, Table 3, and Table 4. For each lens design, we adopt five randomly perturbed lenses. From the
tables, it can be seen that the reconstruction scores of the perturbed lenses are close to that of the designed lens,
indicating that our network model is robust to manufacturing and assembly errors. Despite the perturbations, the
reconstruction scores of our end-to-end designed EDoF lenses still surpass those of the classical lens.

Moreover, a recent literature20 has demonstrated that the network fine-tuning process can further improve the
robustness of the network to manufacturing and assembly errors.

23/29

Supplementary Table3. Reconstruction results of cubic-phate EDoF lens with manufacturing and
assembling errors.

Lens 100 mm 150 mm 200 mm 300 mm 500 mm 1000 mm 3000 mm 5000 mm 10000 mm

Designed 32.0099/0.9261 33.3354/0.9439 33.8960/0.9494 33.6368/0.9466 33.1517/0.9409 32.7427/0.9353 32.4182/0.9294 32.2786/0.9272 32.0809/0.9246

Lens #1 31.5875/0.9215 32.9741/0.9410 33.6576/0.9477 33.5991/0.9464 33.1891/0.9414 32.7503/0.9356 32.3865/0.9297 32.3236/0.9282 32.2129/0.9264

Lens #2 30.4876/0.9072 32.3885/0.9356 33.3038/0.9454 32.9684/0.9423 32.4918/0.9363 32.1868/0.9315 31.7732/0.9252 31.7718/0.9247 31.7723/0.9241

Lens #3 31.4464/0.9197 33.0145/0.9412 33.8236/0.9488 33.7070/0.9474 33.2757/0.9423 32.8973/0.9372 32.5033/0.9313 32.4721/0.9303 32.4154/0.9291

Lens #4 32.0993/0.9279 33.4115/0.9447 33.7945/0.9487 33.4122/0.9447 32.8987/0.9384 32.4339/0.9319 32.0954/0.9253 31.7913/0.9212 31.4626/0.9169

Lens #5 31.9709/0.9263 33.282/0.9437 33.8197/0.9488 33.6507/0.9465 33.2122/0.9412 32.7502/0.9351 32.4411/0.9292 32.2497/0.9265 32.0089/0.9235

Avg (#1 ∼ #5) 31.5183/0.9205 33.0141/0.9412 33.6798/0.9479 33.4675/0.9455 33.0135/0.9399 32.6037/0.9343 32.2399/0.9281 32.1217/0.9262 31.9744/0.9240

Designed: designed lens without manufacturing and assembling errors.
Lens #1 ∼ #5: designed lens with random manufacturing and assembling errors.
Avg (#1 ∼ #5): average of lens #1 ∼ #5.

Supplementary Table4. Reconstruction results of classical lens with manufacturing and assembling
errors.

Lens 100 mm 150 mm 200 mm 300 mm 500 mm 1000 mm 3000 mm 5000 mm 10000 mm

Designed 31.4607/0.9226 34.2714/0.9580 34.1254/0.9531 32.8962/0.9367 32.1205/0.9242 31.1501/0.9075 30.4399/0.8932 30.2852/0.8898 30.1525/0.8868

Lens #1 30.4772/0.9078 33.6510/0.9533 34.4451/0.9559 33.2116/0.9400 32.3808/0.9277 31.3939/0.9117 30.6132/0.8973 30.4688/0.8942 30.3643/0.8919

Lens #2 29.0654/0.8819 32.6723/0.9447 34.4144/0.9562 33.2945/0.9413 32.4438/0.9289 31.5162/0.9142 30.7168/0.9000 30.5615/0.8970 30.4489/0.8947

Lens #3 30.0509/0.9051 33.3331/0.9513 34.2381/0.9543 33.0049/0.9386 32.1829/0.9262 31.2061/0.9103 30.4861/0.8961 30.3314/0.8928 30.2089/0.8899

Lens #4 29.3774/0.8892 32.5609/0.9444 34.0301/0.9537 33.0577/0.9394 32.3563/0.9283 31.4991/0.9139 30.7834/0.9007 30.6361/0.8978 30.5303/0.8955

Lens #5 30.9026/0.9140 34.2108/0.9573 34.6455/0.9569 33.2503/0.9401 32.4280/0.9278 31.4272/0.9118 30.6519/0.8977 30.5078/0.8946 30.4083/0.8924

Avg (#1 ∼ #5) 29.9747/0.8996 33.2856/0.9502 34.3546/0.9540 33.1638/0.9399 32.3584/0.9278 31.4085/0.9124 30.6503/0.8984 30.5011/0.8953 30.3921/0.8931

Designed: designed lens without manufacturing and assembling errors.
Lens #1 ∼ #5: designed lens with random manufacturing and assembling errors.
Avg (#1 ∼ #5): average of lens #1 ∼ #5.

24/29

450nm 500nm 550nm 600nm 650nm 700nm

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

750nm

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

10cm/0° 10cm/23° 10cm/33°

10m/0° 10m/23° 10m/33°

20cm/0° 20cm/23° 20cm/33°

ED
oF

 le
ns

C
la

ss
ic

al
 le

ns

Supplementary Figure20. Spectrum analysis of PSFs at different depths and view angles. Top: PSF at different depths and view angles
of the EDoF lens presented in the main paper. Bottom: PSF at different depths and view angles of the classical lens presented in the main paper.

Supplementary Note 5.3 Spectrum Analysis
In our experiment, we employ three wavelengths to represent the full spectrum for EDoF training. This choice is

motivated by the fact that commercial cameras typically use RGB image sensors, and the majority of image datasets
utilized in deep learning contain only RGB images. A rigorous evaluation of optical performance across different
wavelengths is provided in this section. The corresponding PSFs at varying depths and view angles are showcased in
Fig. S20. Observing that the PSFs across different wavelengths are alike, suggests that the EDoF lens can generate
consistent image simulations irrespective of the wavelength. Consequently, we contend that using three wavelengths
as a representation of the full spectrum for EDoF training is justifiable. This approach substantially streamlines the
experiment and curtails computational costs without markedly compromising simulation accuracy.

Supplementary Note 5.4 Comparison Between Hybrid and Cubic Plate EDoF Lenses
Conventional EDoF studies21,22 utilizing cubic phase plates have demonstrated the capability to extend the

depth of field. However, these studies typically idealize optical lenses as thin lenses without aberrations, necessitating
a narrow FoV and small aperture size. This idealization does not hold in our context, where optical aberrations,
particularly off-axis aberrations, are significant in lenses with a wide FoV and larger aperture size. These off-axis
aberrations necessitate a more precise control over the cubic phase plate’s height profile to achieve EDoF within a
relatively large FoV. This is the reason for us to use of an odd-polynomial term of higher order than the conventional
cubic phase plate.

In our experiments, both the hybrid lens and the cubic phase plate lens are trained using full-resolution images
that cover the entire FoV. Detailed height profiles, along with corresponding lens figures and PSFs at various FoVs
and depths, are presented in Fig. S21. The height profile of the odd polynomial term offers greater degrees of
freedom, particularly for off-axis image regions, despite the differences are small. The PSF figures illustrate that the
hybrid lens provides more uniform PSFs across different depths and FoVs.

To quantitatively evaluate the depth invariance across different FoVs, we measure the RMS error of the
reconstruction results at different depths and image regions. We split the images into “center” and “edge” regions.
In our experiments, the image resolution is 1024×1024, and the “center” region is defined as the central 512×512
pixels. The results are shown in Table S5. The hybrid lens significantly outperforms the cubic plate lens in terms of
the RMS error at “edge” regions, which indicates that the hybrid lens is more robust to off-axis aberrations because
the higher order of odd polynomial term provides more degree of freedom to control the height profile.

25/29

Odd-polynomial term Cubic plate Difference (higher-order term)

10cm / 33°10cm / 23°10cm / 0°

10m / 33°10m / 23°10m / 0°

20cm / 33°20cm / 23°20cm / 0°

10cm / 33°10cm / 23°10cm / 0°

10m / 33°10m / 23°10m / 0°

20cm / 33°20cm / 23°20cm / 0°

a

b

Supplementary Figure21. Comparison between the hybrid and cubic plate EDoF lenses. a Height profiles of the hybrid and cubic
plate EDoF lenses. b Lens figures and PSFs at different FoVs and depths of the hybrid and cubic plate EDoF lenses.

Supplementary Table5. Comparison of RMS errors of “center” and “edge” regions between the hybrid
and cubic plate EDoF lenses.

RMS error (1e−3) 100 mm 150 mm 200 mm 300 mm 500 mm 1000 mm 3000 mm 5000 mm 10000 mm

Hybrid (center) 1.034 0.787 0.677 0.591 0.568 0.631 0.727 0.757 0.781

Cubic (center) 1.174 0.807 0.625 0.579 0.607 0.625 0.683 0.711 0.753

Hybrid (edge) 0.631 0.506 0.462 0.481 0.557 0.654 0.742 0.776 0.798

Cubic (edge) 0.728 0.574 0.541 0.610 0.691 0.760 0.825 0.854 0.891

Supplementary Note 5.5 More qualitative results
In Figs. S22, and S23, we present qualitative results comparing the classical lens, the EDoF lens with a cubic

phase plate, and the EDoF lens with a mixed surface. Each of these lenses is paired with an image processing
network trained to mitigate optical aberrations at varying depths. Among them, the EDoF lens with the mixed
surface demonstrates the best output quality, indicating its ability to image clearly from 10 cm to 10 m. While
the classical lens produces sharp images at the focal depth, but its image quality deteriorates at defocused depths
compared to the EDoF lenses.

26/29

Ground Truth Classical Lens Cubic phate Hybrid surface

S
im

u
la
tio

n
1
0
cm

R
eco

n
stru

ctio
n
1
0
cm

S
im

u
la
tio

n
2
0
cm

R
eco

n
stru

ctio
n
2
0
cm

S
im

u
la
tio

n
1
0
m

R
eco

n
stru

ctio
n
1
0
m

Supplementary Figure22. EDoF results example 1. Photograph by Xinge Yang (CC BY 2.0).

27/29

Ground Truth Classical Lens Cubic plate Hybrid surface

S
im

u
la
tio

n
1
0
cm

R
eco

n
stru

ctio
n
1
0
cm

S
im

u
la
tio

n
2
0
cm

R
eco

n
stru

ctio
n
2
0
cm

S
im

u
la
tio

n
1
0
m

R
eco

n
stru

ctio
n
1
0
m

Supplementary Figure23. EDoF results example 2. Photograph by Xinge Yang (CC BY 2.0).

28/29

References
1. Sun, Q., Wang, C., Qiang, F., Xiong, D. & Wolfgang, H. End-to-end complex lens design with differentiable ray

tracing. ACM Trans. Graph 40, 1–13 (2021).

2. Wang, C., Chen, N. & Heidrich, W. dO: A differentiable engine for Deep Lens design of computational imaging
systems. IEEE Trans. Comput. Imaging (2022).

3. Sellmeier, W. Ueber die durch die Aetherschwingungen erregten mitschwingungen der Körpertheilchen und
deren Rückwirkung auf die ersteren, besonders zur Erklärung der Dispersion und ihrer Anomalien. Annalen der
Physik 223, 525–554 (1872).

4. Tatian, B. Fitting refractive-index data with the Sellmeier dispersion formula. Appl. Opt. 23, 4477–4485 (1984).

5. Jenkins, F. A. & White, H. E. Fundamentals of optics. Indian J. Phys. 25, 265–266 (1957).

6. Fowles, G. R. Introduction to modern optics (Courier Corporation, 1989).

7. Peng, Y. et al. Learned large field-of-view imaging with thin-plate optics. ACM Trans. Graph. 38, 219–1 (2019).

8. Sun, Q., Tseng, E., Fu, Q., Heidrich, W. & Heide, F. Learning rank-1 diffractive optics for single-shot high
dynamic range imaging. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
1386–1396 (2020).

9. Tseng, E. et al. Differentiable compound optics and processing pipeline optimization for end-to-end camera
design. ACM Trans. Graph. 40, 1–19 (2021).

10. Nimier-David, M., Speierer, S., Ruiz, B. & Jakob, W. Radiative backpropagation: An adjoint method for
lightning-fast differentiable rendering. ACM Trans. Graph. 39, DOI: 10.1145/3386569.3392406 (2020).

11. Teh, A., O’Toole, M. & Gkioulekas, I. Adjoint nonlinear ray tracing. ACM Trans. Graph. 41, 1–13 (2022).

12. Vicini, D., Speierer, S. & Jakob, W. Path replay backpropagation: Differentiating light paths using constant
memory and linear time. ACM Trans. Graph. 40, 108:1–108:14 (2021).

13. Smith, W. J. Modern optical engineering: the design of optical systems (McGraw-Hill Education, 2008).

14. Agustsson, E. & Timofte, R. NTIRE 2017 challenge on single image super-resolution: Dataset and study. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017).

15. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017).

16. Kolb, C., Mitchell, D. & Hanrahan, P. A realistic camera model for computer graphics. In Proceedings of the
22nd annual conference on computer graphics and interactive techniques, 317–324 (1995).

17. Côté, G., Mannan, F., Thibault, S., Lalonde, J.-F. & Heide, F. The differentiable lens: Compound lens search
over glass surfaces and materials for object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 20803–20812 (2023).

18. LLC, Z. Zemax User Manual (2021).

19. Johnson, J., Alahi, A. & Fei-Fei, L. Perceptual losses for real-time style transfer and super-resolution. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016,
Proceedings, Part II 14, 694–711 (Springer, 2016).

20. Chen, S. et al. Computational optics for mobile terminals in mass production. IEEE Transactions on Pattern
Analysis Mach. Intell. 45, 4245–4259 (2022).

21. Dowski, E. R. & Cathey, W. T. Extended depth of field through wave-front coding. Appl. Opt. 34, 1859–1866
(1995).

22. Sitzmann, V. et al. End-to-end optimization of optics and image processing for achromatic extended depth of
field and super-resolution imaging. ACM Trans. Graph. 37, DOI: 10.1145/3197517.3201333 (2018).

29/29

10.1145/3386569.3392406
10.1145/3197517.3201333

	Technical Details of Differentiable Ray-tracing
	Proposed Methods for Differentiable Ray-tracing
	Adjoint Rendering
	Shape Correction
	Distortion Relaxation

	Implementation Details of Automated Lens Design
	Ray Sampling
	Object Image and Distortion
	Dataset
	Automated Lens Design Implementation
	PSF Calculation

	Additional results for automated lens design
	Optical Performance Evaluation for Lens Design Example in Main Paper Fig. 1d
	Automated Lens Design Results for Main Paper Table 1
	A Lens Design Example for 16 Mega-pixel Cellphone Camera
	More Automated Lens Design Examples

	Additional Results for EDoF Lens Design
	End-to-end Training for Computational Lens Design
	Manufacturing and Assembly Error Analysis
	Spectrum Analysis
	Comparison Between Hybrid and Cubic Plate EDoF Lenses
	More qualitative results

	References

