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Abstract: We propose a fully differentiable optical design method enabled by curricu-
lum learning. Preliminary results show that our framework is suitable to solve highly non-
convex problems like cellphone lens design. © 2022 The Author(s)

1. Methods

Traditional optical design methods require starting structures from known and successful forms. It’s typically
realized by experienced engineers with constant interventions during the optimization. Recent work in automatic
staring point generation [1] and differentiable ray-tracing [2–5] show a promising potential to solve optical design
problems as an optimization task with neural networks. But they either can only generate spheric lenses or need a
well-designed starting point. In this paper, we optimize a multi-aspheric-lens system without any prior design by
introducing curriculum learning.

The imaging process can be simulated by a backward ray-tracing rendering. Consider an optical system with
only geometric principles. By sampling rays from sensor pixels and sequentially computing intersection and re-
fraction with each optical surface, we can acquire the output rays, and further do rendering in the scene space. The
intersection and refraction processes can be formulated as:

o′ = I (o,d) ⇐⇒
{

o′ = o+d∗ t
S (o′) = 0 , d′ = R(o′,d) ⇐⇒

{
n = ∇S
n×d′ = µ(λ )∗n×d (1)

where o,d denote ray position and direction, I ,R represent intersection and refraction, S is the surface function,
n is the surface normal vector, and µ is the refraction index which is related to the wavelength. After going through
the optical module, rays keep propagating until hitting the scenes. We treat the scenes as all-in-focus RGB images
(“scene image”) which has been proved suitable in the previous works [2, 6] if our target is to train a fixed focus
lens. The illumination of each ray is computed by a bi-linear interpolation among neighbor four pixels,

I(wi,w j) =
[

1−wi wi
][ I(0,0) I(0,1)

I(1,0) I(1,1)

][
1−w j

w j

]
(2)

where I(0,0) denotes the bottom left pixel value, wi,w j denote the horizontal and vertical distances between ray
position and the bottom left pixel. The pixel value of the rendered image is determined by averaging the illumina-
tion of all rays sampled. The whole pipeline of our model is illustrated in Fig. 1 (a), and each stage of the pipeline
can be either computed explicitly or implicitly with Newton iterations. To optimize a photographic lens, we want
to minimize the difference between ground-truth images and rendered images. It is also equivalent to minimizing
mixed optical aberrations, e.g., distortion and coma. In back-propagation, the gradient can be computed by the
chain rule, and we use the auto-diff frameworks like PyTorch to compute the derivatives of each step.

Memory Constraint Differentiable ray tracing requires huge memory for both forward and backward propaga-
tion. The memory constraint has limited the sample-per-pixel (spp) value and rendered image resolution in the
previous works [2, 7]. To settle this, we propose a memory-efficient strategy by separating the forward and back-
ward passes. In the forward pass, differentiable mode is turned off and no intermediate parameters are stored, thus
we can use a higher spp for rendering. In the backward pass, we split images into smaller patches and iterate them
to compute and accumulate gradients.

Curriculum Learning Traditional optical design methods usually start on existing design forms and need expe-
rienced engineers to keep interfering with the optimization. This is because lens design is a highly non-convex
optimization task, and the search space contains lots of local minimums, saddle points, and flat regions. We pro-
pose a curriculum learning method that dynamically adjusts the target region during the training to settle this
challenge. We use a radiative Hamming window to select the region with maximum root-mean-square (RMS)
error, and then apply a higher weight for them in the loss function.
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Fig. 1. Pipeline of our proposed differentiable ray-tracing model. Starting from a randomly generated
design, our model can optimize lens parameters and positions for the best imaging quality. Attention
window is dynamically adjusted for a faster training speed and getting out from local minimums.

2. Experiment Results

To apply our model to cellphone lens design, we first generate a ”flat” starting point with randomly initialized
surface parameters and positions. We use a 1/2.3” sensor with an image height of 7.66 mm and optimize four
pieces of even-order aspheric lenses. For the 1st, 2nd and 4th elements, we use N-PK51 (nd = 1.529, Vd = 76.98),
and for the 3rd element, we use N-LAK34 (nd = 1.755, Vd = 52.3). During training, curvature c, conic term k,
polynomial term parameters ai, and position d of all surfaces are optimized for the best imaging quality. The
polynomial term is set up to the 8th order. The target field-of-view is set to 1.2 rad, which is commonly used in the
commercial cellphone main lens. The F-number is 2.8. We also discretize the full spectrum to three wavelengths
(486 nm, 587 nm, and 656 nm), and render different RGB channels for a more realistic rendering. The final design
and rendered image can be seen in Fig. 1 (b).

3. Conclusion

In this paper, we propose a curriculum learning method and apply it to cellphone lens design. With our method,
we can start without any prior design, constantly update lens parameters, and automatically jump out from local
minima. We envision the proposed method can improve conventional optical design with less human interventions.
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