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ABSTRACT

Computational Imaging and Its Applications in Fluids

Jinhui Xiong

Computational imaging di↵ers from traditional imaging system by integrating

an encoded measurement system and a tailored computational algorithm to extract

interesting scene features. This dissertation demonstrates two approaches which apply

computational imaging methods to the fluid domain.

In the first approach, we study the problem of reconstructing time-varying 3D-

3C fluid velocity vector fields. We extend 2D Particle Imaging Velocimetry to three

dimensions by encoding depth into color (a “rainbow”). For reconstruction, we derive

an image formation model for recovering stationary 3D particle positions. 3D velocity

estimation is achieved with a variant of 3D optical flow that accounts for both physical

constraints as well as the rainbow image formation model. This velocity field can be

used to refine the position estimate by adding physical priors that tie together all the

time steps, forming a joint reconstruction scheme.

In the second approach, we study the problem of reconstructing the 3D shape of

underwater environments. The distortions from the moving water surface provide a

changing parallax for each point on the underwater surface. We utilize this obser-

vation by jointly estimating both the underwater geometry and the dynamic shape

of the water surface. To this end, we propose a novel di↵erentiable framework to tie

together all parameters in an integrated image formation model. To our knowledge,

this is the first solution that is capable to simultaneously retrieve the structure of

dynamic water surfaces and static underwater scene geometry in the wild.
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Chapter 1

Introduction

Fluid imaging has many significant applications in scientific and engineering fields

such as combustion research, design of airplanes and underwater vehicles, and devel-

opment of artificial heart valves. Since 3D unsteady flows and turbulence are very

common in such domains, the main task of the fluid imaging is to allow probing the

fluid motions over a range of length scales. In other words, the ultimate goal is to

be able to obtain 3D dense measurements of the three components of the velocity

vector, known as 3D-3C. It usually needs tailored illumination and imaging systems,

and reconstruction algorithms to reconstruct fluid data. These are essentially at the

core of computational imaging, integrating the sensing system and the computation

to extract information which is otherwise inaccessible.

In recent years, a great amount of e↵ort has been invested into the develop-

ment of methods for complete volumetric reconstruction of three-dimensional, three-

component (3D-3C) velocity vector fields. Tomographic Particle Imaging Velocimetry

(Tomo-PIV) [1, 2] has long been considered the standard technology for 3D measure-

ment due to its ability to handle high particle seeding densities and high spatial

resolution reconstruction, as well as its robustness to many types of flow phenomena.

Recent advances of Tomo-PIV have included improved reconstruction accuracy [3, 4]

or spatial and temporal resolution [5, 6] by exploiting temporal information, or re-

ducing the cost of setup, e.g. using smartphones [7, 8]. Tomo-PIV typically makes

use of 4-6 cameras capturing the volume of interest from di↵erent viewing angles.

While Tomo-PIV has the above mentioned advantages, it also su↵ers from several
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limitations that constrain its use. First, a considerable amount of e↵ort is required

to set up and calibrate a multi-camera system. Precise calibration is required, to

avoid degradation of the reconstruction quality. Depth-of-field is another practical

issue limiting its applications; achieving a large depth-of-field requires a small nu-

merical aperture, which leads to low light e�ciency (using a powerful light source is

expensive and brings potential safety issue). Another severe limitation is that there

are many experimental setups where optical access is limited, and thus setting up a

multi-camera system becomes impractical. In such situation, a single-camera based

3D-3C technology would be desired.

This dissertation proposes a new approach, RainbowPIV, by combining a suitable

setup for color-based encoding of the third dimension in volumetric PIV, as well as

a powerful algorithm to retrieve both the particle positions and the velocity vector

field. For the hardware part, a linear color filter is employed in order to obtain

a continuous wavelength-gradation pattern, i.e. a rainbow illumination. Then, a

di↵ractive optical element (DOE) is attached to the camera objective lens, in order

to achieve a wavelength-selective focus that coincides with the rainbow illumination

planes. With this setup, particles with di↵erent wavelengths (di↵erent depths) will

be simultaneously in focus on the sensor plane.

In order to fully reconstruct dense 3D-3C velocity fields, prior work utilizes a

pipeline approach that first estimates the particle distribution fields at successive time

steps, and then reconstructs the corresponding flow fields using the estimated particle

distributions. Separating particle distribution field and velocity field reconstructions

neglects temporal coherence as a strong physical cue. Specifically, particles present

at one time step should also be present at the next as well as the previous time steps

(excluding a small number of particles that enter or leave the observation volume),

and their location should be consistent with the estimated 3D-3C flow fields. This

dissertation, for the first time, proposes a joint optimization framework for particle
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distribution fields and fluid velocity vector fields reconstruction on a sequentially

captured video frames. This joint optimization framework has also been utilized

in the subsequent work, e.g. multi-camera 3D Fluid Flow Estimation [9] and X-

ray computed tomographic applications [10], and it exhibits improved reconstruction

quality in respective work.

Dynamic fluids are also common phenomena in the wild. Capturing the fluids re-

mains an active research area in computer vision and computer graphics for decades.

Little work has shown its ability to recover dynamic fluids in reality. Because of the

transparency, complicated setups are always required to achieve the reconstruction.

Tracer-free methods have attracted researchers attention as it will not change the ap-

pearance of interested fluids. Among tracer-free methods, a known reference pattern

is usually placed behind or underneath the fluids, and fluid structure is reconstructed

by analyzing the distortion of the pattern, where reflected light paths from the pattern

obeys the Snell’s law at a refractive interface. In the literature, high frequency dot

patterns are employed for gas flow reconstruction [11], checkboard or color patterns

are applied for depth and normal reconstruction of water surface [12, 13, 14], and

specific active illumination equipment is also proposed for fluid acquisition [15, 16].

Fundamental limitations restrict their out-of-lab applications in uncontrolled environ-

ments: (1) The calibration needs to be done without fluid disturbance, which could

be fulfilled in a laboratory environment while always be impracticable outside the

lab. (2) The background scene is required to be determined or to be a plane pattern

for a reasonable water surface recovery , however it could be in arbitrary geometry in

the wild.

Acquiring the 3D scene geometry behind fluids has broad applications in research

fields like oceanography, remote sensing and astronomy. One practical application

scenario is to monitor the 3D structure of coral reefs. Coral reefs have a global

distribution, yet, they are experiencing significant changes due to the global warm-
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ing and many other factors. Monitoring the coral reef system is of great ecological

and economic values. However, reconstructing the topography of the underwater en-

vironments is rather challenging because of water surface undulation. The fluids,

functioning as transmitting mediums, are unknown and usually non-stationary. The

reflected rays from the scenes are continuously bent by the fluids, and captured images

appear to be distorted and vary over time.

This dissertation presents a method for reconstructing the 3D shape of underwater

environments from a single, stationary camera placed above the water. We propose

a novel di↵erentiable framework, which, to our knowledge, is the first single-camera

solution that is capable of simultaneously retrieving the structure of dynamic water

surfaces and static underwater scene geometry in the wild.

1.1 Dissertation Structure

The remainder of this dissertation will be structured as follows.

Chapter 2 introduces some background information on computational fluid imag-

ing, transparent object reconstruction and structure-from-dirstortion related topics.

Chapter 3 introduces a new approach, RainbowPIV, which combines a suitable

setup for color-based encoding of the third dimension in volumetric PIV, as well as

a powerful algorithm to retrieve both the particle positions and the velocity vector

field. The proposed system is evaluated with both simulations and an experimental

prototype setup.

Chapter 4 introduces a reconfigurable rainbow PIV system that extends the vol-

ume size to a considerable range. We introduce a parallel double-grating system

to improve the light e�ciency for scalable rainbow generation. A varifocal encoded

di↵ractive lens is designed to accommodate the size of the rainbow illumination, rang-

ing from 15mm to 50mm. We also propose a truncated consensus ADMM algorithm

to e�ciently reconstruct particle locations. Our algorithm is 5⇥ faster compared to
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the state-of-the-art.

Chapter 5 addresses the issue of limited axial resolution, the major drawback of the

previously introduced RainbowPIV system. We validate the improved RainbowPIV

system with a direct, quantitative comparison to four-camera Tomo-PIV on exper-

imental data. The reconstructed flow vectors of the two approaches exhibit a high

degree of consistency, with the RainbowPIV results explicitly guaranteeing physical

properties such as divergence free velocity fields for incompressible fluid flows.

Chapter 6 introduces a method for reconstructing the 3D shape of underwater

environments from a single, stationary camera placed above the water. We propose

a novel di↵erentiable framework to simultaneously retrieve the structure of dynamic

water surfaces and static underwater scene geometry in the wild. Experimental results

show that our method is able to realize robust and detailed reconstructions on a

variety of scenes, both in a laboratory environment and in the wild, and even in a

salt water environment.

Chapter 7 concludes with some closing remarks and describes avenues of future

research.
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Chapter 2

Background and Related Work

2.1 Fluid Imaging

3D fluid imaging in graphics has mostly focused on independent scalar density fields

for each time step. Examples for the physical properties recovered in this fashion

include the distribution of light emission in flames [17, 18], scattering density in

smoke using laser scanning [19] or structured light [20], density of a fluorescent dye in

fluid mixtures [21, 22], as well as the refractive index distribution in hot air plumes

using the technique of Background Oriented Schlieren [23, 24].

In the recent research work, Zang et al. [25] proposes a framework to recover

fluids using sparse camera viewpoints with a dedicated regularizer based on repro-

jection consistency. Franz et al. [26] further proposes a global transport framework

to reconstruct volumetric fluids from sparse views with a learned self-supervision for

novel-view synthesis. While this data is su�cient for playback in graphics appli-

cations, other interesting applications such as re-simulation, or flow editing require

velocity fields instead of just scalar densities. This requires some form of velocity

estimation or flow tracking, which is di�cult on this kind of input data. While there

have been e↵orts to recover velocities from the captured scalar fields through optical

flow-style approaches, and also some work tackles the problem by jointly recover the

scalar fields and the fluid flows over a sequential 3D fluid volumes, these attempts

have been limited by the relatively small amount of high-frequency texture in the

recovered data [22].
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2.2 Particle Image Velocimetry

Particle image velocimetry [27, 28, 29] has been widely adopted in the field of fluid

mechanics to quantitatively evaluate fluid flow structures. PIV is an optical approach

to visualize and measure the instantaneous and non-stationary fluid flow velocity fields

within a planar slice of the volume, as seen in Figure 2.1. The fluids are seeded with

su�ciently small tracking particles, yet, capable of scattering enough illuminating

laser light, such that the movement of the particles will follow that of the fluids

dynamics. By illuminating those small particles to make it visible, the velecity vector

field of the fluids flow can be measured by detecting and calculating the motion of

particles.

Typically, PIV consists of two steps: recording illuminated particles within the

interested planar plane in a manner of single-frame multi-exposure or multi-frame

single-exposure, and then applying auto-correlation or cross-correlation algorithms

for calculating the spatial distribution of flow velocities. While such approach can

only measure two components of the flow vectors of a planar slice of the volume,

failing to detect out-of-plane motions.

Some examples of 3D extensions of PIV include holographic PIV [30, 31], which

works with coherent light, and tomographic PIV (Tomo-PIV) [1, 2]. Tomo-PIV has

long been considered the standard technology for 3D measurement. Tomo-PIV typi-

cally makes use of 4-6 cameras capturing the volume of interest from di↵erent viewing

angles. In general, it is able to handle high particle seeding densities and high spatial

resolution reconstruction, as well as robustness to many types of flow phenomena. Re-

cent advances of Tomo-PIV have included improved reconstruction accuracy [3, 4] or

spatial and temporal resolution [5, 6] by exploiting temporal information, or reducing

the cost of setup, e.g. using smartphones [7, 8].
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Camera

Laser

Light sheet

Cylindrical
lens

PIV image

Figure 2.1: Schematic diagram for regular PIV system. A single plane of the volume
is illuminated by a light sheet, and a camera focusing on this plane is able to track
particles moving within it. This yields 2 components of the velocity field on a 2D
slice of the volume.

2.3 Particle Distribution Reconstruction

3D particle reconstruction is an alternative to imaging continuous densities, and is

used by 3D variants of PIV. The task of the particle reconstruction is to determine

the 3D location of particles from one or more camera views. The total number of

cameras in these settings is usually very limited due to space constraints, as well as

occlusions by solids, and is typically orders of magnitude lower than the number of

projections in x-ray tomography, for example. Another practical issue is depth of

field of the cameras, since the whole volume needs to be in focus simultaneously, and

the camera aperture usually has to be large to collect enough light to capture fast

flows.

To get the 3D particle reconstruction, instead of using multiple cameras for per-

spective reconstruction, single-camera based approaches could drastically simplify the

hardware setup. Willert et al. [32] used a three-pin-hole mask to decode illuminated
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particles such that the three-dimensional positions of each particle can be retrieved

from the image patterns on the observed image via a defocus analysis. Since three dots

would appear in the image for each particle, this method is stuck with a low particle

seeding density. Another group of approaches made use of plenoptic cameras [33, 34],

which capture the full 4D light field. Particle positions can be reconstructed using

ray tracing based algorithms. The idea of applying such technology for measuring

volumetric particle distributions has been discussed by [35]. However, due to the exis-

tence of ghost particles originated from reconstruction algorithm and reduced spatial

resolution, it becomes di�cult to reveal particle locations with relatively high accu-

racy. This can also be seen as limited angle tomography with a very narrow cone of

observations.

Instead of modifying the camera side, another class of volumetric particle re-

construction approaches relies on modifying the illumination method, providing ad-

ditional information on the relative depth, as seen from the camera, by encoding

it in color. For this purpose di↵erent illumination methods were used: prism [36],

laser [37], color filter [38], LCD projector [39, 40]. Herein, the locations of the par-

ticles in the volume can be determined by their 2D spatial positions and by the

colors in the captured image using a mapping between color and depth position. The

primary advantage of this setup compared to other 3D PIV methods is its simplic-

ity. Nevertheless, the presence of random noise, optical aberrations and focus issues,

color contamination caused by secondary light scattering from the particles, and color

mixing for overlapping particles severely complicate the identification of the represen-

tative colors for every possible particle in the observed image. McGregor et al. [37]

used a method based on a calibration curve relating the hue of acquired images to

the depth of particles within the imaged volume. Watamura et al. [39] proposed an

algorithm to calculate particle’s representative color by averaging hue values of the

pixels where the particle is projected on in polar coordinate. Even though it revealed
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promising results for Particle Tracking Velocimetry (PTV), where low density parti-

cles are seeded, it will fail for tasks of measuring a dense set of velocity fields, where

su�ciently high density of particles is required.

2.4 Velocity Estimation

Velocity estimation from particle fields has been elaborately studied not only in the

field of fluid mechanics, but also in the computer vision community. Literature from

the fluid mechanics field mainly adopts correlation-based algorithms [41] for global ve-

locity measurement, which computes the spatial auto-correlation or cross-correlation

of successive images, extracting average motion at every single interrogation spot.

Though significant improvements have been made on correlation methods [42], they

still have issues in areas of low particle density, which is common in 3D measurements.

In a seminal result from computer vision, Horn and Schunck [43], proposed a global

variational optical flow method based on the assumption of brightness constancy and

smoothness in the flow vector. The connection between optical flow and fluid flow was

investigated by Liu and Shen [44], which revealed that under certain conditions (mass

conservation, inviscid), brightness constancy is equivalent to scalar transport equation

for fluid flow. This connection lends a physical meaning to optical flow approaches

for fluid tracking. Heitz et al. [45] gave an overview to the applications of optical flow

based fluid motion estimation. The estimation accuracy between optical flow and

correlation approaches applied to PIV system has been numerically evaluated [46].

Since the optical flow problem is physically connected to the continuity equation

in fluid dynamics, it becomes feasible to introduce Navier-Stokes equations, which

govern real-world fluid motions, as additional physical priors into the conventional

Horn-Schunck algorithm. Some previous literature has taken divergence-free con-

straints into account [47, 48, 49], while most of them su↵er from the complexity of

solving higher order regularization terms. Gregson et al. [22] simplify this issue by
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connecting the pressure projection method with the proximal operator, allowing it to

be easily handled by a convex optimization framework. Ruhnau et al. [49] and Heitz

et al. [50] also consider the equation for time evolution of fluid flow, imposing tempo-

ral consistency. In this dissertation, we adopt ideas from fluid simulation [51, 52, 53],

which approximately solve the time-evolution of fluid flow. This enables us to inte-

grate the temporal coherence regularization terms into the optical flow model, which

can then be solved by a modular optimization framework.

2.5 Transparent Object Reconstruction

The reconstruction of transparent objects is complicated by the change in light di-

rection at the object interface due to refraction [54]. Conventional multi-view stereo

vision, designed for di↵use objects with Lambertian reflection, is not applicable to

these types of objects. Recently, various approaches have been proposed for rigid

transparent object reconstruction. Most of the work is realized with specialized hard-

ware setups, for instance light field probes are proposed to capture the changes of the

refractive index field [55], a Time-of-Flight camera is used to measure the distorted

depth based on the varying speeds of light in transmission mediums with di↵erent

refractive indexes [56], a tomographic camera system [57], variable illuminations [58],

a specialized water tank setup to alter light paths [59], or coded patterns to illumi-

nate the scene and a turntable to realize diverse viewpoints [60, 61] are proposed.

Li et al. [62] propose a learning-based strategy for the transparent shape recovery.

They use a rendering layer to model the imaging process of refraction and reflection

with arbitrary environment maps, however, the background environments must also

be measured ahead of time for correspondence estimation.
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2.6 Fluid Surface Reconstruction

Many fluids are special types of transparent objects, and they are usually non-

stationary. Time-resolved recovery of fluid structures can be realized by tracing the

motions of the immersed tracers in the fluids. In the literature, the methods for re-

constructing image phenomena, e.g. smoke [63, 64], dye [21, 22] and particles [65, 66],

have been developed. The use of particles (known as particle imaging velocimetry),

is a standard approach in the field of fluid mechanics to fully characterize the 2D or

3D fluid flows [27] as described in Sec. 2.2.

A variety of non-intrusive approaches have also been proposed to estimate the

shape of fluid surface by analyzing the distortions of background patterns. The prob-

lem of reconstructing time-varying inhomogeneous refractive index distributions have

been addressed in [11, 67]. Dedicated optical setups with active illuminations are

presented for acquiring fluid surface structures [15, 16]. Morris et al. [12] extend the

traditional multi-view triangulation to be appropriate for refractive scenes, and build

up a stereo setup for water surface recovery. A learning-based single-image approach

has recently been presented for recovering dynamic fluid surfaces [14]. Like recon-

structing rigid transparent objects, the above mentioned work requires an undistorted

reference image of the background patterns or known reference patterns to construct

a ray-ray correspondence. Qian et al. [68] build a 3 ⇥ 3 camera array and exploit

the correspondence information from multiple viewpoints to estimate both the water

surface and the underwater scenes.

Reconstructing refractive surfaces is also related to specular object reconstruc-

tion [54, 69, 70, 71] and image restoration from refractive distortion [72, 73, 74, 75].
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2.7 Structure from Distortion

Optical distortion can be seen in many places in reality. As previously described,

transparent objects made of glasses or plastics, non-stationary water surfaces or hot

airflow can bend the light rays passing through them and cause distorted patterns

from the camera view. The shape of the transparent objects could be retrieved by

measuring the ray deflection. Accordingly, this deflection provides di↵erent view-

points of the background scenes, which allows for triangulation of the depth informa-

tion.

By the fact that the transparent object itself is complicated to reconstruct, sem-

inal work imposes strong assumptions when constructing depth cues from distorted

images to 3D coordinates of the scene points. Tian et al. [76] extract the depth of

the scenes from the fluctuation of projected image pixels measured by a fixed cam-

era. Similarly, Alterman et al. [77] exploit refractive distortions of a stereo setup to

yield a position likelihood of the object via stochastic triangulation. These statisti-

cal approaches assume that the fluctuation of the distorted patterns is random over

time. Knowing that light paths are bent by the water surface via Snell’s law when

crossing water-air interface, the time-varying fluid structures cannot be determined

from their approaches. Zhang et al. [78] reconstruct fluid surface and immersed scene

structures by analyzing the cues of distortion and defocus. Their method requires

an undistorted reference image, which is inaccessible outside the lab. Moreover, they

assume the surface normal to be the same for surface areas where the defocus patterns

are back-projected to, which does not hold for real fluids. Julian et al. [79] propose

to extract the scene depth by looking through a wetted window, where each water

drop provides a distorted view of the scene. Their approach estimates the structure

of water drops and pixel-to-ray mappings, while an assumption of a low-parameter

model is imposed on the water drops. Fully characterizing the water drops is as chal-

lenge as reconstructing transparent objects as described in Sec. 2.5. In comparison,
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we could realize full characterizations on both the background scene geometry and

time-varying water surfaces.

Inferring depth from distorted views shares some similarities to structure-from-

motion (SfM) [80]. SfM estimates the 3D structure from a sequence of images captured

from di↵erent viewpoints. The parameters of the camera and the scene geometry are

jointly refined by the scheme of bundle adjustment.

2.8 Optimization Strategy

It has been a consensus to formulate the inverse problem in computational imaging

into a framework of convex optimization, consisting of data fitting term and regular-

ization terms. A wide selection of optimization methods is available in the literature,

including generic approaches such as Gradient Descent and Quasi-Newton. However,

complex optimization problems involving a data term and sophisticated regularizers

require a more tailored approach, especially if some terms of the objective function are

non-smooth. Splitting-based approaches overcome this issue by decoupling joint min-

imization problem into multiple inner-connected subproblems, alternatively handling

each of them.

Mathematically, the related minimization problem can be expressed as:

x = argmin
x

f(x) + h(Gx), (2.1)

where f(·) and h(·) are convex functions. The splitting strategy is implemented by

introducing a slack variable z, and formulate a constrained optimization problem:

x, z = argmin
x,z

f(x) + h(z)

subject to Gx = z.

(2.2)

This splitting allows a variant of algorithms to solve it, such as Pock-Chambolle
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algorithm [81], split Bregman method [82], half-quadratic splitting [83], alternating

direction method of multipliers (ADMM) [84]. They essentially share the similar idea

that is to construct a decomposition-coordinate procedure, where the solution to the

global problem is guided by the solutions to small subproblems. In this dissertation,

we will adopt ADMM, which is an augmented Lagrangian method accompanied with

dual decomposition.

The augmented Lagrangian of Equation 2.2 can be written as:

L(x, z,�) = f(x) + h(z) + �
T (Gx� z) +

⇢

2
kGx� zk2

2
, (2.3)

where � is the Lagrangian multiplier and ⇢ > 0. We can then formulate it into ADMM

framework as following.

Algorithm 1 ADMM Framework for Equation 2.2

1: for k = 1 to K do
2: // x-minimization step
3: xk+1  argmin

x
L(x, zk,�k)

4: // z-minimization step
5: zk+1  argmin

z
L(xk+1

, z,�k)

6: // scaled dual variables update
7: �

k+1  �
k + ⇢(Gxk+1 � zj+1)

8: end for

The major benefit for this splitting can be revealed in Algorithm 1, where two

functions in the original problem described in Equation 2.1 are separated, forming

two unconstrained convex minimization problems, which can be alternatively solved

in a relative easy way. The second subproblem can be further analyzed by defining

the proximal operator [85]. The proximal operator of a function f is given by:

prox
�f
(v) = argmin

x
f(x) +

1

2�
kx� vk2

2
. (2.4)

It seems to be trivial to introduce the proximal operator here, while it gives a better
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generalization to the algorithm, as a new objective function can be directly applied

by just deriving the proximal operator of it or a variety of priors can be evaluated by

simply changing corresponding proximal operators.
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Chapter 3

Rainbow Particle Imaging Velocimetry

for Dense 3D Fluid Velocity Imaging

This chapter closely follows Xiong et al. [65].

Despite significant recent progress, dense, time-resolved imaging of complex, non-

stationary 3D flow velocities remains an elusive goal. In this chapter we tackle this

problem by extending an established 2D method, Particle Imaging Velocimetry, to

three dimensions by encoding depth into color. The encoding is achieved by illumi-

nating the flow volume with a continuum of light planes (a “rainbow”), such that

each depth corresponds to a specific wavelength of light. A di↵ractive component

in the camera optics ensures that all planes are in focus simultaneously. With this

setup, a single color camera is su�cient for tracking 3D trajectories of particles by

combining 2D spatial and 1D color information.

For reconstruction, we derive an image formation model for recovering stationary

3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical

flow that accounts for both physical constraints as well as the rainbow image formation

model. We evaluate our method with both simulations and an experimental prototype

setup.

3.1 Introduction

Fluid capture is an active research area in computer graphics. Recent works include

e↵orts to image phenomena such as flames [17, 18], smoke [19, 20], transparent hot
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air flows [23], and fluid mixtures [21]. While these methods recover dense volumetric

reconstructions, they only yield independent scalar fields of the density of the re-

spective phenomenon at each time step. To fully characterize the 3D flow and open

up applications beyond simple play-back, 3D velocity fields need to be recovered as

well. While there have been e↵orts to recover velocities from the captured scalar

fields through optical flow-style approaches, these attempts have been limited by the

relatively small amount of high-frequency texture in the recovered data [22]. The

velocity field of the fluid flows are essentially needed. In other words, the ultimate

goal is to be able to obtain 3D dense measurements of the three components of the

velocity vector, known as 3D-3C.

Over the last decades, di↵erent imaging techniques have been developed to get

closer to this goal. Particle Imaging Velocimetry (PIV) is the most commonly used of

these techniques [86, 28]. For PIV, small density-matched tracer particles are inserted

into the flow, and their advected motion is tracked with image correlation methods,

i.e. optical flow. In basic 2D PIV [87], this tracking is made possible by illuminating

the volume with a light sheet perpendicular to the camera line of sight (Fig. 2.1).

Particles within that plane can be identified easily, and tracked over time, so long

as the flow does not move them out of plane. This yields dense measurements of

two components of the velocity field on a two-dimensional slice of the volume (2D-

2C). Although 3D extensions such as holographic PIV [30] or tomographic PIV [1]

exist, a dense reconstruction of all three components of the velocity field over the full

3D volume requires multiple cameras and remains elusive in practice. The densest

volume measurements involve high-speed imaging in combination with scanning laser-

volumes [88].

This chapter proposes a new approach, RainbowPIV, by combining a suitable

setup for color-based encoding of the third dimension in volumetric PIV, as well as

a powerful algorithm to retrieve both the particle positions and the velocity vector
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field. For the hardware part, a linear color filter is employed in order to obtain

a continuous wavelength-gradation pattern, i.e. a rainbow illumination. Then, a

di↵ractive optical element (DOE) is attached to the camera objective lens, in order

to achieve a wavelength-selective focus that coincides with the rainbow illumination

planes (Fig. 3.2). With this setup, particles with di↵erent wavelengths (di↵erent

depths) will be simultaneously in focus on the sensor plane.

The reconstruction algorithm utilizes a detailed image formation model for this

setup to retrieve the 3D location of particles in each frame. From a sequence of

successive frames, the velocity vector field is reconstructed using an optical flow

approach [43, 89], where physical constraints (incompressibility and temporal con-

sistency) are introduced. In order to improve the obtained results, we can iterate

between position and velocity estimation, e↵ectively solving a joint optimization prob-

lem for both. The specific contributions of this chapter are:

• We propose a simple PIV setup (RainbowPIV) for measuring time-varying 3D-

3C fluid velocity vector fields using a single camera.

• We design a hybrid refractive-di↵ractive optical system in order to focus all

wavelength on the same sensor plane, extending the depth-of-field while pre-

serving high lateral resolution.

• We formulate an image formation model for 3D particle distribution reconstruc-

tion, and apply optimization strategies to tackle the ill-posed inverse problem.

• We introduce a physically constrained optical flow method for recovering the

fluid velocity fields, and evaluate its e↵ectiveness on synthetic data. Our ap-

proach allows having a good estimation of velocity over the measurement volume

(high concentration of particles).

• We demonstrate our proposed hardware setup and algorithms on real fluid flows.
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3.2 System Overview

Image 
acquisition 

1 mm 

Velocity vector 
field estimation 

Particle distribution 
reconstruction 

+ 

Norm of Velocity (Pixels/s) 

0.26 2.9 5.5 

Figure 3.1: Using a rainbow color-coded PIV setup in combination with a hybrid
di↵ractive/refractive camera optics(left) we can encode 3D particle positions in fluid
flows into a single camera image, while keeping all particles in focus simultaneously
(center). From a sequence of such images 3D particle positions and the dense fluid
vector field can be reconstructed using an optimization-based approach. The vector
field is represented as a regular grid covering the entire flow volume, and can be
visualized by showing the path lines of new (synthetic) particles (right).

The RainbowPIV method consists of two components: a new optical setup that

encodes particle depth into a color image with a large depth of field, and a matching

new reconstruction algorithm that jointly optimizes particle position and velocity

field. The general process are illustrated in Fig 3.1

3.2.1 Optical Setup

A schematic view of the RainbowPIV setup is shown in Figure 3.2, where the illu-

mination is provided by a white light source that is collimated and filtered so that

the wavelength varies linearly with the depth within the flow volume. In this setup,

particles submersed in the fluid can be modeled as narrow-band point lights, whose

wavelength varies linearly with depth. By comparing with the regular PIV setup as

shown in Figure 2.1, the advantage of RainbowPIV is revealed that higher dimensional

components of the velocity vector fields can be retrieved in the proposed setup.

The second part of the optical setup is a di↵ractive optical element, specifically a

Fresnel phase plate, which provides a wavelength-selective focus. The optical system

is designed such that the camera focus for each wavelength corresponds to the depth
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at which that wavelength occurs in the rainbow illumination. This design achieves

all-in-focus imaging of the particles in the interrogation volume.

Camera

DOE in front of lens for
wavelength-selective focus

Linear filter

Collimator

White light 
source

Rainbow PIV image

Rainbow of
narrow-band
light planes

DOE: multi-level
Fresnel phase plate

Figure 3.2: The schematic diagram for RainbowPIV system. The 3D volume is
illuminated by a continuum of planes, where the wavelength of the illumination varies
linearly with the depth. Particles in the volume can thus be modeled as narrow-band
point sources, and a di↵ractive optical element attached to the camera lens ensures
that for each wavelength the camera is focused at the appropriate depth.

3.2.2 Reconstruction

The reconstruction task is to estimate particle positions from the the observed color,

and then track these particles over time to obtain a 3D velocity field to get a full

3D, 3 component (3D-3C) measurement. This task is made more complicated by

the fact that the camera captures only RGB information, not a full hyperspectral

image, which makes the position reconstruction less robust. To tackle this problem,

we employ an iterative approach: an initial position estimate for each time step can be

used to obtain a first estimate of the time-dependent velocity field. This velocity field

can be used to refine the position estimate by adding physical priors that tie together

all the time steps. These two iterative steps can be expressed in a joint-optimization

problem:
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each term of which will be discussed in Section 3.3 and 3.4. The first three lines

correspond to particle position estimation and the latter four lines correspond to

velocity field reconstruction, and these two sub-problems are coupled with each other

by the term of particle motion consistency (see Section 3.3.4), referring to term in the

third line. In each sub-step of every iteration, one variable will be fixed such that the

constructed bi-convex problem is reduced to simpler convex optimization problems.

The following sections will explain the above two sub-problems respectively.

3.3 Particle Position Estimation

An inverse problem is proposed for recovering particle locations in 3D spatial domain.

We start by introducing an image formation model that relates the obtained parti-

cle positions to the observed image. Three regularization terms are then added to

formulate an optimization problem, which can be e�ciently solved with guaranteed

convergence, tackling our ill-posed inverse problem.
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3.3.1 Image Formation Model

As mentioned above, the illumination in the volume is designed to consist of a con-

tinuum of light sheets (Figure 3.2) with a narrow-band spectrum, whose wavelength

(denoted as �) varies with depth (z coordinate). In this chapter, we restrict ourselves

to a linear relationship between z and � since this setting is easily implemented with

o↵-the-shelf components. Therefore, the location of particles in the volume can be

geometrically represented as the position of light plane specified by wavelength and

pixel positions in that light plane (x,�) = (x, y,�). The presence of a particle at a

specific point in the volume is modeled as an occupancy probability P (x,�).

Since we are operating with incoherent light, the imaging process of the optical

system can be modeled as a set of point spread functions (PSF), one for each color

channel: gC(x,�), where C 2 {red, green, blue}. With these definitions, the image

formation model is

iC(x) =

Z

⇤

Z

X

gC(x� x0
,�) · ir(x,�) · P (x,�) dx0

d�, (3.1)

where iC(x) are the color channels of the captured RGB image, and ir(x,�) is the

corresponding spectral distribution incident on the image sensor. The spatial inte-

gral corresponds to a convolution representing potentially imperfect focus, while the

wavelength integral represents the conversion from a spectral image to an RGB image

encoding 3D particle positions.

3.3.2 Optimization Problem

After discretization, we can formulate the convolution of PSFs and reflected light

intensity as a matrix A 2 R3N⇥NL, where N is the number of image pixels, L is the

number of discretization levels along the wavelength coordinate, and the value of 3

refers to three color channels. Moreover, it 2 R3N represents the observed image at
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time t and pt 2 RNL is the occupancy probability of a specific voxel, given it. Hence,

the distribution of particles at each time step of a video can be retrieved by solving

the linear system

Apt = it. (3.2)

However, this inverse problem is ill-posed as we have compressed the full spectral

information encoding the particle position into just three color channels. To han-

dle this ill-conditioned inverse problem, some prior knowledge of the distribution of

particles is introduced as regularization terms, resulting the following minimization

problem:

(p⇤) = argmin
p

1

2

�����A
"
p1|...|pT

#
�
"
i1|...|iT

#�����

2

2

(3.3)

+ 1 kdiag(w) (p1; ...;pT)k1 + ⇧[0,1] (p1; ...;pT)

+ 2

TX

t=1

Z

⌦

pt � (pt � pt+1(ut,��t))�2 d⌦,

where� and (·)�2 respectively refer to the operators for the Hadamard (i.e. component-

wise) product and square operator. The operator ⇧[0,1] projects all volume occupancy

probabilities onto the convex set of valid probabilities [0, 1]NL.

The first line in Equation 3.3 is a least-square data fitting term corresponding to

Equation 3.2. The second line defines a weighted L1 term that encourages sparse

distributions of particles in the volume, and the indicator function enforces that

occupancy probabilities are between zero and one. Finally, the term of the third line

provides temporal coherence by mandating that occupancy probabilities of successive

time frames are consistent with advection under a previously estimated flow field

ut = (ut, vt, wt) by ��t units of time, expressed as pt+1(ut,��t). We call this term

the particle motion consistency term, and it allows for refining position estimates once

a velocity field has been estimated, and ties the reconstruction of all frames together
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into a single optimization problem. The particle motion consistency term is discussed

in more detail below.

The above optimization problem is non-smooth because of the L1 term and the

indicator function, hence it cannot be solved by general optimization tools such as

gradient descent. The strategy tackling this kind of issue is to decouple non-smooth

terms from the original optimization problem, such that distinct parts can be handled

separately. We apply this strategy using the ADMM framework which is systemati-

cally discussed in [84].

Algorithm 2 ADMM Framework of Computing Particle Distribution

1: procedure ComputeParticleLocation(F1, H1)
2: for from 1 to maximum ADMM iteration do
3: // p-minimization step
4: pj+1  prox

�1F1
(zj � qj)

5: // z-minimization step
6: zj+1  prox

⌧1H1
(pj+1 + qj)

7: // scaled dual variables update
8: qj+1  qj + pj+1 � zj+1

9: end for
10: end procedure

The pseudo code for solving Equation 3.3 using ADMM is shown in Algorithm 2,

where j is the iteration number, z is a slack variable, q is a dual variable, or Lagrange

multiplier. prox
�1F1

and prox
⌧1H1

are proximal operators [85] based on F1 and H1

respectively. F1 and H1 are defined as:

F1(p) =
1

2

�����A
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2

2
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+ 2

TX
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Z

⌦

pt � (pt � pt+1(ut,��t))�2 d⌦

H1(p) = 1 kdiag(w) (p1; ...;pT)k1 + ⇧[0,1] (p1; ...;pT) (3.5)
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The derivation of the proximal operators F1 is given as follows:

p = prox
�1F1

(d) ) (3.6)
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where

ft,t+1(p) = 22pt � (pt � p̂�
t+1

) + 2(pt � p̂�
t+1

)�2,

ft,t�1(p) = 22pt�1 � (p̂�
t
� pt�1).

To simplify the notations, we denote zj � qj as dj, pj+1 + qj as ej, uj+1

t + qj as hj,

and pt+1(ut,��t) as p̂�
t+1

. In this term, p is represented by procedural operator on

the left hand side of Equation 3.6, and it is solved by Conjugate Gradients.

The derivation of the proximal operators H1 is given as follows:

z = prox
⌧1H1

(ej) ,

z = ⇧[0,1]

�
(ej � ⌧11w)+ � (�ej � ⌧11w)+

�
.

(3.7)

This term is the point-wise shrinkage operation followed by a projection onto the

domain of [0, 1].
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3.3.3 Particle Sparsity

The L1 penalized term ensures a sparse distribution of particles in the volume. It

is further weighted by a diagonal matrix diag(w). Unlike the algorithm proposed

in [90], which iteratively changes the weight coe�cients based on previous results

for enhancing sparsity, weights in our approach are fixed during iterations, but vary

with particle depth. The motivation for this process is to compensate for di↵erent

sensitivities of the camera to di↵erent wavelengths. For example, wavelengths in the

yellow or in the blue-green part of the spectrum elicit a strong response in two or even

three color channels, while wavelengths in the far blue or far red parts only trigger

one channel. This can result in a non-uniform particle distribution, where particles

are more likely to be placed on certain preferred depths. The weighting term allows

us to eliminate this bias by compensating for the photometric non-uniformity.

3.3.4 Particle Motion Consistency

As mentioned, particle motion consistency ensures that estimated particle locations

in successive frames are consistent with advection through a previously estimated flow

field. This turns the position estimation from a set of independent problems, one for

each time step, to a single joint estimation problem for the whole sequence. This

term can be improved by adding a mask to suppress the impact of low confidence

flow estimates.

3.4 Velocity Field Reconstruction

This section describes how we estimate the fluid flow vectors from reconstructed 3D

particle distributions in a video frame. First, we introduce the physical properties of

fluid flow formulated in Navier-Stokes equations, and then an optimization problem

is constructed by combining conventional optical flow with those physical constraints.
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3.4.1 Divergence Free

An incompressible flow can be described as a solenoidal flow vector field usol, which

is divergence free:

r · usol = 0. (3.8)

Based on the Helmholtz decomposition, any arbitrary vector field u (in our case

an intermediate flow vector obtained that does not satisfy the divergence-free con-

straints) can be decomposed into a solenoidal (divergence-free) part and an irrota-

tional (curl-free) part. The irrotational flow vector is the gradient of some scalar

function (pressure P in our case), hence we can express the Helmholtz decomposition

as

u = usol +rP/⇢, (3.9)

where ⇢ defines density. Taking the divergence of both sides, we obtain

r · u = r2P/⇢ (since r · usol = 0). (3.10)

With the intermediate vector field u, the scalar function P can be computed by

solving the above Poisson equation, and then the solenoidal flow vector field can be

simply retrieved as

usol = u�rP/⇢. (3.11)

Equations 3.10 and 3.11 represent a pressure projection ⇧CDIV operation that projects

an arbitrary flow field onto the space of divergence-free flows CDIV, and is widely used

in fluid simulation. Mathematically, this step corresponds to an operator splitting

method [22].
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3.4.2 Temporal Coherence

The incompressible Navier-Stokes equation describes the time evolution of fluid ve-

locity vector fields, given by:

@u

@t
+ (u ·r)u = �rP/⇢+ (r · ¯̄⌧)/⇢+ f, (3.12)

where P is the pressure, ¯̄⌧ is deviatoric stress and f is an external force. For a non-

viscous fluid in absence of external force and ignoring the unknown pressure gradient

term, Equation 3.12 becomes

@u

@t
+ (u ·r)u = 0, (3.13)

which refers to an approximated evolution of fluid velocity over time. On the basis

of this equation, we can advect the fluid velocity at the current time step by itself,

and then project it onto a space of divergence-free flows to generate an estimation

of the subsequent velocity field, and vice versa. This time evolution equation will

be introduced into the optimization problem discussed in the following as a soft

constraint.

3.4.3 Optimization Problem

We aim to reconstruct the fluid flow velocity vector fields based on physically con-

strained optical flow model. The extended optical flow model is formulated as:

u⇤
t
= argmin

ut

Z

⌦

pt � (pt � pt+1(ut,��t))
⌘�2

d⌦+ 3 krutk22

+ 4

⇣
kM(ut � ⇧CDIV(ut�1(ut�1,�t)))k2

2

+ kM(ut � ⇧CDIV(ut+1(ut,��t)))k2
2

+ ⇧CDIV(ut),

(3.14)
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each line of which is explained hereafter:

• the first line describes the conventional Horn-Schunck optical flow model except

that the brightness constancy constraint is replaced with the masked particle

motion consistency as discussed in Section 3.3.4.

• the second and third lines describe the temporal coherence regularization as

explained above: the fluid velocity at the current time step is approximated

by either forward warping the flow vector at the previous time step by itself,

followed by a projection operation, or by backward warping the flow vector at

the next time step by the current flow, followed again by a projection operation.

The binary mask M is employed to ensure confidence-based weighting, giving

0 for the flow vectors near the boundary and 1 for vectors in the central region.

• the fourth line represents an indicator function of the projection method intro-

duced above. Gregson et al. [22] found that the projection operation is equiv-

alent to the proximal operator for the space of divergence-free velocity field.

This allows us to integrate the divergence-free constraint into the original opti-

cal flow model, which can still be e�ciently solved by well-known optimization

frameworks.

We formulate this optimization problem in the ADMM framework in Algorithm 3,

where the definitions of the functions F2 and H2 are given below.

F2(ut) = pt �
⇣
pt � pt+1(ut,��t))

⌘�2
+ 3 krutk22

+ 4

⇣
kM(ut � ⇧CDIV(ut�1(ut�1,�t)))k2

2

+ kM(ut � ⇧CDIV(ut+1(ut,��t)))k2
2

⌘

H2(ut) = ⇧CDIV(ut)

The derivation of the proximal operators F2 is given as follows:
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ut = prox
�2F2

(d), (�2A+ I)ut = dj � �2b

A = pt � (rp̂�
t+1

)�2 + 3r2 + 24M

b = pt �
�
(p̂�

t+1
� pt)�rp̂�

t+1
uk

t

�
rp̂�

t+1

� 4M(⇧CDIV(û
k+

t�1
) + ⇧CDIV(û

k�
t+1

)),

(3.15)

where

ûk�
t+1

= ut+1(u
k

t
,��t),

ûk+

t�1
= ut�1(u

k

t�1
,�t).

By applying the fixed-point theorem to tackle the nonlinear optimization problem,

uk

.
in this term refers to the result in the k

th iteration. We use Conjugate Gradients

to solve this linear system in combination with an incomplete Cholesky factorization.

The derivation of the proximal operators H2 is given as follows:

z = prox
⌧2H2

(hj), z = ⇧CDIV(h
j). (3.16)

This term is a simple pressure projection step.

Algorithm 3 ADMM Framework of Computing Fluid Velocity Vector Fields

1: procedure ComputeVelocity(F2, H2)
2: for from 1 to ADMM iterations do
3: // u-minimization step
4: uj+1

t  prox
�2F2

(zj � qj)
5: // z-minimization step
6: zj+1  prox

⌧2H2
(uj+1

t + qj)
7: // scaled dual variables update
8: qj+1  q+ uj+1

t � zj+1

9: end for
10: end procedure

In addition, a coarse-to-fine strategy is applied to deal with large displacements.
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The algorithm begins from the coarsest level, and an initial guess of optical flow

at the next finer level is obtained by scaling up the flow computed in the coarser

level. It should be noted that in this case, the above optimization problem becomes

non-linear in ut on account of the warping term pt+1(ut,��t). To tackle this issue,

the non-linear term is linearized by using first order Taylor expansion and ut is up-

dated iteratively based on fixed-point theorem. More detailed descriptions about this

approach are given in [89].

For a sequence of fluid velocity vector fields, each of them is solved independently

in an iteration loop. The update of the flow at one time step will impact the subse-

quent flows in current iteration, and also the previous flows in the following iterations.

3.5 Experimental Setup

Figure 3.3 represents a picture of the experimental configuration used to evaluate the

performance of the RainbowPIV algorithm.

3.5.1 Rainbow Light Generation

The experiments were performed using a high power plasma light source combined

with a liquid light guide (HPLS245, Thorlabs) to generate a white light (output

spectrum: [390, 730 nm]). A collimator was added to obtain a parallel light beam. It

is important to have a parallel light beam, to guarantee that two particles having the

same depth will be illuminated by the same colored light.

To split the white light in a rainbow beam, we employed a continuously linearly

varying bandpass filter (LF103245, Delta Optical Thin Film). Other components

(prism, blaze grating) were also considered for their ability to generate a rainbow

beam. However after comparison, the linear filter appeared to us as the best solution

for its e↵ectiveness and simplicity. The generated beam encompasses a spectral range

from 480 nm to 680 nm, and corresponding to a depth range of 18 mm in the z
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Figure 3.3: Illustration of the experimental setup. A combination of a white light
source, a collimator and a linear bandpass filter yields a parallel rainbow beam. After
reflection on the particles present in the tank, the light is acquired by a camera. A
hybrid refractive-di↵ractive lens (lens+DOE) is used to ensure that all particles of
the measurement volume are focused on the same sensor plane.

direction. Given the height of the beam and the length of the used tank, the two

other dimensions of the measurement volume are 50.1 mm along the x axis and

25.6 mm along the y axis.

3.5.2 Acquisition Device

To record the particle images, a digital camera was used (RED SCARLET-X DSMC,

sensor: MYSTERIUM-X [30 mm⇥ 15 mm], 4096⇥ 2160 pixels). A lens with a focal

length equal to 50mm, was mounted on the camera. As can be seen in Figure 3.4 (b, c,

d), when a standard refractive lens is used alone, the depth of field is very shallow, and

only a small depth range can be in focus. For these three cases the other wavelengths

are out of focus, which makes it impossible to exploit these images to retrieve the

velocity of particles.

With a standard refractive lens, the thickness of the measurement volume that is
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Figure 3.4: Comparison of subsections of the images acquired using a hybrid lens
and a refractive lens. (a) Image obtained with the hybrid lens (DOE + lens). (b,
c, d) Images obtained when using only the refractive lens. The focus is adjusted
respectively for blue (b), green (c) and red (d) particles.

in focus is extremely small for many fluid imaging problems of practical interest. In

our case, since the wavelength of the light that illuminates the particles varies linearly

in the volume, the in-focus measurement volume can be easily extended by adding a

DOE to the camera optics.

When designing the DOE we must ensure that all wavelengths are focused on the

same sensor plane. Moreover, the aperture and the magnification of the hybrid lens

should allow for an image of good quality.

Figure 3.5 shows a schematic for a hybrid refractive-di↵ractive lens. The aim is

to design a DOE, that allows us to have all particles illuminated by a light, which

wavelength is included in [�1,�2] focused on the same sensor plane.

The DOE is a Fresnel phase plate, which is implemented as a height field with

16 discrete levels. A DOE is characterized by its phase, which can be expressed as

follows:

� (r) =
2⇡

�
· r

2

f
DOE

�

, (3.17)
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Figure 3.5: Schema for hybrid refractive-di↵ractive lens. All particles illuminated by
a light, which wavelength is included in [�1,�2], will be focused on the sensor plane.

where r is the radial distance to the center of the DOE, � is a given wavelength, and

f
DOE

�
is the focal length of the DOE associated to the wavelength �. Indeed, for a

DOE the focal length is spectral-dependent, and obeys the following relationship:

� · fDOE

�
= constant. (3.18)

Thereafter, the wavelength �0 =
2·�1·�2
�1+�2

will be used to design the DOE. Thus, we

only need to determine f
DOE

�0
, in order to recover the phase of the DOE.

The image of particles acquired using the hybrid lens is presented in Figure 3.4 (a).

One can notice that for this case all particles within the measurement volume are in

focus. Their size on the image is almost the same, contrary to the defocused images

obtained without using the DOE.
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3.5.3 Measured Flows

Two types of experiments were realized using transparent, rectangular tanks made of

glass plates placed on a brass metal support:

• Experiments with a ground truth were performed using a high viscosity trans-

parent fluid (PSF-1,000,000 cSt Pure Silicone Fluid). Its viscosity is one million

times higher than that of water. White particles (White Polyethylene Micro-

spheres, with a diameter in the range [90, 106 µm]) were introduced to this

liquid. This involved heating the liquid while stirring in the particles, followed

by vacuum treatment to eliminate bubbles. After cooling the liquid, the par-

ticles become frozen in place. Then, experiments were conducted by applying

a known movement (translations or rotation) to the tank using micro-meter

stages. Therefore, the particle motion is known, since they are immobile with

respect to the tank.

• Experiment without “ground truth” were realized using the same particles, af-

ter introducing them in a tank containing tap water. A small amount of sur-

factant (Polysorbate 80 Water) is added in order to reduce the surface tension

of water. This is to avoid the agglomeration of particles in the tank. In this

case, the particle motion is generated manually through stirring, pouring, and

similar excitations.

3.6 Velocity Vector Fields Reconstruction Results

In this section, we first evaluate our proposed approaches based on synthetic examples

for ground truth comparisons. Then, we conduct two types of experiments, where

the first one is to move particles with known motion vector, verifying the accuracy of

our methods on real data, the second one is to work on practical fluids.
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3.6.1 Synthetic Simulations

To quantitatively assess our reconstruction method, we tested our algorithm on simu-

lated data. A volume with the size of 100⇥100⇥20 (X⇥Y ⇥Z) was simulated and we

randomly generated 1000 particles in the volume. The particles were advected over

time by ground truth flow vectors that were generated using the method of Stam [53],

such that we can obtain time evolved particle distributions from a forward simulation

that is completely decoupled from our implementation. Using the image formation

model from Equation 3.1, we simulated a time sequence of 5 captured images.

We compare our proposed velocity vector reconstruction algorithm, referred to

”S-T div-H&S”, with the general multi-scale Horn-Schunck algorithm ”H&S” [89]

and its extension by introducing divergence free constraint as a proximal operator

”div-H&S” [22]. Note that the last two approaches compute the motion between

one pair of frames independently, while our approach works on a sequence of frames

simultaneously.
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Figure 3.6: Numerical comparisons with ground truth data for di↵erent algorithms.
Left: Average angular error (in degrees). Right: Average end-point error (in pixels).

For evaluation, we use two metric known from the optical flow literature: the

average end-point error, i.e. the average Euclidean distance of the true and estimated

particle positions after advection, and the average angular error, i.e. the average

discrepancy in flow direction. In Figure 3.6 we show how both types of error accu-
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mulate over multiple frames, which is a good indicator for the accuracy of path lines

generated through forward integration in the estimated velocity fields. As expected,

the reconstruction errors increase over time in all methods. However, by considering

temporal coherence, our proposed method exhibits better performance compared to

the other two approaches. We point out that a temporal smoothness regularizer may

not necessarily result in improved reconstruction results at each particular time step,

however, it conveys better estimations in the temporal domain. This is essential for

video frames captured in real-world experiments.
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Figure 3.7: Ground truth (left) and reconstructed (right) results for simple analytical
flows. Top: Rotation around axis aligned with the optical axis. Bottom: Rotation
around axis orthogonal to optical axis.

We also ran experiments on simple analytical flows, specifically one vortex with the

rotation axis aligned with the optical axis, and one with the rotation axis orthogonal

to the optical axis. The results (shown Figure 3.7) are consistent with the above

results on more complex simulated flows. In the first case, the mean of the average

end-point error for a sequence of 5 frames are 0.54, 0.52 and 0.49 in pixels, and the
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mean of the average angular error are 8.06, 7.77 and 7.08 in degrees respectively for

”H&S”, ”div-H&S” and ”S-T div-H&S” approaches. As for the latter one, the mean

of the average end-point error are 0.79, 0.77 and 0.73 in pixels, and the mean of

the average angular error are 17.15, 16.24 and 13.65 in degrees. These results verify

that the temporal smoothness term truly boost the overall reconstruction results for

a sequential frame data. Moreover, we could observe a better estimation for flows

in the longitudinal plane than those in the transverse plane. This will be further

discussed in the following section.

Figure 3.8: Calibrated PSFs for di↵erent layers along depth direction. From near
camera side to far-end of the camera.

3.6.2 Experiments with a Ground Truth

To evaluate the e↵ectiveness of our proposed methods on real captured data, we firstly

conduct the experiments with a tank containing seeded particles in high viscosity liq-

uid. The tank is put on a multi-dimensional translation/rotation stage such that

reconstruction results of the algorithm can be compared with ground truth move-

ments. Three independent tests are performed:

1. Translation in the x direction (i.e. perpendicular to camera line of sight): 5



51

frames were acquired. Between each two successive frames, a translation of

0.2 mm in the x direction was applied.

2. Translation in the z direction (i.e. along the camera line of sight): 5 frames

were acquired. Between each two successive frames, a translation of 0.5 mm in

the z direction was applied. In this case, the translation is larger, in order to

observe easily the color change.

3. An approximation of rotation around the vertical (y) axis in a clockwise direc-

tion. With our setup of “frozen” particles in a volume, only an approximation

of this rotational motion is possible, since it is not possible to tilt the tank

relative to the camera line of sight to avoid distorting the volume by refraction.

We therefore approximate rotational flow by rotating the rainbow illumination

pattern relative to the tank. In practice, the tank and the camera are mounted

together on a rotation table with fixed relative position, and the lighting setup

is fixed. The rotations were performed from an angle of �8� to 8� (the reference

is defined when the tank is aligned with the (x,z) directions). Between each two

successive frames, a rotation of an angle equal to 4� was applied.

Before processing the captured images, we first pass them through a Gaussian filter

and then downsample them by a factor of 8, hence the resolution for the downsampled

image is about 100 µm/pixel, approximately one particle per image pixel. We dis-

cretize the wavelength coordinate into 20 levels, corresponding to 900 µm/layer. The

calibrated point spread functions for each levels are shown in Figure 3.8. It should be

noted that the resolution along the wavelength coordinate is about 9 times coarser

than that in x� y plane.

The reconstructed velocity vector fields are visualized in Figure 3.9. The overall

structures of the reconstructed flow in all three cases reveal that a significant part of

the real flow structures are reproduced.
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Figure 3.9: The reconstructed velocity vector fields induced by moving the measure-
ment volume with a rotation stage. Top: Translation along x direction. Middle:
Translation along z direction (towards the camera). Bottom: Rotate along y axis in
clockwise direction. The magnitude of the vectors are coded by color.

Furthermore, we can numerically analyze the reconstructed results with respect

to the ground truth movements. In the experiments, the x-axis and the z-axis trans-

lations move respectively 200 µm and 500 µm in one time step, which corresponds
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in the captured images to 2 and 5 pixels. In the rotation test, the total rotation

⇡

45
rad, and the 2D plane of the test section has the physical size of 10 mm⇥ 18 mm

(x ⇥ z), and distance from the center of the test section to the center of the disk is

10 mm, hence the practical magnitudes of the displacements are about 334 µm (3.3

pixel sizes) for the part at the near-end of the disk center and 506 µm (5.1 pixel sizes)

for the part at the far-end of the disk center. The computed magnitudes of the flow

vectors are encoded by color in our represented results.

The mean of the norm of the velocity in the left translational experiment is 1.75

pixel sizes with standard deviation of 0.15, while the mean of that in the experiment

of translating towards camera is 3.48 pixel sizes with standard deviation of 0.79. We

can see that reconstructed flow vectors reveal higher accuracy for the flow perpen-

dicular to the optical axis with respect to the flow in longitudinal direction. This is

reasonable since: (1) depth resolution is highly limited compared to lateral resolution

as camera is much more sensitive to the spatial change of objects in 2D plane than

the change of wavelength, which results in coarser reconstructed flow vectors along

the wavelength coordinate. (2) the error may also come from a bias of reconstructed

particle distributions. Determination of the spatial positions of the particles along z

axis involves higher uncertainties. Moreover, distortion caused by the refractive e↵ect

of the applied high viscosity materials, arises when moving the tank along the z axis.

As the thickness of the material between camera and illuminated particles changes,

the PSFs are altered simultaneously. Fortunately, this issue does not exist when

measuring practical fluid flow, where the particles move, instead of the light beam.

Though facing the fact of relatively low reconstruction accuracy for flow in axial di-

rection, not only flow in simple translational structures, but also vortical flows are

reasonably reproduced, and the error in wavelength axis is within a certain tolerance,

which, in general, is no more than half of length of the discretization intervals.
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Figure 3.10: Left: 5 successively captured images (without post-processing) in a video
frame. Six representative particles are tracked in the time sequential frames to verify
the reconstructed flow structure. Right: Computed flow vectors according to the
given frame data, viewing from di↵erent angles.

3.6.3 Experiments without Ground Truth

Finally, we test our RainbowPIV system on four di↵erent real flows of varying com-

plexity (Figures 3.10–3.13). Using the setup described in Section 3.5, we captured

image sequences of fluids at a frame rate of 30Hz, and downsampled the images by

a factor of 8 from an original resolution of 4096⇥ 2160 to 512⇥ 270. The wavelength

coordinate was discretized into 20 levels (10nm/level), hence the maximum grid res-

olution for any experiment was reach 512 ⇥ 270 ⇥ 20, although additional cropping

was performed on some datasets to only reconstruct regiosn with interesting flows.

The voxel pitch in the (x, y) plane is 100µm, while along the z axis it is 900µm.

The parameters for the optimization method were kept the same for all datasets

(1 = 2 = 0.01, 3 = 10�5
,4 = 10�7). Only two outer loops were required for

all datasets, with 30 � 50 iterations in the inner loop of the position estimation
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Figure 3.11: Path line visualization of the dataset from Figure 3.10.

subproblem, two inner loops for the velocity estimation problem, and finally five

loops for each frame within each velocity estimation step. The reconstruction time

for the largest dataset was 125 minutes on a 2.50Ghz Intel Xeon E5-2680 CPU with

128GB RAM. Roughly 1/3 of that time was spent on the position estimation, and

the remaining 2/3 on the velocity estimation.

Five successive captured images are shown in the left hand side of Figure 3.10,

and the reconstructed velocity vectors are visualized on the right hand side of the

same figure. Six representative particles are manually selected to verify the accuracy

of the computed flow vectors. The first particle moves upward in the image plane,

and the color of it changes from green to cyan, which states that it moves away from

the camera. The second particle moves upward and slightly to the right in the image

plane and in the depth direction, it moves to the far-end of the camera. The third

particle moves to the upper left, color changes from green to cyan. The fourth particle

quickly moves to the left hand side with no significant color change. From the fourth

particle, we can observe a certain amount of motion blur due to its large velocity. The

fifth and sixth particle move downwards in the image plane and towards camera in

the wavelength domain, while the orange one moves to the right and blue one moves

to the left. Comparing the motion of these chosen particles with the corresponding

flow vectors in the reconstructed results, it reveals that overall agreement is achieved.

In addition, the actual stirred flow structure is supposed to be a vortex, rotating in
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Figure 3.12: Path line visualization for two more datasets, corresponding to a drop
of water being dripped into the volume from the top (top image), and a small jet of
water being injected from the bottom (bottom image).
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a clockwise direction. We observe that the key features of the vortex structure are

well reconstructed by our developed methods. A path line visualization of the same

velocity data is shown in Figure 3.11. Note that the particles in the visualization are

seeded synthetically and do not directly correspond to RainbowPIV particles.

Figure 3.12 shows two more data sets, one with a drop of water being dripped

into the volume from the top, and one where a small amount of liquid is injected into

the volume form the bottom. The recovered flow field in both cases is consistent with

both the expectations and the observed RainbowPIV frames.

4.6

2.5

0.4

Figure 3.13: Path line visualization of a complex flow created by stirring the fluid.
Note the two vortices that interact in a complex fashion. The visualization uses virtual
particles that do not correspond directly to real particles imaged with RainbowPIV.

Finally, the most complex example is shown in Figure 3.13. This flow was gener-

ated by strongly stirring the fluid, and then letting it set. After a while, the pictured

two-vortex structure can be observed. Like many fluid imaging methods, RainbowPIV

has problems reconstructing flows with strong motion blur. This limits our ability

to reconstruct the early stages of this experiment. To overcome this limitation, high

speed cameras could be used in conjunction with stronger light sources.

3.7 Conclusion

In this chapter, we have introduced a novel RainbowPIV system coupled with op-

timization strategies, which enables us to recover the 3D fluid flow structures using
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a single color camera, greatly reducing the hardware setup requirements and easing

calibration complexity compared to the other approaches handling 3D-3C measure-

ments. Our approach is implemented by illuminating particles in the volume with

”rainbow” light such that the depth information of the particles is color-coded into

the captured images, and the 3D trajectory of particles can be tracked by analyzing

the 2D spatial motion in the image plane and the color change in the wavelength do-

main. A specially designed DOE helps to focus all the wavelength planes on the sensor

plane simultaneously, to achieve high lateral resolution and relatively large depth of

focus at the same time. We then formulate an inverse problem to reconstruct the

particle positions in 3D using a sequence of frames to alleviate the ambiguity issues

of identifying particle positions from a single frame. With the recovered particle lo-

cations at di↵erent time steps, a further step is taken to reconstruct the fluid velocity

vector fields. An optimization problem integrating the conventional Horn-Schunck

algorithm with physical constraints is proposed to compute the flow vectors.

We demonstrate our approach both on synthetic flows induced by moving a frozen

particle volume and by using a real stirred flow. Overall, our method can robustly

reconstruct a significant part of the flow structures, and also good accuracy.

The primary drawback of our system is the limited spatial resolution along the

wavelength (depth) coordinate. Due to the existence of noise and light scattering

issues, and relatively low sensitivity of the camera to the wavelength change, at

current stage the wavelength coordinate is not allowed to be discretized any further.

In the future this situation could be improved by making use of the IR end of the

spectrum instead blue light, where camera sensitivity is rather low. Other possible

improvements include the use of cameras with additional color primaries, or primaries

that are optimized for this task.

Furthermore, our current system can only measure velocities within a flow volume

of fixed dimensions, which are determined in the axial direction by the wavelength
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spread of the generated rainbow volume and the matching chromatic aberration in

the DOE camera optics. In the future we intend to address this issue by designing a

dynamically reconfigurable rainbow light engine. In addition to having an adjustable

depth range, this Rainbow light engine will use di↵ractive optics to provide better

light e�ciency than the currently used linear filter. On the camera side, a viable

solution already exists in the form of encoded di↵ractive optics [91], which allows for

di↵ractive lenses with dynamically changeable focal length. However, integration of

the encoded DOE and the new light engine into a new RainbowPIV setup requires

still a significant amount of system development.

We addressed part of the named limitations in this dissertation. Specifically, We

propose a scalable and reconfigurable RainbowPIV system in Chapter 4, and propose

a depth super-resolved RainbowPIV system in Chapter 5. Despite these issues, on

account of the simple setup and good accuracy, our system can be easily implemented

and applied to investigate new types of fluid flows in the future.
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Chapter 4

Reconfigurable Rainbow PIV for 3D Flow Measurement

This chapter closely follows Xiong et al. [66].

In recent years, 3D Particle Imaging Velocimetry (PIV) has become more and

more attractive due to its ability to fully characterize various fluid flows. However,

3D fluid capture and velocity field reconstruction remain a challenging problem. A

recent rainbow PIV system encodes depth into color and successfully recovers 3D

particle trajectories, but it also su↵ers from a limited and fixed volume size, as well

as a relatively low light e�ciency. In this chapter, we propose a reconfigurable rainbow

PIV system that extends the volume size to a considerable range. We introduce a

parallel double-grating system to improve the light e�ciency for scalable rainbow

generation. A varifocal encoded di↵ractive lens is designed to accommodate the

size of the rainbow illumination, ranging from 15mm to 50mm. We also propose a

truncated consensus ADMM algorithm to e�ciently reconstruct particle locations.

Our algorithm is 5⇥ faster compared to the state-of-the-art. The reconstruction

quality is also improved significantly for a series of density levels. Our method is

demonstrated by both simulation and experimental results.

4.1 Introduction

A fully characterized fluid flow is essential for studying fluid properties in the field of

fluid dynamics, and for flow editing and re-simulations in other applications. However,

investigating complex and three-dimensional fluid phenomena in an easy way remains
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unsolved.

Recently, single-camera approaches were proposed on a basis of the plenoptic

camera (or light field camera) [34, 33], addressing part of the issues arisen from

Tomo-PIV. Specifically, a plenoptic camera records the full 4D light fields, which are

generated from the scattered light of seeded particles in the flow. Herein, one can

digitally reconstruct the particle locations using ray-tracing based algorithms [35, 92,

93, 94]. Overall, by using a light field camera, it allows a dramatically simplified

setup overcoming the optical access limitation. Furthermore, it can digitally refocus

the images and thus allows a relatively large depth-of-field even for a large aperture

lens. While as a compromise, the LF-PIV approach sacrifices spatial resolution for

angular information, in order to achieve su�cient axial resolution. Furthermore,

storing and processing 4D light field data is computationally expensive and exhibits

heavy memory usage. Besides, light field camera commonly has low frame rates. All of

the above mentioned drawbacks make time-resolved reconstruction of non-stationary

fluid flows an intractable issue.

A further simplified setup using a single o↵-the-shelf RGB camera has been pre-

sented in Chapter 3. This RainbowPIV system simultaneously achieves high lateral

resolution and all depths in focus without significant light loss, and also it is able

to reconstruct time-resolved flows based on captured video frames. In short, it il-

luminates the volume using a rainbow light, which is produced by passing a white

beam through a linear variable filter, such that the depth information is encoded by

color. On the acquisition side, a custom designed di↵ractive optical element (DOE)

manages a wavelength-selective focus so that all light planes are in focus at the same

time. Afterwards, a joint optimization solver for particle distribution and velocity

vector fields reconstruction is utilized for time-varying 3D-3C fluid velocity measure-

ments. It also demonstrates its applications in di↵erent flow scenarios and reveals a

compelling and robust reconstruction accuracy.
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Nevertheless, the use of the linear variable filter for rainbow generation limits the

depth range of the optical setup to a very specific size. Changing the depth range

would require replacing the linear filter with a di↵erent version and changing the

collimating optics, which involves rather large changes to the optical system. Also

in this setup, the rainbow illumination is generated through absorption of unwanted

wavelengths in the linear filter, which is a very energy ine�cient process. These

limitations restrict the above mentioned system from being adopted to an observing

volume with various depth ranges. A flexible fluid measurement system would be

favored for its applicability to flow phenomena occurred in various length scales.

Considering this, we seek to use two o↵-the-shelf blazed gratings, and further design

an encoded di↵ractive optics (see [91]) to construct an easily reconfigurable PIV

system. In this chapter, we make the following contributions:

• We propose a single-camera 3D-3C PIV system with a scalable, reconfigurable

rainbow illumination.

• We design and fabricate adjustable di↵ractive optics to focus all light planes for

a reconfigurable rainbow volume.

• We propose a computationally e�cient and memory friendly solver for high-

precision 3D particle reconstruction.

• We demonstrate the scalability of our hardware setup on real fluid scenarios.

4.2 System Overview

we provide an overview of our designed system that meets the rainbow scalability

requirement, and improves the particle position reconstruction performances.

To achieve reconfigurability of the rainbow volume, we require changes to both

the illumination and the imaging system. In other words, the fluid volume containing
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Figure 4.1: Reconfigurable Rainbow PIV setup. The illumination system, based on
two parallel blazed gratings, allows the control of the rainbow’s width. Meanwhile,
a varifocal lens is designed to have a wavelength-selective focus adjustable according
to the size of the illuminated volume.
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seeded particles should be illuminated by a parallel rainbow beam with readily mod-

ifiable size. Furthermore, the imaging system should have an easily adjustable focal

length, to ensure that for each rainbow size all particles are in-focus. Figure 4.1 illus-

trates our optical setup. The solution selected to generate a reconfigurable rainbow

is based on the use of two parallel blazed gratings, combined to a white light source,

a collimator and a cylindrical lens. Indeed, the size of the rainbow is controlled by

the distance between the two gratings as illustrated in Fig. 4.1. On the other hand,

an encoded lens composed of two di↵ractive optical elements and a refractive lens is

used to ensure that all colored planes of the rainbow will be in-focus. The equivalent

focal length of this encoded lens is governed by the relative angle between the two

DOEs.

The captured images are then used to reconstruct 3D particle locations in spatial

domain. Specifically, it solves an inverse problem of the image formation model

which formulates the imaging process from particle locations to the observed image.

After obtaining two consecutive particle distributions, volumetric flow reconstruction

is performed, using a modified Horn-Schunck optical flow model. A modified solver

(truncated consensus ADMM) for particle distribution retrieval is proposed in the

consideration of computational e�ciency and the reconstruction quality.

4.3 Particle Position Estimation

Following the image formation model from [65], particles in the volume are illuminated

by wavelength-dependent (denoted as �) light sheets, which are physically dependent

on the depth of particle locations, such that the third dimension (z coordinate) of

a specific illuminated particle can be determined from its spectral information. The

occupancy probability of a specific voxel is described by P (⇠,�), where � indicates on

which light plane the voxel locates and ⇠ = (x, y) indicates the 2D spatial position in

that light plane. Moreover, a RGB camera is employed for capturing the regions of
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interest, thus the response of the camera to the illuminated particles can be modeled

as a series of point spread functions (PSFs), denoted as Kc(�), which vary from the

color channels c (c 2 {r, g, b}) and wavelengths. The convolution operator for the

PSFs can be further formulated into matrix A = [Ar;Ag;Ab]. The objective is to

reconstruct the particle probability distributions. Specifically, we solve the following

minimization problem:

(p⇤) = argmin
p

1

2
kAp� ik2

2
+ ↵kpk1, (4.1)

where i = [ir; ig; ib] is the stacked vector for the observed RGB image, p is the vector-

ization of 3D particle distributions, and ↵ regulates the sparsity of the reconstructed

particles in spatial domain.

The above minimization problem refers to the basic LASSO algorithm, which can

be solved by the ADMM framework [84], as in [65]. However this basic solution

incurs a significant cost both on terms of computational e↵ort and memory consump-

tion when dealing with a large concatenated matrix A. Although some matrix-free

solvers, for instance conjugate gradient, can be applied to avoid explicitly storing the

coe�cient matrix, the computational cost is still significant. To ease both memory

consumption and computational cost, we introduce a consensus based ADMM solver

that allows us to split the problem into smaller chunks based on the spectral response

of the camera sensor. These individual parts can be solved almost independently.

Consensus ADMM solver. Consensus ADMM has been recently used to solve

distributed optimization problems [95, 84], and large-scale/high-dimensional feature

learning based image processing tasks [96]. In particular, it solves an optimization

problem involving a composite objective
P

j
fj(xj), where fj : Rn ! R refers to j

th

component of the entire objective, and xj are the corresponding local variables. The

local variables are all constrained by a common global variable y, written as xj = y.
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For a simple variation of the objective function with an additional regularization term

g, the problem can be expressed as:

minimize
X

j

fj(xj) + g(y)

subject to xj = y,

(4.2)

We can fit our particle reconstruction model into the above consensus problem by

decomposing it based on color channel, such that each subproblem corresponds to a

single color channel. Specifically, for the problem in Eq. (4.1), fc(pc) =
1

2
kAcpc� ick22

and g(y) = ↵kyk1. The consensus ADMM solver is expressed in Algorithm 4.

Algorithm 4 Consensus ADMM for solving Eq. 4.2

1: for k = 1 to N do
2: // p-update step (ridge regression)
3: pk+1

c
 (AT

c
Ac + ⇢I)�1(AT

c
ic + ⇢(yk � qk

c
))

4: // y-update step (soft thresholding)
5: yk+1  (p̄k+1 + q̄k � ↵

3⇢
)+ � (�p̄k+1 � q̄k � ↵

3⇢
)+

6: // scaled dual variables update
7: qk+1

c
 qk

c
+ pk+1

c
� yk+1

8: end for

Here, p̄ and q̄ denote the averaged value of pc and qc over color channels respec-

tively. Each subproblem tackles the reconstruction step in one color channel, and

hence it becomes less computationally intensive and more memory friendly. While an

issue referred to “over averaging” arises when averaging the local variables in y-update

step of Algorithm 4. This issue comes from the fact that the generated rainbow cov-

ers a broadband visible spectrum, ranging from red to blue light. Herein, one color

channel only covers part of the observing volume in axial direction, for instance red

covers the front part of the volume, blue covers the rear part and green covers the

middle part. Thus each subproblem can only reconstruct particles over the regions

which are referred by the associated color channel. Therefore, averaging the solutions

to the subproblems leads to degraded results, which causes the “over averaging” issue.
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To overcome this issue, we present a truncated consensus ADMM solver, besides, it

achieves higher computational e�ciency.

Truncated Consensus ADMM solver. The general idea for the proposed trun-

cated consensus solver is illustrated in Figure 4.2. Since one color channel provides

partial information of the particle distributions in the volume along z-axis, we can

discard those useless regions and retain the regions with the corresponding color in-

formation for each channel. Therefore, every modified subproblem only reconstructs

partial particle distributions. Recall the notations in Figure 4.2, Atr

c
denotes the trun-

cated matrix of Ac and ptr

c
denotes the particle distributions referred by the color

channel c.

ଵ
ଶ||𝑨

௧𝒑௧ െ 𝒊||ଶଶ

ଵ
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ଵ
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Generated Rainbow

z-
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Figure 4.2: Illustration of the truncated consensus solver. Each subproblem only
tackles part of the observing volume which is referred by the involved color channel.

Moreover, depth-dependent weights will be applied for the L1 penalty term in

order to compensate for the camera spectral sensitivity. For instance, the spectral

response of the green channel of the camera sensor may be e↵ective to wavelengths

roughly ranging from 500nm to 600nm, while it has the peak response at 530nm.

This will lead to a non-uniform distributions of reconstructed particles, which are

preferred to be placed at wavelength levels exhibiting large response. The compen-

satory weighting term enables us to ease the biased reconstruction results, which is
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expressed as:

wc(�i)
i21,...,M

=
kKc(�i)k22

max
i

(kKc(�i)k22)
↵, (4.3)

where wc(�i) refers to the weights of the c color channel at depth level of wavelength

�i, andM is the number of discretized levels in axial direction. As we can observe, this

formula assigns smaller penalties to the wavelength levels with less sensitive spectral

response and larger penalties to levels with higher sensitivity.

4.4 Volumetric Flow Reconstruction

The algorithm used for tracking the fluid motion is adopted from Chapter 3, except

that we only work on two frames, instead of a video sequence, to validate the scala-

bility of our proposed PIV system. The tracking algorithm is a variant of standard

Horn-Schunck model, in which the brightness constancy term is replaced by a par-

ticle presence consistency term, and also the divergence-free constraint is taken into

account.

Specifically, we solve the following optimization problem

u⇤ = argmin
u

Z

⌦

p1

2
� (p1 � p2(u,��t))�2 d⌦

+ � kruk2
2
+ ⇧CDIV(u),

(4.4)

where � and .
�2 are component-wise (Hadamard) operators. The terms in this op-

timization problem are respectively a Horn-Schunck style “photoconsistency” term

on the particle occupancy probabilities, an advection term, and an incompressibility

term. We refer to Chapter 3 for detailed derivations of these terms. The method

for solving this optimization problem is reproduced in Algorithm 5 for the sake of

completeness. For lightening the notation, we define
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p̂k

2
= p2(u

k
,��t)

H = p1 � (rp̂k

2
)�2 + 2�r2

t = p1 � (p̂k

2
� p1 �rp̂k

2
uk)rp̂k

2

Algorithm 5 ADMM for solving Eq. 4.4

1: for k = 1 to K do
2: // u-minimization step
3: uk+1  (⇢H+ I)�1(yk � qk � ⇢t)
4: // pressure projection step
5: yk+1  ⇧CDIV(u

k+1 + qk)
6: // scaled dual variables update
7: qk+1  qk + uk+1 � yk+1

8: end for

4.5 Experimental Setup

In this subsection, we explain our approach to generate a rainbow beam to illuminate

the tank. This rainbow volume should consist of a stack of parallel, nearly monochro-

matic planes, where the density of the planes (and therefore the thickness of the

rainbow volume) is easily adjustable in size. Furthermore, the system should provide

a good light e�ciency. To meet these requirements we propose to use a setup based

on two parallel gratings respecting the blaze condition, as shown in Figure 4.3.

A white light beam is generated by a plasma light source combined with a liquid

light guide (HPLS245, Thorlabs). The beam becomes parallel after passing through

the collimator. Then a cylindrical lens is employed to focus the light into a line that

will reach the first blazed grating. After being di↵racted by the first grating, the

obtained rainbow beam is divergent and spreads out in the perpendicular direction

to the rainbow plane. A second blazed grating, identical and parallel to the first one,

will di↵ract the rainbow beam with the same angles as the previous one, yielding a

parallel rainbow beam.



70

The blazed gratings are adopted in our setup because they concentrate the max-

imum optical power for a given di↵raction order (the first order in our case), while

the energy of other orders (including the zeroth order) is minimized. The selected

blazed gratings have the following characteristics: blaze wavelength 500nm, blaze

angle 17�27
0
, 1200 grooves/mm, dimension 50mm ⇥ 50mm ⇥ 9.5mm and 60 � 80%

grating e�ciency at the blaze wavelength. The width of the obtained rainbow beam

can be simply controlled by the distance between the two gratings.

Once the particles of interest are illuminated by the reconfigurable rainbow light

generated by the double blazed gratings, a varifocal DOE lens is necessary to adapt

to the changing volume length. This varifocal DOE lens should be able to continu-

ously adjust to the color depth of field all over along the volume range. Thereby, a

single DOE as used in [65] is not su�cient. An encoded di↵ractive lens as previously

reported by Heide et al. [91] is applied to realize the varifocal DOE lens. An encoded

di↵ractive optical element (EnDOE) consists of two DOEs that are optimized to form

the phase function of an ideal lens when the two are aligned face-to-face. The focal

lengths of the EnDOE are encoded in the relative rotation angles between the two

components. Over a specific angle range 0 6 ✓min 6 ✓max 6 ⇡, the focal length can

be designed in the range of [�fmax,�fmin] [ [fmin, fmax].

4.6 Results

4.6.1 Calibration

Since wavelength changes approximately linearly in distance along longitudinal direc-

tion, we can uniformly discretize the volume in wavelength domain, and one discrete

wavelength level is associated with a depth layer. It is essential to obtain the camera

response to each of the wavelength level, and thus one can retrieve the depth informa-

tion from captured data. In our setup, rainbow with spectrum ranging from 460nm

to 660nm was generated. We discretize the spectral range into 20 levels, resulting in
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Figure 4.3: Illustration of rainbow generation using two parallel blazed gratings (BG1
and BG2 / BG2’). A parallel white beam reaching BG1 with an incidence angle (↵)
equal to the blaze angle (✓Blaze), is di↵racted at the same angle (�) for the blazed
wavelength (green ray). The second di↵raction occurs at BG2 / BG2’ with the same
angles for each wavelength. The obtained rainbow is then parallel, and its width is
controlled by the distance between the two gratings.
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a spectral resolution of 10nm/layer. When calibrating the camera response at one

particular wavelength level, one can either physically block the rest wavelengths or

use a wavelength filter, but the former one is preferred in our experiments as it has no

extra energy loss. Similar to the work in [65], a RGB camera is applied for calibration

and frame data capture, such that each PSF refers to a color image. In our setup,

however, the calibration should be re-performed after changing the rainbow size.

4.6.2 Simulation Results

In order to quantitatively evaluate the reconstruction accuracy of the particle retrieval

algorithm, we synthetically generate a number of three-dimensional particles, employ

the calibrated PSFs and add Gaussian white noise of variance 0.001 to produce a

simulated observed image. The reconstruction accuracy is examined by the metric of

quality factor (Q), which refers to the normalized correlation coe�cient of the real

and reconstructed probability fields, given by

Q =

P
p · p⇤

pP
(p)2 ·

P
(p⇤)2

(4.5)

where p and p⇤ denote the reconstructed and ground truth probability fields re-

spectively. The simulation is proceeded on a volume of dimensions 100 ⇥ 100 ⇥ 20

with di↵erent seeding densities. In the truncated approach, color information with

kKc(�i)k22  0.25 is discarded. We compare the proposed truncated ADMM solver

(“Trun-ADMM”), with the standard ADMM solver “ADMM” and consensus ADMM

solver “CADMM” under the same parameter settings (↵ = 0.05, ⇢ = 1). The results

are shown in Figure 4.4(a), where the solid horizontal line (Q = 0.75) defines the base

line for a su�ciently accurate reconstruction result [1]. It suggests that the proposed

method reveals a considerable improvement in reconstruction quality at all densities,

while that of consensus solver is degraded significantly due to the “over averaging”
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Figure 4.4: (a) Reconstruction quality factor (Q) versus a number of seeding densities
(ppp) for di↵erent approaches. The solid line means the criterion for a reasonably
accurate reconstruction. (b) Execution time for ADMM solver and Trun-ADMM
solver using conjugate gradient (CG) and Cholesky decomposition (CD) respectively.

issue.

We then evaluate the execution time of ADMM solver and Trun-ADMM solver

for various X/Y dimensions. Conjugate gradient (CG) and Choleskey decomposition

(CD) are independently applied for those two solvers to deal with the linear system

of Line 3 in Algorithm 4. Note that CG is implemented as a matrix-free solver and

CD is preconditioning factorized, which is not counted in the running time. It takes

31 and 36 iterations to reach the same stopping criteria for “ADMM” and “Trun-

ADMM”, respectively. The results of the execution time are shown in Figure 4.4(b).

The processing time for “ADMM-CD” increases dramatically with the dimensions,

and for CG methods it increases moderately, roughly in linear. Even though the

proposed truncated consensus solver (“Trun-ADMM-CD”) takes more iterations, it

still achieves higher computational e�ciency, especially realizing about 5⇥ speedup

over “ADMM-CG”, which is a standard way for solving this type of problem.

4.6.3 Refocusing

We evaluate the reconfigurability of our system by two experiments with various

rainbow sizes, 50mm and 30mm, the results for which are shown in Figure 4.5. We

can observe that with the usage of EnDOE, the images are well focused in both cases
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even with a large aperture, while the lens-only setup fails to focus on all particles with

the same f-number. Although we can reduce the aperture size for a larger depth-of-

field, as a tradeo↵, the light e�ciency is sacrificed and get poorer images. It should be

noted that due to the di↵raction e�ciency, some light energy lost in the camera side,

however, we can still obtain su�ciently high quality images comparable to reducing

the aperture. We clarify that the size of our proposed system is not limited on the

two test examples, but can be adjusted continuously from 15mm to 50mm.

DOE + f/1.8 f/1.8 f/5.6

f/8.0f/1.8DOE + f/1.8

Figure 4.5: Images captured using the encoded DOE with lens (DOE+f/#) and
lens-only (f/#) with di↵erent aperture settings. The first and second rows show the
captured image with rainbow size of 50mm and 30mm respectively. Left: Encoded
DOE and lens with f/1.8 since the depth-of-field of EnDOE setup is not a↵ected by
the aperture size, the largest available aperture was chosen to maximize the light
e�ciency. Middle: lens-only with an aperture of f/1.8. While the light e�ciency
matches that of our setup, depth-of-field blur is significantly worse. Right: lens-only
with stopped down apertures of f/8.0 (top) and f/5.6 (bottom). Here the blur is
approximately matched to our setup, but the light e�ciency is decreased by a factor
of 19.7 and 9.6, respectively.
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Figure 4.6: Flow vector visualizations for the fluid flow captured in rainbow sizes of
50mm (left) and 30mm (right).

4.6.4 Fluid Flow Measurements

At last we test our system and algorithms on real fluid flows to verify the ability for

measuring flows within a volume with alterable depth ranges. The experiments take

place on a test section in the size of 40mm⇥20mm (x⇥y), and the size of z dimension

varies with the generated rainbow. We proceeds on the datasets as partially shown

in Section 4.6.3, such that the size in axial direction is 30mm or 50mm. The working

volume is discretized into grids with resolution of 400⇥ 200⇥ 20, therefore, the voxel

pitch in x � y plane is 100µm, and the pitch size in z-axis is 1.5mm or 2.5mm

respectively for two generated rainbows. The pictures are captured at a frame rate of

30 fps, and the seeding density is about 0.03 ppp. The parameters for reconstructing

the probability fields are the same as listed in Section 4.6.2. As for reconstructing

volumetric flow, the parameters are common for all experiments: � = 5e�6, ⇢ = 1,

and the ADMM iteration is 3. The running time for the first step is about 60 seconds

for each frame, and for flow reconstruction is roughly 40 minutes on a 2.50Ghz Intel

Xeon E5-2680 CPU with 128GB RAM. The reconstructed flow vectors for di↵erent

flow phenomena in an alterable volume size are visualized in Figure 4.6, and they

coincide well with the real fluid flows. These results successfully demonstrate the

feasibility of our proposed system in fully characterizing the 3D flow velocities for

fluid scenarios in arbitrary volume size within designed depth range.
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4.7 Conclusion

In this chapter, we have demonstrated a reconfigurable rainbow PIV system that can

e�ciently track particle flows in 3D with a considerable range of volume sizes. Com-

pared to existing PIV methods, our system is easy to implement, and is much more

flexible and re-configurable. We introduce a high e�ciency parallel double-grating

system to generate scalable rainbow illumination by simply adjusting the distance

between the two. In the camera end, we exploit a varifocal encoded DOE lens to ac-

commodate di↵erent sizes of the rainbow illumination, ranging from 15mm to 50mm.

Moreover, we propose a truncated consensus ADMM algorithm to reconstruct 3D par-

ticle distributions. Our algorithm is 5⇥ faster than the prior arts. The reconstruction

quality factor is also improved significantly for a series of density levels.

Similar to [65], the axial resolution is still a limitation for the proposed system.

Specifically, two factors determine the axial resolution: the spectral resolution of

the illumination, and the spectral resolution of the camera. The illumination spec-

trum spreads continuously over the volume width, thus the wider the volume is, the

finer spectral resolution it reveals. However, representing full spectral information

by only three color channels in an RGB camera leads to metamerism, which adds

to the ambiguity to resolve spectral features by the camera. The benefit of the in-

creased illuminating spectral resolution could not compensate for the loss of spectral

information, hence the axial resolution is decided by the camera spectral resolution.

Capturing more color channels can enhance the spectral resolution on the camera

side, however, high resolution, multi-spectral video cameras are not readily available

for high-res, video-rate capture as required by PIV.

Our system could be further improved in future work. First, although the light

e�ciency has been significantly improved compared to existing rainbow generation

(e.g. linear variable filter), the double-grating system still su↵ers from light loss in

undesired di↵raction orders. This could probably be addressed with the use of prisms
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instead of blaze gratings, although the prisms would have to be quite large, which

adds to the bulk of the system, as well as its cost. Second, instead of using plasma

white light source, a supercontinuum white light laser could be employed to improve

the SNR, and hence smaller and less reflective particles could be tracked. Because of

the reconfigurability of our system, it is fairly straightforward to apply this technique

to both large scale and microscopic PIV applications.
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Chapter 5

RainbowPIV with Improved Depth Resolution –

Design and Comparative Study with TomoPIV

This chapter closely follows Xiong et al. [97].

RainbowPIV is a recent imaging technology proposed for time-resolved 3D-3C

fluid velocity measurement using a single RGB camera. It dramatically simplifies the

hardware setup and calibration procedures compared to alternative 3D-3C measure-

ment approaches. RainbowPIV combines optical design and tailored reconstruction

algorithms, and earlier preliminary studies have demonstrated its ability to extract

physically constrained fluid vector fields. This chapter addresses the issue of limited

axial resolution, the major drawback of the original RainbowPIV system. We validate

the new system with a direct, quantitative comparison to four-camera Tomo-PIV on

experimental data. The reconstructed flow vectors of the two approaches exhibit a

high degree of consistency, with the RainbowPIV results explicitly guaranteeing phys-

ical properties such as divergence free velocity fields for incompressible fluid flows.

5.1 Introduction

In recent years, a great amount of e↵ort has been invested into the development of

methods for complete volumetric reconstruction of three-dimensional, three-component

(3D-3C) velocity vector fields. Tomographic Particle Imaging Velocimetry (Tomo-

PIV) [1, 2] has long been considered the standard technology for 3D measurement

due to its ability to handle high particle seeding densities and high spatial resolu-
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tion reconstruction, as well as its robustness to many types of flow phenomena. As

described in previous chapters, however, Tomo-PIV has the drawbacks of requiring

complicated setups and calibration and limited depth-of-field. More importantly,

there are many experimental setups where optical access is limited, and thus setting

up a multi-camera system becomes impractical. In such situation, a single-camera

based 3D-3C technology would be desired.

Two main types of single-camera approaches have been proposed for 3D flow

measurement: encoding particle depth into the light path on the camera side, or

into color or spectral information on the illumination side. The strategy of encoding

particle depth by light path dates back to the work of Willert et al. [32], who place

a three-pinhole mask in front of the objective, and recover 3D particle locations

based on the position and length of captured image patterns (equilateral triangles)

by means of a defocusing technique. This method has been applied to several flow

scenarios [98, 99], although it has the disadvantage of low light e�ciency (since most

light is blocked by the pinhole mask), as well as low particle seeding density because

of the di�culty of distinguishing overlapping patterns from nearby particles. More

recently, single-camera PIV approaches based on plenoptic (or light-field) cameras

have been proposed [92, 94]. These record the full 4D light field of the scattered light of

seeding particles and digitally reconstructs particle locations by means of ray-tracing

based algorithms. Quantitative comparisons between Tomo-PIV and Plenoptic-PIV

have been conducted in recent work [100, 101]. Plenoptic-PIV dramatically simplifies

the hardware setup and gets rid of the complicated calibration procedures required

in Tomo-PIV. On the other hand, the significant spatial resolution is sacrificed for

angular information in this approach. In addition, the available plenoptic cameras

su↵er from comparatively low frame rates, which in turn limits the usefulness of this

approach for time-resolved non-stationary fluid flow measurements.

Another group of single-camera methods is based on the encoding of particle depth
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by structured light (monochromatic or polychromatic light). This way, the 3D particle

locations can be determined by 2D spatial location and 1D illumination information

in the captured single image. A method for exploiting monochromatic illumination

has been proposed in [40], which illuminates the volume by a spatially and temporally

varying intensity profile, and achieves an axial resolution of 200 discrete depth levels.

However, temporal resolution is sacrificed to a certain extend for the sake of high

depth resolution, and the method also fails to separate overlapping particles. Most of

the related work using polychromatic illumination is summarized in [39]. Early work

extracts the particle depth based on a calibrated mapping function of RGB or hue

value to depth. This naive method cannot deal with overlapping particles, and thus

it is not suitable for dense fluid flow reconstructions. An additional disadvantage is

that the method is sensitive to random noise, optical aberration and unpredictable

secondary light scattering from the particles.

The recently proposed RainbowPIV [65] (presented in Chapter 3) tackles most

of the existing issues by a joint design of the measurement setup (illumination and

camera optics), and the reconstruction software. The measurement setup of Rain-

bowPIV consists of an illumination module that generates a rainbow pattern which

color-codes the distance of particles from the camera, as well as a di↵ractive opti-

cal element in front of the camera lens, which provides all-in-focus imaging of the

color-coded particles. The reconstruction software is comprised of an integrated op-

timization framework to jointly reconstruct both of the particle distributions and

velocity vector fields.

Many single-camera methods su↵er from a limited depth-to-width ratio, i.e. they

can image only shallow volumes. Indeed, the initial RainbowPIV system [65] had a

limited depth-to-width ratio, which was fixed at 0.36. However, in principle the vol-

ume depth in RainbowPIV can be tuned by a) changing the thickness of the rainbow,

and b) adjusting the design of the all-focus camera optics. This was demonstrated in
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Chapter 4, which proposed a reconfigurable RainbowPIV system with an adjustable

rainbow generation engine and a varifocal optical design, extending the depth range

to (15-50 mm) while the lateral resolution is una↵ected. This corresponds to a depth-

to-width ratio of 0.3 - 1. Unfortunately, extending the depth range in this fashion

reduces the depth resolution, as the same number of distinguishable depth layers get

spread out over a larger range.

Therefore, despite advantages of Rainbow PIV in terms of simplicity of setup, it

still su↵ers from a limited axial resolution compared to multi-camera methods like

Tomo-PIV. In this chapter, we address this issue and propose an extension to the

precedent RainbowPIV, by implementing a depth super-resolved RainbowPIV sys-

tem. Furthermore, we carry out a direct comparison with the well established four-

camera Tomo-PIV system to verify its applicability and reconstruction accuracy for

flow measurement. Moreover, we demonstrate that RainbowPIV, unlike Tomo-PIV,

reconstructs physically plausible flows e.g. divergence-free flow fields for incompress-

ible fluid flow.

Collimated white 
light beam

Blazed Grating 1

Blazed Grating 2 Octagonal tank

Camera 1

Camera 2

Camera 4

Camera 3
with DOE

x

z

Figure 5.1: Schematic diagram for the experimental setup. Two blazed gratings
are utilized for generating size-controlled rainbow. Four cameras are utilized for
Tomo-PIV measurement, among which, the third camera with custom designed DOE
(di↵ractive optical element) for all-in-focus imaging is also used for RainbowPIV.
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5.2 System Overview

In order to realize a simultaneous measurement with RainbowPIV and Tomo-PIV,

the schematic diagram for the designed experimental setup is shown in Fig. 5.1. Four

identical color cameras (RED SCARLET-X DSMC with sensor MYSTERIUM-X (30

mm × 15 mm, 4096 × 2160 pixels) are arranged to view an octagonal tank from

di↵erent perspectives for Tomo-PIV. The elevation angle between camera 2 and 3

is 15�. The internal clocks of the four cameras and triggering signals are produced

with the time code generator “Lockit ACL 204”. The central bottom camera (camera

3), equipped with a specially designed di↵ractive optical element (DOE) to form a

hybrid refractive/di↵ractive imaging system, is also utilized for RainbowPIV. The

DOE is a Fresnel phase plate used for all-in-focus imaging in the RainbowPIV setup.

Normally, the cameras used in Tomo-PIV setup use a relatively small aperture size

in order to obtain a large depth-of-field. The resulting loss in light e�ciency poses

additional practical challenges, especially for high speed fluid imaging applications.

In contrast, the depth-of-field of the utilized hybrid refractive/di↵ractive lens is not

a↵ected by the aperture size, hence RainbowPIV can make use of the largest available

aperture for maximum light e�ciency, while still maintaining an extended depth-of-

field. Specifically, in our setup, the camera with DOE uses an aperture of f/1.8 (the

maximum aperture) while the remaining cameras use f/5.6 for a good balance between

depth-of-field and light e�ciency. The design, fabrication and impact of the DOE are

explained in detail in [65].

Another notable part is the illumination system (rainbow generation). The phys-

ical size of the measured volume is dependent on the field-of-view of the camera (x-y)

and the illumination width (z), corresponding to the rainbow width. In order to

generate a collimated rainbow beam with a controllable depth, we utilize two blazed

gratings and place them parallel to each other at the blazing angle. A white light

beam, produced by a Sumita LS M350 light engine with power consumption of 450W,
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entering the setup is separated into a collimated set of monochromatic light sheets

forming a rainbow. The thickness of this rainbow can be adjusted by altering the

distance between two gratings. In the experiment, we work on a 25 mm rainbow with

wavelength ranging from 480 nm to 680 nm. The size of the x-y plane observed by

the camera is 50 mm⇥ 35 mm.

White Polyethylene Microspheres, with a diameter in the range [90, 106 µm] is

used in the experiments. We place a vortex ring generator (Fig. 5.2) beneath the

tank to produce specific flow scenarios for measurements. Specifically, it is composed

of a cylindrical chamber with an elastic latex membrane in the lower third. At the

top, the cylinder is covered with a 3D printed cap that has a circular aperture. An

air pulse enters the bottom chamber and upwards pressurizes the membrane, driving

water out of the top chamber through the aperture, and finally generating the desired

vortex rings.

Air pulse

Membrane

Print aperture

Particles

Vortex ring

Figure 5.2: Schematic diagram for the vortex ring generator.

For Tomo-PIV processing, by converting the RGB images to 8-bit grayscale im-
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ages, a 1120 ⇥ 780 ⇥ 560 particle intensity field is reconstructed using the MART

method, followed by a multi-pass cross-correlation with reduced interrogation win-

dow size and 75% overlap. The reconstructed velocity field has a size of 50⇥ 35⇥ 25,

resulting in a spatial resolution of 1 mm along all 3 axes. All of the utilized algorithms

are built in the LaVision Davis software.

5.3 Depth Super-Resolution RainbowPIV

In order to fully reconstruct dense 3D-3C velocity fields, prior work utilizes a pipeline

approach that first estimates the particle distribution fields at successive time steps,

and then reconstructs the corresponding flow fields using the estimated particle dis-

tributions. Separating particle distribution field and velocity field reconstructions

neglects temporal coherence as a strong physical cue. Specifically, particles present

at one time step should also be present at the next as well as the previous time

steps (excluding a small number of particles that enter or leave the observation vol-

ume), and their location should be consistent with the estimated 3D-3C flow fields.

RainbowPIV for the first time proposed a joint optimization framework for parti-

cle distribution fields and fluid velocity vector fields reconstruction on sequentially

captured video frames.

The depth resolution of RainbowPIV system is dependent on the number of dis-

cretized depth levels, which is basically the number of PSFs. In our implementation,

PSFs are expressed by a batch of 3⇥5⇥5 matrices, representing three color channels

and a 5⇥ 5 spatial window. Owing to relatively low camera sensitivity of the camera

sensor to subtle wavelength shifts, only a limited number of PSFs is calibrated in the

original RainbowPIV system, resulting in a relatively low depth resolution.

Specifically, the axial reconstruction accuracy relies on two factors: the camera

wavelength sensitivity and the quantization error. The sparser the signal is sampled,

the larger quantization error it reveals. In this chapter, we show that it is feasible
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X

Z

Figure 5.3: Discretization scheme of the precedent RainbowPIV (left) and the pro-
posed strategy (right).

to reduce the quantization error by increasing the number of PSFs using a simple

linear interpolation scheme to generate in-between PSFs. As indicated in Fig. 5.3, in

the prior implementation, the sampling rate in the axial direction is far lower than

that along the lateral directions, giving rise to the relatively large quantization error.

With the proposed interpolation scheme, the same sampling rate can be achieved in all

directions. While the PSF change with wavelength is not linear over a large spectral

range, piecewise linear approximations like ours over small spectral bands are a good

model of the true intensity change in each RGB color channel (see Fig. 5.4). With this

simple digital adaptation (no hardware adjustment), we are able to generate super-

depth particle distribution fields and flow vectors with reduced axial quantization

error. A similar interpolation scheme is also applied to reconstruct subpixel flow

vectors between two images [102].

We assess the e↵ectiveness of this interpolation scheme on simulated data. We

simulate a volume with a fixed lateral dimension size 20 mm ⇥ 20 mm, and various

axial dimensions (2 mm, 4 mm, 8 mm, 16 mm), yielding di↵erent depth-to-width
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Figure 5.4: Calibrated curves for the normalized camera response to di↵erent depth
levels (0 - 25mm) for red, green and blue channels. Spectral response of 20 depth
levels are obtained from calibration and the curves are generated by linear fitting.
These curves match well with camera spectral sensitivity curve with respect to wave-
lengths. Within a small spectral band, linear curve fitting is a simple, yet e↵ective,
approximation model to camera response.

ratio. We use the calibrated PSFs to model camera response to di↵erent depth levels.

The lateral dimension is discretized by a size of 200 ⇥ 200, yielding a spacing of 0.1

mm. A random particle distribution of ppp=0.05 is generated and is advected fol-

lowing simulated flow velocities as described in [65]. We compare the reconstruction

error of the flow vectors in the axial direction (referring to uz) by RainbowPIV and

the proposed depth super-resolved RainbowPIV. The results are shown in Fig. 5.5.

When the depth-to-width ratio is 0.1, RainbowPIV and the new proposed approach

are simply identical as they have the same axial spacing. When the depth-to-width

ratio increases, RainbowPIV samples the volume sparser along the axial direction,

and yields increased axial reconstruction error (almost linear to the depth-to-width

ratio). Using the interpolated scheme, the axial reconstruction accuracy is signifi-

cantly improved on this simulated results; Error is reduced by roughly a half when

the depth-to-width ratio reaches 0.8. The accuracy of the reconstructed flow vectors
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Figure 5.5: Averaged errors for reconstructed flow velocities in the axial direction
with respect to various depth-to-width ratio. The error is normalized by dividing the
volume depth.

in this fashion is further experimentally validated in the following.

5.4 Experimental Results

5.4.1 Validation Experiments

We validate the proposed strategy on experimental data with the information of

ground truth motion as [65] did. We immerse the particles into a tank containing

high viscosity liquid to ”freeze” them. The tank is then put on a multi-dimensional

rotation/translation stage. Therefore, the true movement of particles can be managed

by manipulating the stage. We move the tank in the x and z direction respectively

to compare the lateral and longitudinal reconstruction accuracy. A translation of 0.2

mm in the x direction and 0.5 mm in the z direction is applied. As a result, the

precedent implementation [65] as described in Chapter 3 recovers a motion vector

of 0.18 mm/time unit, the mean value of the norm of the reconstructed velocity in

the lateral translation, with standard deviation of 0.015 (mm/time unit), and the
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proposed method delivers similar reconstruction accuracy, 0.18 mm/time unit with

standard deviation of 0.014 (mm/time unit). As for the longitudinal translation,

0.35 mm/time unit with standard deviation of 0.079 (mm/time unit) is achieved by

original RainbowPIV, while our super-resolved approach achieves 0.42 mm/time unit

with standard deviation of 0.045 (mm/time unit). We therefore observe a significant

improvement with respect to axial reconstruction accuracy in this simple scenario,

while the lateral reconstruction accuracy is una↵ected.

In both implementations, the recovered lateral flows exhibits higher accuracy than

the axial flows. As explained in Sec 5.3, the quantization error and camera wavelength

sensitivity a↵ect the axial resolution. In the original RainbowPIV, the sampling rate

along the axial direction is lower than the lateral sampling rate, resulting in larger

quantization error. This super-resolved approach achieves the identical sampling rate

in lateral and axial directions, however, the camera is more sensitive to lateral particle

motions (change of pixel positions) than axial motions (change of wavelength). This

fact brings in higher uncertainties for the estimation of the axial flows.

5.4.2 RainbowPIV and Tomo-PIV

We further validate our method by directly comparing it with four-camera Tomo-PIV

system on practical fluid flow phenomena. The simultaneous experimental setup for

four-camera Tomo-PIV and single-camera RainbowPIV is shown in Fig. 5.6. The

e↵ective resolution of the captured RainbowPIV images is 1600⇥ 1120 (pixels). We

downsample the images by a factor of 8 in both dimensions (no further image prepro-

cessing required), resulting in 200 ⇥ 140 (pixels) images, and each particle occupies

roughly 3 ⇥ 3 pixels. The depth dimension is discretized into 100 levels in order to

get regular voxel, where the PSFs of 20 levels (1.25 mm per level) are obtained by

calibration, and the intermediate PSFs are digitally generated by linear interpolation

based on the calibrated neighbor PSFs. Therefore, the size of the reconstruction
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Figure 5.6: Experimental setup for both Tomo-PIV and RainbowPIV.

Figure 5.7: A single captured RainbowPIV image with ppp = 0.05. Notice that
with the employment of the specifically designed di↵ractive optical element, di↵erent
colored particles have similar level of focus with the maximum aperture (f/1.8), even
though they have di↵erent object distance.
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grid is 200 ⇥ 140 ⇥ 100, with a voxel spacing of 0.25 mm along all 3 axes. One

vector per voxel will be generated by the proposed algorithm, therefore, the recon-

structed velocity field has the same dimension size and spatial resolution as the grids

(200⇥140⇥100). The particle image density is roughly 0.05 ppp (particle per pixel),

and one example of the captured RainbowPIV image at this particle density is shown

in Fig. 5.7.

A qualitative comparison of the reconstructed velocity fields for the introduced

vortex ring at one time step is presented in Fig. 5.8. Two sliced views (one is perpen-

dicular and the other is parallel to the image plane) of the reconstructed flow vectors

and the color-coded vorticity magnitude are visualized. The overall flow structure ob-

tained by RainbowPIV agrees well with that computed by Tomo-PIV. Nevertheless,

with multiple perspectives, Tomo-PIV has higher depth resolving capability than the

proposed single view approach. We can observe that the reconstructed flow vectors

from RainbowPIV with a large z component are noisier than flow vectors in the x�y

plane. As discussed in Sec. 5.3, on account of relatively lower sensitivity of the camera

to the wavelength change, the camera is less sensitive to the particle motions in the

axial direction than in-plane motions. Quantitative comparisons between Tomo-PIV

and RainbowPIV show an average di↵erence of about 0.05 m/s for flow vector com-

ponents in the x� y plane, and 0.1 m/s for vector component in the z direction with

the maximum flow magnitude at 0.53 m/s. In comparison, the original RainbowPIV

implementation has the same in-plane average di↵erence, whereas the out-of plane

di↵erence is 0.21 m/s. Although the uncertainty of the axial flow vectors is still larger

than the lateral flow vectors, these results a�rm the improved axial resolution.

An additional comparison is conducted by visualizing the isosurface of the vorticity

magnitude, as is shown in the top of Fig. 5.9. The figures reveal high similarity

of the core structures reconstructed by these two measurement technologies. We

further verify the mass conservation properties of the reconstructed flow fields which
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(a)

(c)
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Figure 5.8: (a)-(b): Reconstructed flow vectors and vorticity magnitude by Rain-
bowPIV (the vector fields are shown every other 4 vectors for visualization purpose);
(c)-(d): Reconstructed flow vectors and vorticity magnitude by Tomo-PIV. This si-
multaneous measurement is conducted at ppp = 0.05. The length of the arrow indi-
cates the magnitude of the flow vectors. All the plots are in the same length scale.

should be complied with the physical property. The divergence of the computed

flows is shown in the bottom of Fig. 5.9. Zero divergence is expected everywhere

for incompressible fluids. This divergence-free property is explicitly enforced by our

reconstruction method whereas Tomo-PIV fails to generate flow fields obeying this

physical property and also does not readily support to add this constraint during

computation. This result demonstrates that, despite the overall high quality and

detail of the Tomo-PIV solution, it can in fact not be considered as a ground-truth

solution.
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Figure 5.9: Isosurface visualization for the vorticity magnitude computed from Rain-
bowPIV (a) and Tomo-PIV (b) at ppp=0.05; The divergence of the velocity fields
(r · u) by RainbowPIV (c) and Tomo-PIV (d).

5.4.3 Low Particle Seeding Density

Next, we evaluate the RainbowPIV system at low particle density situations, which

are far below the desired particle density of Tomo-PIV. The correlation-based algo-

rithms applied in Tomo-PIV require su�ciently dense seeding particles to extract

accurate flow fields, and usually perform poorly at low particle densities. The pre-

sented variant of optical flow method, however, eases the issue by exploiting a local

constraint (particle occupancy consistency) which ensures that at those regions with

present particles, the reconstructed local flow vectors match with the practical par-
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ticle motion, and two global constraints (global smoothness constraint and temporal

coherence) transmitting the accurate local flow vectors to the regions without parti-

cle presence. Moreover, the physical properties are always satisfied regardless of the

particle density.

(a)

(c)

(b)

(d)

Figure 5.10: Reconstructed flow vectors and vorticity magnitude by RainbowPIV at
ppp=0.015 (a)-(b) and ppp=0.005 (c)-(d).

The tested particle image densities are roughly at 0.005 and 0.015 ppp, the cap-

tured images for which are shown in Fig. 5.11. The reconstructed flow vectors and

vorticity magnitude are also visualized in Fig. 5.10, which demonstrates that Rain-

bowPIV successfully captures the expected flow structures for vortex rings at various

low density levels. Owing to both of the local and the global constraints, the proposed
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Figure 5.11: The captured RainbowPIV image with ppp = 0.015 (left) and ppp =
0.005 (right), respectively.

method delivers decent results at rather low particle densities. Under such conditions,

particle tracking systems would be preferred over Tomo-PIV. However, this generates

Lagrangian flow vectors with sparse descriptors, rather than desired Eulerian vector

fields. As a result, we believe that RainbowPIV can also be very competitive in

experiments where uniform particle seeding is di�cult or impossible.

5.5 Discussions

Depending on the setup, there are a number of possible alternatives for illumination,

including high power white LEDs or even super-continuum lasers. The volume size

will determine the total light output required, but also the amount of spatial coherence

or beam divergence of the rainbow. This then determines the choice of the light source.

At the moment, the reconstruction algorithm assumes a single exposure per video

frame. Pulsed illumination at one pulse per frame could be used to suppress motion

blur, without any changes to the software. However, multiple exposures per frame

would require changes to the reconstruction; this may be a good avenue for future

research.
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The maximum flow velocity can be retrieved by our technique is constrained by

two factors. From the algorithmic perspective, the maximum flow vectors can be

reliably generated are 8 voxels (0.24 m/s) between consecutive time steps (a coarse-

to-fine strategy is applied to tackle the issue of large displacements). From the image

quality perspective like all other PIV measurement systems, fast-moving particles

(along the lateral directions) would cause severe motion blur in the captured images,

which downgrades the reconstruction accuracy.

As indicated in Fig. 5.4, the sensitivity of the color-based depth-encoding scheme is

non-uniform along the depth axis. However, we did not observe correlations between

the flow reconstruction accuracy and depth-encoding sensitivity. The main reason is

that our flow estimation framework is composed of both local and global constraints

(elaborated in Sec. 5.4.3). The sensitivity of the depth-encoding scheme only accounts

for the local constraint, and the reconstructed flows are also managed by the other

global constraints.

5.6 Conclusion

In this article, we have proposed a depth super-resolved RainbowPIV system which

overcomes the limitation of axial resolution existed in precedent RainbowPIV sys-

tem. A comprehensive study has been conducted for comparing the RainbowPIV

with well developed four-camera Tomo-PIV using a simultaneous measurement setup.

Both qualitative and quantitative results demonstrates a good agreement achieved by

these two systems. Beyond the velocity consistency, due to the physical-constrained

velocity estimation model, RainbowPIV delivers divergence-free velocity fields for the

measured incompressible fluids, whereas Tomo-PIV fails. Moreover, with the em-

ployment of both local and global constraints, RainbowPIV successfully reconstructs

velocity fields in rather low particle densities, which is restricted in Tomo-PIV. All

the observations confirms the potential usage of RainbowPIV in 3D volumetric ve-
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locity measurements, specially in applications with limited optical access and low or

non-uniform particle densities.
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Chapter 6

In-the-Wild Single Camera 3D Reconstruction

Through Moving Water Surfaces

This chapter closely follows Xiong et al. [103].

We present a method for reconstructing the 3D shape of underwater environments

from a single, stationary camera placed above the water. We propose a novel di↵er-

entiable framework, which, to our knowledge, is the first single-camera solution that

is capable of simultaneously retrieving the structure of dynamic water surfaces and

static underwater scene geometry in the wild. This framework integrates ray cast-

ing of Snell’s law at the refractive interface, multi-view triangulation and specially

designed loss functions.

Our method is calibration-free, and thus it is easy to collect data outdoors in

uncontrolled environments. Experimental results show that our method is able to

realize robust and quality reconstructions on a variety of scenes, both in a laboratory

environment and in the wild, and even in a salt water environment. We believe the

method is promising for applications in surveying and environmental monitoring.

6.1 Introduction

Shallow waters in rivers, lakes, and oceanfronts are important sites both for their

ecosystems, as well as for their economic significance. Environmental monitoring and

surveying of these shallow water regions is therefore a task of comparable importance.

Unfortunately, detailed 3D scanning of such environments is currently cumbersome,
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since it requires placing cameras or 3D scanners under water, which incurs significant

equipment costs, and results in slow acquisition time.

A more convenient solution would be to 3D image the environment directly from

above water. This is a rather challenging problem, since the fluid, acting as a trans-

mitting medium, is unknown and usually non-stationary. The refraction changes

dynamically, and causes a time-varying distortion of the underwater scene. While

there has been some work on this problem over the years [76, 78, 77, 79], the state

of the art methods require extensive calibration and work primarily in laboratory

settings. Tian et al. [76] derives a relation from the variance of distortions in the

image plane to the physical scene depths. Alterman et al. [77] proposes a stochastic

triangulation approach to recover a probability map of the scenes behind water-air

interface. While these statistical approaches neglect the estimation of dynamic fluid

structures. Zhang et al. [78] reconstructs fluid surface and immersed scene structures

by analyzing the cues of distortion and defocus. Their method requires an undis-

torted reference image taken under flat water surface, which is inaccessible in the

wild. Moreover, they assume the surface normal to be the same for surface areas

where the defocus patterns are back-projected to, which does not hold for real fluids.

More recently, Qian et al. [68] employs a multi-camera system for water surface and

underwater scene reconstruction. Whereas the 3⇥3 camera array they build is bulky,

expensive and complicated to be set up and be calibrated.

In contrast, our method requires no calibration and works “in the wild”. We are

able to reconstruct underwater geometry up to a global scale factor, using a single,

stationary camera. The distortions from the moving water surface provide a changing

parallax for each point on the underwater surface. If this parallax is known, it can

be used to triangulate the underwater geometry.

We utilize this observation by jointly estimating both the underwater geometry

and the dynamic shape of the water surface (Fig. 6.1). To this end, we propose a
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novel di↵erentiable framework governed by ray casting, Snell’s law at the refractive

interface, and multi-view triangulation, to tie together all parameters in an inte-

grated image formation model. With our specifically designed loss function, we can

progressively and simultaneously optimize the structures of water surfaces and scene

geometry to fit the model. Our method is calibration-free and uses only a video

sequence as input. Specifically, we make the following contributions:

• We establish a connection between the distorted patterns observed by a sin-

gle camera and the time-varying fluid structures and the underwater 3D scene

geometry.

• We formulate a di↵erentiable framework to reconstruct unknown dynamic wa-

ter surfaces and scene geometry simultaneously with a specially constructed

objective function.

• We demonstrate our method on a variety of synthetic and real scenes. The real

scenes are conducted both in the lab and in the wild. We even test the method

over seawater.

6.2 System Overview

We propose a di↵erentiable framework to estimate underwater scene geometry along

with the time-varying water surface. The inputs to our model are a video sequence

captured by a fixed camera. Dense correspondence from each frame to a world ref-

erence frame (selected from the input sequences) is pre-computed, ensuring the re-

construction is performed in a unified coordinate system. We feed the flow fields,

together with initialized water surfaces and scene geometry (all are initialized as pla-

nar surfaces), into the framework, which incorporates ray casting, Snell’s law and

multi-view triangulation. The gradients of the specially designed losses with respect

to water surfaces and scene geometry are back-propagated, and all parameters are
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Figure 6.1: Pipeline for underwater scene geometry estimation. The inputs to our
model are a sequence of frames captured by a single fixed camera. Dense correspon-
dence matching from each frame to a world reference frame is precomputed, ensuring
the reconstruction is performed in an unified coordinate system. We feed the flow
fields, together with initialized water surfaces and scene geometry (all are initial-
ized as planar surfaces), into the framework. The gradients of the specially designed
losses with respect to water surfaces and scene geometry are back-propagated, and
therefore all parameters could be simultaneously optimized. It finally yields quality
reconstructions on the 3D structures of time-varying refractive surfaces and under-
water geometry.

simultaneously optimized. The final result is a quality reconstruction of the under-

water scene, along with an estimate of the time-varying water-air interface. The data

shown here was captured in a public fountain environment.

6.3 Di↵erentiable Framework

The reconstruction task is to estimate the underwater scene geometry from a single

camera. In the meantime, a dynamic water surface needs to be estimated to establish

multi-view triangulation. This task is challenging as any update of one of the two

geometries also implies changes to the other. We propose a di↵erentiable framework,

integrating both ray casting based on Snell’s law, and multi-view triangulation to

estimate both geometries from the distortion patterns in the captured video frames.

In this framework, the gradients with respect to the parameters of water surfaces and

underwater scene geometry are computed through back-propagation from specifically
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designed loss functions, and therefore they can be updated simultaneously. In the

following, we describe how we parameterize the water surface and the underwater

scene geometry, how to construct the framework and tailored loss functions.

Notation. Points and vectors are represented by bold letters, for instance o denotes

the nodal point, n denotes the surface normal. Objects are represented by italic

capital letters, for instance S denotes the water surface, P denotes the underwater

scene. Scalar values are represented by italic letters, for instance B denotes a B-spline

coe�cient,  denotes the weights compensate for di↵erent loss functions. (x, y) and

t denotes the pixel position in the image plane and t-th frame in the video sequence,

and are referenced with superscripts and subscripts, respectively.

6.4 Method

6.4.1 Surface and Scene Representation

In our setup as illustrated in Fig. 6.2 left, the camera is placed at the origin of the

coordinate system, and its principle axis is aligned with the z-axis. The water surface

S is parameterized by image plane coordinate (x, y). Suppose we work with a pinhole

camera model, and the focal distance is 1, the emitted ray from image point (x, y)

intersects with S at:

sx,y = D
x,y(x, y, 1)>, (6.1)

where D
x,y is the vertical distance from the camera nodal point to its corresponding

intersection point sx,y. This parameterization can model the shape of the water

surface by finding the function of Dx,y and explicitly tracing the rays where they

are refracted. Moreover, this representation makes it straightforward to apply both

spatial and temporal regularizers to the non-stationary water surfaces, as described

in Sec. 6.4.4. Dx,y is represented by a set of uniform cubic B-spline patches, making
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Figure 6.2: Left: An illustration of our setup. A camera is placed above the water.
The rays from the camera are traced, which are refracted by the water-air interface
following Snell’s law. The interface is represented by a set of control points corre-
sponding to a uniform cubic B-spline surface. We show an example of a 4⇥ 4 cubic
B-spline patch. Right: A schematic diagram for multi-time triangulation. At con-
secutive frames, a surface point p is observed at di↵erent pixel positions due to the
time-varying distortion caused by refraction in the water surface. This e↵ect provides
the parallax needed to triangulate the depth of the surface point. The pixel position
is referenced with superscripts, and time frame is referenced with subscripts.
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the surface C2 continuity. Specifically, for any point (x, y) within the image plane,

D
x,y =

mxX

i=0

myX

j=0

Ci,jBi(x)Bj(y), (6.2)

where Ci,j is a control point in amx⇥my patch {C1,1, C1,2, ..., Cmx,my}. Bi(x) and Bj(y)

are the cubic B-spline basis functions that can be derived knowing (x, y). Fig. 6.2

illustrates how the surface is parameterized and an example of a 4 ⇥ 4 patch. For

simplicity of notation, we rewrite Eq. 6.2 in its vector form:

D
x,y = b>c, (6.3)

where b 2 Rmxmy⇥1 and c 2 Rmxmy⇥1 are constructed from vectorized basis functions

and control points. The intersection point between the ray from image point (x, y)

and water surface is then written as:

sx,y = b>c(x, y, 1)>. (6.4)

The surface normal at sx,y can also be computed in the form of a cross product of

@sx,y

@x
and @sx,y

@y
. Derived from Eq. 6.4, it yields:

nx,y =
⇣
@b>

@x
c,

@b>

@y
c,�x@b

>

@x
c� y

@b>

@y
c� b>c

⌘>
. (6.5)

@b>

@x
and @b>

@y
can be explicitly derived from the cubic B-spline basis functions. b,

@b>

@x
and @b>

@y
only need to be computed once, and are reused in the optimization

procedure.

Given a camera ray ex,y intersecting sx,y, where ex,y = o � sx,y, and the corre-

sponding surface normal at nx,y, from Snell’s law, we can compute the refracted ray
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at sx,y as:

rx,y =

 r
1� (

1

⌘
)2(1� nx,y · ex,y)2 � 1

⌘
nx,y · ex,y

!
nx,y

+
1

⌘
ex,y, (6.6)

where · denotes dot product, and ⌘ is the refractive index of water (we let ⌘ be

1.33 and the refractive index of air be 1). The refracted ray rx,y intersects with the

underwater scene P at the point defined by:

px,y = (px, py, pz)
>
, (6.7)

where px, py, pz are the x, y, and z-coordinates. Unlike the water surface, the un-

derwater geometry is represented as a discrete point cloud, since the scene structure

may not necessarily be smooth. We assume the underwater scene to be a Lambertian

surface, so that brightness constancy holds (all surface points appear the same color

from all observation angles).

6.4.2 Multi-Time Triangulation

Knowing only sx,y and rx,y, we cannot determine the coordinate of px,y. As in multi-

view 3D reconstruction, the 3D position can be determined as the intersection of

multiple projection rays. We exploit the property of dynamic water surfaces to es-

tablish a multi-time triangulation. The light rays from the underwater scene change

direction when passing through the water-air interface, and thus the projection of

the scene onto image plane varies over time. The variance of the projected positions

relates to the structure of non-stationary water surface. Given two light paths at

time step t and t+1 as an example as demonstrated in Fig. 6.2 right, the rays from a

scene point p intersect with the water surface at sxt,yt
t and sxt+1,yt+1

t+1
at two consecu-
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tive time steps, and they are observed by the same camera at image positions (xt, yt)

and (xt+1, yt+1), respectively. The image displacement ((xt, yt)� (xt+1, yt+1)) can be

obtained from computing the optical flow of those two frames.

Given the surface information, rays from image pixels (xt, yt) and (xt+1, yt+1) are

traced, and we can obtain sxt,yt
t and rxt,yt

t for time step t, and sxt+1,yt+1
t+1

and rxt+1,yt+1
t+1

for time step t+ 1 following Eq. 6.4-Eq. 6.6. Finding the 3D position of intersected

underwater points is equivalent to solving a minimization problem for finding the

point with the closest distance from both refracted rays. To generalize the model to

a video frame with in total T frames, the objective function is formulated as:

dis(p,S1, ....ST) =
TX

t=1

kp� sxt,yt
t �

⇣
(p� sxt,yt

t )>rxt,yt
t

⌘
rxt,yt
t k2

2
, (6.8)

where dis(p,S1, ....ST) defines the summation of the distance of a particular under-

water point cloud p to its associated refractive rays generated from surface structures

at various time steps (ranging from 1 to T ). This term ties together all frames.

Confidence Mask. The computation of point cloud 3D positions relies on an ac-

curate estimation of the image displacement. It is known that the computation of

optical flow between two frames is prone to error in the presence of large motions,

extreme distortions, and dramatic illumination changes. All of these issues may oc-

cur for captured underwater point clouds. In a global optimization, mis-estimated

flows in one area may negatively impact the reconstruction accuracy everywhere. We

introduce a confidence mask to suppress unreliable rays when finding the intersection

point. The modified Eq. 6.8 is then expressed as:

dis(p,S1, ....ST) =
TX

t=1

Mtkp� sxt,yt
t �

⇣
(p� sxt,yt

t )>rxt,yt
t

⌘
rxt,yt
t k2

2
, (6.9)

where Mt is the confidence mask for that scene point at time step t. The mask

is determined by backward warping the t-th frame to see whether the image pixels
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Figure 6.3: The flowchart of our proposed framework. After providing the frame-
work with the structures of water surfaces (shown here are two time steps for il-
lustration) and the underwater point cloud, the model loss can be computed in a
fully-di↵erentiable fashion through multi-stage procedures. The gradients can be ef-
fectively back-propagated in the framework, so that all parameters can be updated
in the same iteration.

match. If the pixels match, let Mt be 1, otherwise, let Mt be 0. With the employment

of the confidence mask, a false refractive rays will not be counted when computing

the value of dis(p,S1, ....ST). This will enhance the robustness of the reconstruction

method as demonstrated in Sec. 6.5.

6.4.3 Integrating Ray Casting, Snell’s Law and Triangulation

In our setting, the estimation of the surface structure and underwater point clouds

are codependent – updating one variable causes changes in another one. Previous

work tackles this type of problem in an iterative scheme, alternating on these two

subproblems and each of them is solved independently. We propose a novel strategy

to integrate both factors into a di↵erentiable framework as illustrated in Fig. 6.3.

This framework integrates tracing the camera rays to find intersection points with

water surfaces, refracting the rays passing through water-air interface following Snell’s
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Figure 6.4: The evolution of the objective function versus iterations for the data
shown in Fig. 6.1. The structures of water surfaces (one frame) and scene geometry
are all initialized as planar surfaces. The objective function is e↵ectively reduced,
and accordingly, the parameters are progressively optimized, and yield a good repre-
sentation of the scenes after 1600 iterations.

law and finding the underwater scene geometry via multi-time triangulation. Given

the framework with underwater point clouds and time-varying water surfaces, the

loss of the entire model is computed through forward propagation following the de-

signed pipeline. Afterwards, the variables are simultaneously optimized from the

back-propagated gradients from the model loss. The objective function of the frame-

work is defined as:

Ltotal = 1Ldistance + 2Lcurvature + 3Ltemporal + 4Lprojection, (6.10)

which is a weighted summation of distance loss, curvature loss, temporal loss and

projection loss. In the optimization process, the surfaces and the scene geometry are

all initialized as planar surfaces. All parameters are progressively and simultaneously

updated, and finally the model converges at stationary points. Fig. 6.4 shows an

example of the progress of the loss function over time, as well as the corresponding

geometries at the beginning, in the middle, and at the end of the optimization process.

In the following, we discuss the components of the loss function in detail.



108

6.4.4 Loss Function

Distance Loss. The optimized water surfaces and underwater point clouds should

be consistent with the input video in the sense that refracted rays corresponding to

the scene point in di↵erent frames (as identified by the optical flow) should actually

meet at the same 3D point, which also coincides with a point in the 3D point cloud.

This is achieved by minimizing the defined distance loss function:

Ldistance =
X

p2P

dis(p,S1, ....ST). (6.11)

This distance loss term is adopted from Eq. 6.9, which is applied to all underwater

point clouds. The structures of the underwater scene and the time-varying water

surfaces are integrated in this term, which makes them codependent. Notice that

this term is non-convex since there always exists a single-view depth-normal ambigu-

ity [12].

Curvature and Temporal Loss. Applying additional regularization terms on the

water surface is a common strategy to encourage a smooth and temporal coherent

reconstruction. Spatial and temporal smoothness are two basic features for dynamic

water surfaces. We employ the mean curvature loss to govern its spatial smoothness,

which is approximated as:

Lcurvature =
TX

t=1

k@
2ct
@x2
k2
2
+ k@

2ct
@y2
k2
2
. (6.12)

We further use the wave equation as a rough model governing the evolution of the

water surface over time. Therefore, the temporal loss can be written as:

Ltemporal =
T�1X

t=2

k@
2ct
@t2
� c

2

✓
@
2ct
@x2

+
@
2ct
@y2

◆
k2
2
, (6.13)
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where c is the magnitude of the velocity. The applied parameterization strategy makes

these two loss functions easy to compute, and ensures that the gradients with respect

to the time-varying surfaces can be propagated in the framework.

Projection Loss. Imposing regularization terms on the underwater scene geometry

is not trivial as for the water surface. The rays originating from adjacent underwater

scene points interlace after passing through wavy water surface, thus their projected

image pixels may not be adjacent [68]. Imposing spatial smoothness simply on the

captured image pixels is not e↵ective.

Clearly, this adjacency relationship holds when the water surface is flat or there

is no interference of water (a standard 3D-to-2D perspective projection). It would

be feasible to enforce spatial smoothness on the virtually projected heightmaps of

the point clouds – the projected heightmap synthesized from flat water surface or

the projected heightmap synthesized from direct perspective projection. However,

generating the first heightmap involves an iterative projection operation as bending

of light paths occurs at the water-air interface. In contrast, generating the second

heightmap is relatively easier, a linear operator projects the 3D point clouds to the

image plane. We choose the second option in our implementation to regularize recov-

ered underwater point clouds. Specifically, we define h as the synthesized heightmap

projected from the estimated point clouds, and the `1 norm of its gradient is defined

as the projection loss, which could be written as:

Lprojection = krhk1. (6.14)

This term proved e↵ective in smoothing out the noise while preserving edge informa-

tion in the recovered point clouds.
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6.5 Results and Discussions

The cubic B-spline coe�cients and confidence masks were pre-computed and were

stored in sparse matrices. We implemented our proposed pipeline depicted in Fig. 6.3

in PyTorch. We used Adam [104] for optimization. The learning rate for underwater

point clouds is set to 5e�2, and the learning rate for water surfaces is set to 1e�3

and is reduced to 1e�4 after 1000 iterations. The program takes around 2 hours to

process a total of 120 frames with 30,000 reconstructed points, using 1600 iterations

on a Nvidia 2080 Ti GPU.

6.5.1 Synthetic Experiments

We first conduct synthetic experiments to validate the proposed reconstruction frame-

work. We use the Middlebury dataset [105] to model the 3D underwater scene (20

di↵erent scenes), and the dynamic water surfaces are represented as a sum of multiple

waves from point sources. We set the focal length of the camera to 1 unit, and the

pixel size to 0.01 units. The camera is vertically placed above the water at a distance

of 20 units. The depth of the underwater scene ranges from 40 to 60 units from the

camera. The refractive index of water is fixed at 1.33. A sequence of 120 consecutive

distorted images is generated by ray tracing. Taking one frame from the sequence as

a reference, we compute the optical flows to all other frames using the flow estimation

model PWC-Net [106].

The single-view depth-normal ambiguity exists on the depth and normal of the

water surface [12], and it forms a non-convex reconstruction problem, there could

be a set of solutions satisfying the constraints. By fixing the time-varying water

surfaces, the underwater point clouds become deterministic. Therefore, we can quan-

titatively evaluate the reconstruction accuracy on the point clouds with known water

surface and study the e↵ectiveness of the confidence mask and projection loss. This

reconstruction problem can still be solved in the same framework.
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Table 6.1: Average Euclidean distance between the true and the estimated point
clouds on synthetic data with di↵erent parameter and experimental settings.

Number of Frames 30 60 120

w/o Projection Loss 0.286 0.265 0.255
w/o Confidence Mask 0.278 0.258 0.249
w/o both 0.306 0.284 0.271
Full model 0.254 0.233 0.227

Point Cloud Reconstruction

For evaluation, we use the metric of average Euclidean distance measured between the

true and the estimated positions of the point clouds. We set 1 = 1, 2 = 3 = 100

and 4 = Te
�5 for all experiments. Table. 6.1 shows the average Euclidean distance

under di↵erent experimental settings on the synthetic experiments. In general, our

model yields higher reconstruction accuracy for the point clouds when using more

frames. This is similar to the behavior of multi-view 3D reconstruction methods.

Erroneous optical flow estimates contribute to uncertainly in the point cloud, and

using more input frames provides more diverse viewing angles of the scenes, which

reduces the noise.

The use of a confidence mask and the total-variation regularizer on the projected

heightmap of the point clouds also proves e↵ective in addressing this uncertainty. The

confidence masks filter out those erroneous viewing angles, and the regularizer further

smooths out the depth of the estimated point clouds. We find that the error in the

computed flow vectors mainly concentrates in the boundary areas. For some frames,

the water surface refracts the rays outside the regular field of view of the camera,

so that the computed flow vectors become unreliable. For these points, the camera

can only provide one-sided viewing information, resulting in very small baselines for

triangulation.

We conduct another synthetic experiments with varying averaged water depth. We

put the underwater scene close to the steady water surface and then move the scene
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Figure 6.5: Average Euclidean distance between the true and the estimated point
clouds on synthetic data with varying averaged water depth. When the water depth
increases, camera observes stronger distortions, which yields a larger baseline for
triangulation. Therefore, the average error of the reconstructed point clouds decreases
at the early phase. However, when further increasing the water depth, the distortion
becomes severe, in which case a precise image registration cannot be achieved. The
reconstruction error will increase dramatically.
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Figure 6.6: Average Euclidean distance between the true and the estimated point
clouds on synthetic data with varying wave frequency and wave amplitude (the fre-
quency and amplitude are normalized with respect to the frequency and magnitude
which provide the best recovery, respectively).

gradually further away from the surface. The reconstruction error of the estimated

point clouds is shown in Fig. 6.5. When the underwater scene is close to the water

surface, the estimation error is reduced as increasing the water depth, as it yields a

larger baseline for triangulation – a stronger distortion is observed at the camera side.

When the water depth reaches a specific value, further increasing the water depth

yields dramatically downgraded reconstruction error. When the camera captures

rather strong distortions where a precise image registration cannot be fulfilled, the

rays used for triangulation cannot be properly determined, which, therefore, breaks

down the point cloud estimation.

Further, we conduct synthetic experiments with varying wave frequency and am-

plitude. The reconstruction error of the estimated point clouds is shown in Fig. 6.6.

When the wave frequency or wave amplitude increases, camera observes stronger dis-

tortions, which yields a larger baseline for triangulation. Therefore, the average error

of the reconstructed point clouds decreases at the early phase. However, when fur-

ther increasing the frequency or amplitude, the distortion becomes severe, in which

case a precise image registration cannot be achieved. The reconstruction error will

increase accordingly. The above experiments also reveal that our proposed full model
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Table 6.2: Quantitative results compared with a multi-camera approach [68] on point
cloud estimation.

Ours [68]

Number of cameras 1 9
Number of frames 30 60 120 -
AED 0.254 0.233 0.227 0.192

consistently outperforms the simplified model without using the projection loss and

confidence mask. This further verifies the e↵ectiveness of these two terms at the point

cloud reconstruction.

we also conduct a numerical comparison with a multi-camera system [68]. They

use a 3⇥ 3 camera array to capture the scenes from di↵erent viewpoints. We imple-

ment their algorithm for point cloud estimation as no source code is publicly avail-

able. In their system, the parameters for the camera array are pre-calibrated and

the reconstruction solves the scene geometry only. This is a standard multi-view 3D

reconstruction approach which can provide a robust and accurate estimation. The

baseline between adjacent cameras is set to 5 units (this could be 5-20 times larger

than using water distortion for multi-view triangulation). Table 6.2 shows the nu-

merical comparisons using average Euclidean distance (AED) as error metric. As

expected, using the multi-camera system with a wide baseline yields a more accurate

3D geometry reconstruction, but it heavily relies on the acquisition system, which is

expensive to build and calibrate such a system. We also show qualitative comparisons

in Fig. 6.7.

Water Surface Reconstruction

The primary focus of our work is the reconstruction of the underwater scene. However,

in the process of this reconstruction, we also estimate the shape of the deforming

water surface. Here, we conduct a simulated quantitative evaluation of this aspect,

and compare our method to a SOTA single-camera fluid reconstruction approach [14].
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Figure 6.7: Qualitative comparisons between the reconstructed geometry and ground
truth on synthetic data. Our recovered results exhibit a high degree of consistency
with the ground truth with regard to geometric structures. The overall reconstruction
error is comparably higher than using a multi-camera system (a 3⇥ 3 pre-calibrated
camera array), but our acquisition system is simple and free of calibration.

Similar to our hardware setup, they use a single camera to capture refractive images of

the background pattern, and the structure of fluid surfaces is estimated by a trained

neural network. Their method simplifies the required equipment as compared to

prior work, however, an undistorted frame is still required and serves as reference.

For evaluation, the refractive images are rendered using the sample reference patterns

as employed in [14] and synthetically generated time-varied water surfaces.

Table 6.3 shows the quantitative results on the recovered depth and surface nor-

mal. We use the root mean square error (RMSE) and absolute relative error (Abs

Rel) as error metrics for estimated depth, and the root mean square error (RMSE)

and average angular error (AAE) as error metrics for surface normal evaluation. An-

gular error (in degrees) measures the degrees between ground truth and the estimated

surface normal. We find that our proposed model-based approach outperforms the

existing single-camera fluid estimation method. It reveals that the temporal regular-

izer plays a significant role as it explicitly models a physical evolution of the water

surface over time, and ties together all frames. The compared method employs a

recurrent neural network module to encourage temporal consistency, and it may not
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Table 6.3: Quantitative results between the true and the estimated water surface.

Depth

Method
Metric

RMSE Abs Rel

FSRN [14] 0.103 0.087
w/o spatial Loss 0.097 0.079
w/o temporal Loss 0.129 0.112
w/o both 0.143 0.118
Ours 0.086 0.065

Normal

Method
Metric

RMSE AAE

FSRN [14] 0.064 4.33�

w/o spatial Loss 0.038 3.01�

w/o temporal Loss 0.046 3.27�

w/o both 0.049 3.69�

Ours 0.030 2.21�

exactly retrieve the physical process of fluid flows. We also notice that even though

the water surface is modeled as a cubic b-spline surface, which implicitly enforces the

spatial smoothness, we do find an explicit spatial smoothness term further improves

the reconstruction.

6.5.2 Experiments in the Lab

Next, we validate our method on real experiments conducted in a laboratory environ-

ment. We used a FLIR GS3-U3-41C6C camera with a 50 mm lens (the lens distortion

should be calibrated to validate pinhole camera model). The camera was placed on

top of a tank, pointing down vertically, at a distance of ca. 300 mm to the flat water

surface. The water waves were introduced by pouring a cup of water into the tank.

We used an aperture of f/6.0. The video was recorded at 60 fps with a resolution of

1024⇥ 1024 and we captured 120 frames in total for processing.

Fig. 6.8 visualizes one distorted image, and the recovered underwater point clouds.
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FSRN Ours

Figure 6.8: Comparisons of the estimated underwater scenes. A modified approach
from [14] serves as a baseline. Our method could produce a reasonable recovery of
the underwater scene. Notice that the baseline method still requires an additional
undistorted frame as reference.

To the best of our knowledge, no existing work could retrieve the underwater geometry

using the same hardware configuration as ours. We modify the SOTA single-camera

fluid surface estimation method [14] as a baseline method. The time-varying surfaces

are first estimated by their model, and then we feed the surfaces into the multi-time

triangulation framework to estimate the underwater geometry. Fig. 6.8 shows that

decoupling the estimation of water surfaces and underwater scene could not yield

a reasonable reconstruction on the underwater environments, while our integrated

model delivers an adequate recovery. It needs to point out that [14] exploits a simple

setup (like ours), and requires a reference frame captured without distortion. This

reference frame will be unavailable in an uncontrolled environment, e.g. in the wild.

We further show the comparisons with the underwater geometry from a 3D scan.

Fig. 6.9 reveals the qualitative comparisons between the scanned models and our

reconstructions. The scanned models were obtained without water interference. The

reconstructions from a 3D scan exhibit finer recovery of its geometrical structure,
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Figure 6.9: Visual comparisons between the 3D scanned models (serve as ground
truth) and our reconstructions through moving water surfaces. From left to right,
the distorted frames from the video for two stone scenes, the ground truth 3D struc-
tures measured using a 3D scanner and our reconstructed geometry. The averaged
absolute error on the projected depth map is 4.24 mm for the first scene and 3.01 mm
for the second scene. Notice that due to the non-convexity of the problem, our so-
lution is a locally reasonable representation of the scenes. Therefore, we scale our
reconstructions with respect to the scanning results.

however, our framework could generate an adequate representation of the scenes under

such sophisticated conditions with a simple hardware setup.

We also show a qualitative comparison for the recovered water surface between

ours and FSRN [14] in Fig. 6.10. The results demonstrate that the recovered struc-

tures from both methods are overall consistent. However, our method explicitly en-

forces smoothness, and the generated normal map exhibits fewer noise patterns. This

makes our estimation to be more accord with the physical characteristics. Due to

relatively lower estimation accuracy on the water surface for the compared method,

inferring the 3D geometry of the underwater scene is prone to error. We also visualize

the reconstructed point clouds with color-coded depth in Fig. 6.8.
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Figure 6.10: Qualitative comparisons with [14] for water surface estimation. The
depths are normalized for fair comparisons. Their method requires an additional
undistorted frame as reference. This reference frame will be unavailable in an uncon-
trolled environment, e.g. in the wild. The recovered shapes are overall consistent,
while the reconstruction from ours is smoother with fewer noise-like features.

6.5.3 Experiments in the Wild

Finally, we tested our reconstruction model outside the lab. Our method neither

requires a complicated hardware setup nor does it impose impractical assumptions

like other approaches. We can easily capture data for processing in the wild. The

first experiments were conducted for scenarios in a large public fountain. We captured

1080p videos at 60 fps using a smartphone held by a tripod, and downsampled the

images by a factor of 8 yielding 240⇥ 135 underwater point clouds. The smartphone

was placed above the water surface at a distance around 20 cm, and the depth of

the underwater scenes roughly range from 20� 35 cm. The data was captured under

various weather conditions where the waves were driven by natural winds of di↵erent

strengths.

Fig. 6.11 visualizes captured images at two frames, corresponding reconstructed

surface structures, the side and top views of the recovered underwater scene geom-

etry, which is represented by a set of discrete point clouds. Two di↵erent examples
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Captured Frames Recovered Water Surfaces Recovered Underwater Scene Geometry

Side View Top View

Figure 6.11: Reconstructions of additional two scenes captured in the public fountain
environment. They were collected in di↵erent weather conditions with relatively mild
winds (top) and strong winds (bottom), respectively. From let to right: Two captured
frames and corresponding recovered surface shapes, the side and top views of the re-
covered underwater scene geometry. Both results exhibit an adequate representation,
even with strong water distortions. We recommend to view the 3D geometry.

correspond to videos captured under a relatively mild (top) and strong (bottom) fluid

disturbance, respectively. The recovered point clouds exhibit a faithful representation

of the underwater scenes which are consistent with the expectation. The recovered

time-varying water surfaces also agree with the observed distortion patterns even in

conditions with rather strong fluctuations. Fig. 6.1 shows an additional reconstruction

result, where data was collected in the same fountain environment.

Fig. 6.12 shows qualitative comparisons of the recovered scene geometry with and

without using the confidence mask and projection loss. As expected, the recovered

scene geometry using the full model tends to be more smooth and some fine de-

tails, e.g. edge of the objects, are better preserved. The projected heightmap also

demonstrates a significant improvement when both strategies are applied.

Fig. 6.13 shows two more data sets which were captured by a sea shore. The

captured images reveal that reconstructing the scenes under salt water is more chal-
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Full Model

Simplified Model

Full Model

Simplified Model

Figure 6.12: Qualitative comparisons on the reconstructed underwater scenes and
projected heightmaps using (full model) and without using the mask strategy and
projection loss (simplified model). Left refers to the data in Fig. 6.11 top, and right
refers to the data in Fig. 6.11 bottom. In both cases, the full model delivers more
smooth, yet finer-detail preserved, geometric structures.
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Figure 6.13: Reconstructions of two data sets collected in salt water environments.
The seawater becomes more turbid and the geometric structures under seawater is
more complicated, while our method can still realize a reasonable reconstruction.
This shows that our method is e↵ective, and robustly handles reconstructions in
rather complicated environments.
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Figure 6.14: The reconstructions from di↵erent initial points and also the failure
case at a degenerated initialization (top). The initialization of the underwater scene
geometry is a planar surface with di↵erent axial depths.

lenging as the water is more turbid. However, our method can still realize a robust

and adequately good recovery of the underwater scene geometry in this rather dif-

ficult experiment. This demonstrates that our method is robustly handling scenes

with some level of turbidity, which is a common e↵ect in natural bodies of water.

6.6 Discussion

6.6.1 Di↵erent Initializations

Because of the single-view depth-normal ambiguity on the recovered water surface,

the proposed global optimization problem is non-convex. Di↵erent initializations

will drive the framework to di↵erent local minimums. In most initial points, the

framework finds a reasonable representation of the scenes. However, we did find

degenerated cases with some initializations. As discussed above, the initialization
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Figure 6.15: A failure case for the fountain scene as shown in Fig. 6.11. The water
waves were driven by a rather strong wind, and it exhibits a vortex structure. Our
method fails to produce a quality representation as a precise correspondence matching
cannot be satisfied.

of the underwater scene geometry is a planar surface with di↵erent axial depths. In

Fig. 6.14, we show the reconstructions with di↵erent initial values which yields similar

adequate representations, and also a failure case with improperly selected initial value.

The initial value should also vary with di↵erent reconstruction data.

6.6.2 Failure Case

Fig. 6.15 shows a failure case for the proposed method. The data was captured in the

same fountain environment as shown in Fig. 6.11, but on a rather windy day. One

frame of the images exhibits that the background scenes are hugely distorted by a

vortex-like water wave. Under this condition, a precise image registration becomes

problematic, and therefore the reconstruction of the scene geometry fails as well. Our

reconstruction framework relies on a preprocessed dense and precise correspondence

matching. When the waves are driven by excessively strong external force and become

choppy, they are no longer in accord with the imposed smoothness regularizers, and

then our method fails to recover geometry of adequate quality.

6.6.3 Relationship to Structure-from-Motion (SfM)

SfM utilizes a series of images taken from di↵erent viewpoints to reconstruct the 3D

structure of the scene. The images are usually taken with a moving camera. The
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reconstruction is realized with bundle adjustment, which jointly estimates camera

parameters and scene geometry by solving a non-linear least square problem. By

comparison, in our problem multiple viewpoints are introduced by the non-stationary

water surface fluctuations, and we propose a novel di↵erentiable framework to si-

multaneously estimate the structure of non-stationary water surfaces and underwater

scene geometry.

The problem we studied di↵ers from SfM mainly in the following three aspects:

• Camera parameters in SfM can be represented by a 4 ⇥ 4 matrix, a low-

parameter model with respect to scene geometry. Since camera parameters

are low-dimensional, they can be estimated by matching feature points, e.g.

SIFT features [107]. On the other hand, to fully characterize a water surface,

the degrees of freedom can approach the same size as the underwater scene

for choppy water. To estimate water surfaces, a dense correspondence match

is required, which is prone to error especially when the surface distortion is

strong. Therefore, the estimation of camera parameters is more robust and less

ill-conditioned.

• In SfM, the projection from 3D coordinates to the image plane is linear, and

the problem could be solved via a relatively simple minimization formula. This

projection becomes non-linear as the lights pass through a refractive interface,

which makes the problem cannot be tackled with a scheme similar to bundle

adjustment.

• In general, the baseline from moving a camera can be much larger than that

caused by water surface fluctuation. Knowing that small baseline will reduce the

depth estimation accuracy, which is approximately inversely proportional [108],

employing water surface fluctuations for multi-view triangulation is more noise

sensitive and theoretically produces scene geometry in lower depth accuracy.



125

Nonetheless, our proposed framework, which integrates ray casting, Snell’s law

and multi-time triangulation, along with the regularization terms for time-varying

water surfaces and underwater scene geometry, tackles the di�culties arising from

a well-studied solution to a SfM problem. We demonstrate that this novel frame-

work is capable of recovering fully characterized time-varying water surfaces and 3D

background scenes using a single camera.

6.7 Conclusion

This chapter presents a novel approach to reconstruct the 3D shape of underwater

scene via a single camera. This is realized by the time-varying distortions from mov-

ing water surface which provides a multi-time triangulation. We propose a dedicated

di↵erentiable framework accounting for the ray casting, ray refraction, and multi-time

triangulation. This framework integrates the dynamic water surfaces and underwa-

ter scene geometry as inputs, such that both parameters, with planar surfaces as

initialization, are progressively optimized from specially constructed and proven ef-

fective loss functions. Extensive in-the-wild experimental results, even tested in the

salt water environments, validate the e↵ectiveness and robustness of the proposed

approach.
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Chapter 7

Concluding Remarks

7.1 Summary

The contribution presented in this dissertation push the boundary of joint design

of optics and tailored reconstructions for 3D-3C fluid velocity field estimation and

simultaneously retrieving the structures of underwater surface and underwater envi-

ronments. However, some open problems and challenges remain, as also acknowledged

in the previous chapters. Furthermore, advances in measurement hardware and algo-

rithmic development open up new possibilities for future research directions.

7.2 Future Work

When Deep Learning Meets Fluids. In recent years, deep learning has gathered

huge popularity in the computer vision and computer graphics community. It has

shown its prominent ability in extracting 3D representation of scenes and the regis-

tration map of consecutive motions. The cores of 3D PIV lie in extracting the time-

dependent 3D particle distribution fields and the motion fields of the non-stationary

particle fields. The 3D reconstruction of the particle fields and the computation of

the motion fields are highly related to the successful usage of deep learning in the

computer vision community.

Recent e↵orts have been devoted to applying the neural network architectures to

extract velocity fields from 2D PIV data, yielding 2D-2C fluid flows [109, 110, 111].

While it exhibits specific characteristics when applying these types of technologies to
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fluid imaging. The distributions of the particle fields are generally sparse, and the

presence of the particle fields at di↵erent time steps is constrained by the inherent

motion fields, which is governed by the Navier-Stokes equations. Deep learning o↵ers

plentiful techniques which are potentially capable of extracting information from data

that is related to the underlying fluid mechanics. How to incorporate these physical

models into the modern deep learning framework would be a very interesting future

research direction. Besides, to fully characterize the fluid structures, 3D-3C velocity

fields are expected. Extending the 2D PIV neural network to 3D is non-trivial as

the underlying fluid flows exhibit more complicated structures in 3D and the size

of the processing data rapidly increases which could easily runs out of the memory.

Processing the PIV data in 3D with neural networks is still an open problem, and

tackling this problem is also highly interested by the fluid mechanics community.

Furthermore, current approaches form a pipeline to reconstruct the fluid flows

– computing the motion field on the pre-computed consecutive particle fields. As

described before, the consecutive particle fields and the the motion field between

them are constrained by underlying physical constraints. An end-to-end deep learn-

ing framework for both particle fields and motion field estimation would be desired

to integrate the inherent complex physical models. Owing to its powerful informa-

tion extraction ability, applying the deep learning technique can enrich, and even

transform the field of fluid imaging.

Di↵erential Transparent Object Reconstruction. We have also presented a first

attempt to recover the refractive surface and the background geometry in the wild

using a single camera. It greatly simplifies the hardware setups and relaxes impractical

assumptions as imposed by alternative approaches. However, our current approach is

limited to settings where the light path is refracted only once by a refractive surface.

Generalizing the model to more complicated conditions could be an interesting avenue

for future work, for instance reconstructing glass or plastic objects with a minimum
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Figure 7.1: Left: Coral reefs captured using a drone. Right: preliminary reconstruc-
tions using the proposed framework. This is not an adequately good recovery of the
underwater scenes because of the breeze ripples in the ocean surface. These ripples
have high frequencies and complicated geometric structures, which are generally hard
to be accurately recovered at current stage.

of two refractions [60, 62, 61], or reconstructing inhomogeneous fluids [11, 64]. For

the time being, there are no reliable solutions to recover these kinds of transparent

objects in the wild.

Implicit Representation. One major limitation for the proposed di↵erentiable

framework for reconstruction through moving water surfaces is that all the inter-

mediate results need to be stored in order to be accessible when computing back-

propagated gradients. To process 30,000 points in a sequence of 100 frames, it costs

around 10 GB memory, which is close to the memory limit of modern GPUs. Fig. 7.1

shows a coral reef scene captured by a drone. In order to process these over 300,000

points in a 100-frame video, we have to split the entire scene into smaller regions

and perform reconstruction on each of them independently to fit the scene into the

GPUs. Using implicit shape representation [112, 113, 114] will be a promising solu-

tion to represent the dynamic water surfaces and underwater environment, as well

as reducing the memory cost. The core idea is to use two fully connected neural

networks to encode the water surface and underwater scene, respectively, by mapping

the coordinate of the scenes to an implicit representation, e.g. signed distance field
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or occupancy field. Furthermore, we can extend the representing of the time-varied

water surfaces in a space-time encoding, by optimizing a neural network that encodes

both the coordinate and the time. Such a representation has a great potential to

model complicated geometric scenes in high resolution.
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