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1. Relationship to Structure-from-Motion

Inferring depth from distorted views as proposed in
our work shares some similarities to structure-from-motion
(SfM) [4]. SfM utilizes a series of images taken from differ-
ent viewpoints to reconstruct the 3D structure of the scene.
The images are usually taken with a moving camera. The
reconstruction is realized with bundle adjustment, which
jointly estimates camera parameters and scene geometry by
solving a non-linear least square problem. By comparison,
in our problem multiple viewpoints are introduced by the
non-stationary water surface fluctuations, and we propose a
novel differentiable framework to simultaneously estimate
the structure of non-stationary water surfaces and underwa-
ter scene geometry.

The problem we studied differs from SfM mainly in the
following three aspects:

e Camera parameters in SfM can be represented by a
4 x 4 matrix, a low-parameter model with respect to
scene geometry. Since camera parameters are low-
dimensional, they can be estimated by matching fea-
ture points, e.g. SIFT features [2]. On the other hand,
to fully characterize a water surface, the degrees of
freedom can approach the same size as the underwa-
ter scene for choppy water. To estimate water surfaces,
a dense correspondence match is required, which is
prone to error especially when the surface distortion
is strong. Therefore, the estimation of camera parame-
ters is more robust and less ill-conditioned.

e In SfM, the projection from 3D coordinates to the im-
age plane is linear, and the problem could be solved via
a relatively simple minimization formula. This projec-
tion becomes non-linear as the lights pass through a
refractive interface, which makes the problem cannot
be tackled with a scheme similar to bundle adjustment.

e In general, the baseline from moving a camera can be
much larger than that caused by water surface fluc-
tuation. Knowing that small baseline will reduce the
depth estimation accuracy, which is approximately in-
versely proportional [ 1], employing water surface fluc-

tuations for multi-view triangulation is more noise sen-
sitive and theoretically produces scene geometry in
lower depth accuracy.

Nonetheless, our proposed framework, which integrates
ray casting, Snell’s law and multi-time triangulation, along
with the regularization terms for time-varying water sur-
faces and underwater scene geometry, tackles the difficul-
ties arising from a well-studied solution to a SfM problem.
We demonstrated that this novel framework is capable of
recovering fully characterized time-varying water surfaces
and 3D background scenes using a single camera.

2. Implementation Details

The detailed implementation of our proposed differen-
tiable framework is illustrated in Fig. 1. Given the frame-
work with underwater point clouds and time-varying water
surfaces, the loss of the entire model is computed through
forward propagation following the designed pipeline. Af-
terwards, the variables are simultaneously optimized from
the back-propagated gradients from the model loss.

Fig. 2 shows an example of the progression of the loss
function over time, as well as the corresponding geometries
at the beginning, in the middle, and at the end of the opti-
mization process.

Because of the single-view depth-normal ambiguity on
the recovered water surface, the proposed global optimiza-
tion problem is non-convex. Different initializations will
drive the framework to different local minimums. In most
initial points, the framework finds a reasonable representa-
tion of the scenes. However, we did find degenerated cases
with some initializations. As discussed in the manuscript,
the initialization of the underwater scene geometry is a pla-
nar surface with different axial depths. In Fig. 3, we show
the reconstructions with different initial values which yields
similar adequate representations, and also a failure case
with improperly selected initial value. The initial value
should also vary with different reconstruction data.
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Figure 1: The flowchart of our proposed framework (each step is based on the numbered equations presented in the main
manuscript). After providing the framework with the structures of water surfaces (shown here are two time steps for illus-
tration) and the underwater point cloud, the model loss can be computed in a fully-differentiable fashion through multi-stage
procedures. The gradients can be effectively back-propagated in the framework, so that all parameters can be updated in the

same iteration.
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Figure 2: The evolution of the objective function versus iterations for the data shown in Fig. 1 of the main manuscript. The
structures of water surfaces (one frame) and scene geometry are all initialized as planar surfaces. The objective function
is effectively reduced, and accordingly, the parameters are progressively optimized, and yield a good representation of the

scenes after 1600 iterations.

3. Experimental Comparisons
3.1. Water Surface

The primary focus of our work is the reconstruction of
the underwater scene. However, in the process of this recon-
struction, we also estimate the shape of the deforming water
surface. Here, we conduct a simulated quantitative evalu-

ation of this aspect, and compare our method to a SOTA
single-camera fluid reconstruction approach [5]. Similar to
our hardware setup, they use a single camera to capture re-
fractive images of the background pattern, and the structure
of fluid surfaces is estimated by a trained neural network.
Their method simplifies the required equipment as com-
pared to prior work, however, an undistorted frame is still
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Figure 3: The reconstructions from different initial points and also the failure case at a degenerated initialization (top). The
initialization of the underwater scene geometry is a planar surface with different axial depths.

required and serves as reference. For evaluation, the refrac-
tive images are rendered using the sample reference patterns
as employed in [5] and synthetically generated time-varied
water surfaces.

Table 1 shows the quantitative results on the recov-
ered depth and surface normal. We use the root mean
square error (RMSE) and absolute relative error (Abs Rel)
as error metrics for estimated depth, and the root mean
square error (RMSE) and average angular error (AAE)
as error metrics for surface normal evaluation. Angular
error (in degrees) measures the degrees between ground
truth and the estimated surface normal. We find that our
proposed model-based approach outperforms the existing
single-camera fluid estimation method. It reveals that the
temporal regularizer plays a significant role as it explic-
itly models a physical evolution of the water surface over
time, and ties together all frames. The compared method
employs a recurrent neural network module to encourage
temporal consistency, and it may not exactly retrieve the
physical process of fluid flows. We also notice that even
though the water surface is modeled as a cubic b-spline sur-
face, which implicitly enforces the spatial smoothness, we
do find an explicit spatial smoothness term further improves

Table 1: Quantitative results between the true and the esti-
mated water surface.

Depth
Metric
Method RMSE _ Abs Rel
FSRN [5] 0.103 0.087

w/o spatial Loss 0.097 0.079
w/o temporal Loss | 0.129 0.112

w/o both 0.143 0.118
Ours 0.086 0.065
Normal
Metric
Method RMSE _ AAE
FSRN [5] 0.064 433°

w/o spatial Loss 0.038 3.01°
w/o temporal Loss | 0.046  3.27°
w/o both 0.049 3.69°
Ours 0.030 2.21°

the reconstruction.
We also show a qualitative comparison for the recovered
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Figure 4: Qualitative comparisons with FSRN [5] for wa-
ter surface estimation for the data captured in a laboratory
environment. The depth and surface normal are normalized
for fair comparisons. Their method requires an additional
undistorted frame as input. The recovered shapes are overall
consistent, while the reconstruction from ours is smoother
with fewer noise-like features.
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Figure 5: Qualitative comparisons with the modified
FSRN [5] for underwater scene estimation.

water surface between ours and FSRN [5] in Fig. 4. The
results demonstrate that the recovered structures from both
methods are overall consistent. However, our method ex-
plicitly enforces smoothness, and the generated normal map
exhibits fewer noise patterns. This makes our estimation to
be more accord with the physical characteristics. Due to rel-
atively lower estimation accuracy on the water surface for
the compared method, inferring the 3D geometry of the un-
derwater scene is prone to error as demonstrated in Fig. 3
of the main manuscript. We also visualize the reconstructed
point clouds with color-coded depth in Fig. 5.

Table 2: Quantitative results compared with a multi-camera
approach [3] on point cloud estimation.

| Ours | [3]
Number of cameras 1 9
Number of frames 30 60 120 -
AED 0.254 0.233 0.227 | 0.192
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Figure 6: Average Euclidean distance between the true and
the estimated point clouds on synthetic data with varying
wave frequency and wave magnitude (the frequency and
magnitude are normalized with respect to the frequency and
magnitude which provide the best recovery, respectively).

3.2. Underwater Scene

For point cloud reconstruction evaluation, besides the
ablation study we show in the main manuscript, we also
conduct a numerical comparison with a multi-camera sys-



tem [3]. They use a 3 x 3 camera array to capture the scenes
from different viewpoints. We implement their algorithm
for point cloud estimation as no source code is publicly
available. In their system, the parameters for the camera
array are pre-calibrated and the reconstruction solves the
scene geometry only. This is a standard multi-view 3D re-
construction approach which can provide a robust and ac-
curate estimation. The baseline between adjacent cameras
is set to 5 units (this could be 5-20 times larger than us-
ing water distortion for multi-view triangulation). Table 2
shows the numerical comparisons using average Euclidean
distance (AED) as error metric. As expected, using the
multi-camera system with a wide baseline yields a more ac-
curate 3D geometry reconstruction, but it heavily relies on
the acquisition system, which is expensive to build and cal-
ibrate such a system. We also show qualitative comparisons
in Fig. 7.

We conduct another synthetic experiments with varying
wave frequency and magnitude. The reconstruction error
of the estimated point clouds is shown in Fig. 6. When the
wave frequency or wave magnitude increases, camera ob-
serves stronger distortions, which yields a larger baseline
for triangulation. Therefore, the average error of the recon-
structed point clouds decreases at the early phase. However,
when further increasing the frequency or magnitude, the
distortion becomes severe, in which case a precise image
registration cannot be achieved. The reconstruction error
will increase accordingly. It also reveals that our proposed
full model consistently outperforms the simplified model
without using the projection loss and confidence mask. This
further verifies the effectiveness of these two terms at the
point cloud reconstruction.

We also show the comparisons with the underwater ge-
ometry from a 3D scan. Fig. 8 reveals the qualitative com-
parisons between the scanned models and our reconstruc-
tions. The scanned models were obtained without water
interference. The reconstructions from a 3D scan exhibit
finer recovery of its geometrical structure, however, our
framework could generate an adequate representation of the
scenes under such sophisticated conditions with a simple
hardware setup.
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Figure 7: Qualitative comparisons between the reconstructed geometry and ground truth on synthetic data. Our recovered
results exhibit a high degree of consistency with the ground truth with regard to geometric structures. The overall reconstruc-
tion error is comparably higher than using a multi-camera system (a 3 X 3 pre-calibrated camera array), but our acquisition
system is simple and free of calibration.

Figure 8: Visual comparisons between the 3D scanned models and our reconstructions through moving water surfaces. From
left to right, the distorted frames from the video for two stone scenes, the ground truth 3D structures measured using a 3D
scanner and our reconstructed geometry. The averaged absolute error on the projected depth map is 4.24 mm for the first
scene and 3.01 mm for the second scene. Notice that due to the non-convexity of the problem, our solution is a locally
reasonable representation of the scenes. Therefore, we scale our reconstructions with respect to the scanning results.



