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Abstract
RainbowPIV is a recent imaging technology, proposed for time-resolved 3D-3C fluid velocity
measurement using a single RGB camera. It dramatically simplifies hardware setup and
calibration procedures as compared to alternative 3D-3C measurement approaches. RainbowPIV
combines optical design and tailored reconstruction algorithms, and earlier preliminary studies
have demonstrated its ability to extract physically constrained fluid vector fields. This article
addresses the issue of limited axial resolution, the major drawback of the original RainbowPIV
system. We validate the new system with a direct, quantitative comparison with four-camera
Tomo-PIV on experimental data. The reconstructed flow vectors of the two approaches exhibit a
high degree of consistency, with the RainbowPIV results explicitly guaranteeing physical
properties, such as divergence free velocity fields for incompressible fluid flows.

Keywords: 3D-PIV, single-camera, inverse problem, optical flow, joint optimization, structured
light

1. Introduction

In recent years, a great deal of effort has been invested
into the development of methods for the complete volu-
metric reconstruction of three-dimensional, three-component
(3D-3C) velocity vector fields. Tomographic Particle Imaging
Velocimetry (Tomo-PIV) [4, 17] has long been considered the
standard technology for 3D measurement, due to its ability to
handle high particle seeding densities and high spatial resolu-
tion reconstruction, as well as its robustness to many types of
flow phenomena. Recent advances in Tomo-PIV technology
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have included improved reconstruction accuracy [10, 12],
spatial and temporal resolution [18, 19] by exploiting tem-
poral information, and reducing the cost of setup, e.g. using
smartphones [1, 3]. Tomo-PIV typically makes use of 4–6
cameras, capturing the volume of interest from different view-
ing angles. While Tomo-PIV has the advantages mentioned
above, it also suffers from several limitations that constrain
its use. Firstly, a considerable amount of effort is required to
set up and calibrate a multi-camera system. Precise calibra-
tion is required, to prevent degradation of the reconstruction
quality. Depth-of-field is another practical issue limiting its
applications; achieving a large depth-of-field requires a small
numerical aperture, which leads to low light efficiency (using a
powerful light source is expensive and carries potential safety
issue). Another severe limitation is that there are many exper-
imental setups where optical access is limited; in such situ-
ations, setting up a multi-camera system becomes impractical,
and a single-camera based 3D-3C technology would be more
appropriate.
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Two main types of single-camera approaches have been
proposed for 3D flow measurement: encoding particle depth
into the light path on the camera side, or into color or spectral
information on the illumination side. The strategy of encod-
ing particle depth by light path dates back to the work of
Willert et al [24], who placed a three-pinhole mask in front
of the objective, recovering 3D particle locations based on
the position and length of captured image patterns (equilateral
triangles) by means of a defocusing technique. This method
has been applied to several flow scenarios [13, 27], although
it has the disadvantage of low light efficiency (given that
most of the light is blocked by the pinhole mask), as well
as low particle seeding density due to the difficulty of dis-
tinguishing overlapping patterns from nearby particles. More
recently, single-camera PIV approaches, based on plenoptic
(or light-field) cameras, have been proposed [5, 21]. These
record the full 4D light field of the scattered light of seed-
ing particles, and digitally reconstructs particle locations by
means of ray-tracing based algorithms. Quantitative compar-
isons between Tomo-PIV and Plenoptic-PIV have been con-
ducted in recent studies [15, 20]. Plenoptic-PIV dramatic-
ally simplifies the hardware setup and gets rid of the com-
plicated calibration procedures required for Tomo-PIV. On
the other hand, significant spatial resolution is sacrificed in
favour of angular information with this approach. In addi-
tion, the available plenoptic cameras suffer from comparat-
ively low frame rates, which in turn limits the usefulness
of this approach for time-resolved non-stationary fluid flow
measurements.

Another group of single-camera methods is based on the
encoding of particle depth by structured light (monochromatic
or polychromatic light). Here, the 3D particle locations can be
determined by 2D spatial location and 1D illumination inform-
ation in a single captured image. A method for exploiting
monochromatic illumination has been proposed in [2], which
illuminates the volume by a spatially and temporally varying
intensity profile, and achieves an axial resolution of 200 dis-
crete depth levels. However, temporal resolution is sacrificed
to a certain extent for the sake of high depth resolution, and
the method also fails to separate overlapping particles. Most
of the related work involving the use of polychromatic illu-
mination is summarized in [23]. Early works extracted data
relating to particle depth based on a calibrated mapping func-
tion of RGB, or hue value to depth. This naive method cannot
deal with overlapping particles, and making it unsuitable for
dense fluid flow reconstructions. An additional disadvantage
is that the method is sensitive to random noise, optical aber-
rations, and unpredictable secondary light scattering from the
particles.

The recently proposed RainbowPIV [26] tackles most of
the existing issues by virtue of a joint design between the
measurement setup (illumination and camera optics), and the
reconstruction software. The measurement setup of Rain-
bowPIV consists of an illumination module to generate a rain-
bow pattern, which color-codes the distance of particles from
the camera, as well as a diffractive optical element in front of
the camera lens, which provides all-in-focus imaging of the
color-coded particles. The reconstruction software comprises

an integrated optimization framework to jointly reconstruct
both particle distributions and velocity vector fields.

Many single-camera methods suffer from a limited depth-
to-width ratio, i.e. they can image only shallow volumes.
Indeed, the initial RainbowPIV system [26] had such a lim-
ited depth-to-width ratio, which was fixed at 0.36. However,
in principle, the volume depth in RainbowPIV can be tuned by
a) altering the thickness of the rainbow, and b) adjusting the
design of the all-focus camera optics. This was demonstrated
in [25], which proposed a reconfigurable RainbowPIV sys-
tem with an adjustable rainbow generation engine and a vari-
focal optical design, extending the depth range to (15–50mm),
while the lateral resolution is unaffected. This corresponds to
a depth-to-width ratio of 0.3 - 1. Unfortunately, extending the
depth range in this fashion reduces the depth resolution, as the
same number of distinguishable depth layers are spread out
over a larger range.

Therefore, despite the advantages of Rainbow PIV in terms
of simplicity of setup, it still suffers from a limited axial resol-
ution compared to multi-camera methods such as Tomo-PIV.
In this work, we address this issue, and propose an extension
to the precedent RainbowPIV by implementing a depth super-
resolvedRainbowPIV system. Furthermore, we carry out a dir-
ect comparison with the well-established four-camera Tomo-
PIV system, so as to verify its applicability and reconstruction
accuracy for flow measurement. Moreover, we demonstrate
that RainbowPIV, unlike Tomo-PIV, reconstructs physically
plausible flows, e.g. divergence-free flow fields for incom-
pressible fluid flow.

2. Experimental setup

In order to realize a simultaneous measurement for both
RainbowPIV and Tomo-PIV, the schematic diagram for the
designed experimental setup is shown in figure 1. Four
identical color cameras (RED SCARLET-X DSMC with
sensor MYSTERIUM-X (30 mm × 15 mm, 4096 × 2160
pixels) are arranged to view an octagonal tank from differ-
ent perspectives for Tomo-PIV. The elevation angle between
camera 2 and 3 is 15

◦
. The internal clocks of the four cam-

eras and triggering signals are produced with the time code
generator ‘Lockit ACL 204’. The central bottom camera (cam-
era 3), equipped with a specially designed diffractive optical
element (DOE) to form a hybrid refractive/diffractive imaging
system, is also utilized for RainbowPIV. The DOE is a Fresnel
phase plate, and is used for all-in-focus imaging in the Rain-
bowPIV setup. In general, the cameras used in a Tomo-PIV
setup use a relatively small aperture size in order to obtain
a greater depth-of-field. The resulting loss in light efficiency
presents additional practical challenges, particularly in rela-
tion to high speed fluid imaging applications. In contrast, the
depth-of-field of the utilized hybrid refractive/diffractive lens
is not affected by the aperture size; as a result, RainbowPIV
can make use of the largest available aperture for maximum
light efficiency while still maintaining an extended depth-of-
field. Specifically, in our setup, the camera with DOE uses an
aperture of f/1.8 (the maximum aperture), while the remaining
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Figure 1. Schematic diagram for the experimental setup. Two blazed gratings are used to generate a size-controlled rainbow. Four cameras
are utilized for Tomo-PIV measurement, of which the third camera, with custom designed DOE (diffractive optical element) for all-in-focus
imaging, is also used for RainbowPIV.

Figure 2. Schematic diagram for the vortex ring generator.

cameras use f/5.6 to achieve a good balance between depth-of-
field and light efficiency. The design, fabrication and impact
of the DOE are explained in detail in [26].

Another notable element is the illumination system (rain-
bow generation). The physical size of the measured volume
is dependent on the field-of-view of the camera (x-y) and the
illumination width (z), corresponding to the rainbow width.
In order to generate a collimated rainbow beam with a con-
trollable depth, we utilize two blazed gratings and place them
parallel to each other at the blazing angle. A white light beam
(produced by a Sumita LS M350 light engine with a power
consumption of 450 W) entering the setup is separated into a
collimated set of monochromatic light sheets, forming a rain-
bow. The thickness of this rainbow can be adjusted by altering
the distance between two gratings. In the experiment, we work

on a 25 mm rainbow with wavelength ranging from 480 nm to
680 nm. The size of the x-y plane observed by the camera is
50 mm × 35 mm.

White Polyethylene Microspheres, with a diameter in the
range [90, 106 µm] are used in the experiments. We place a
vortex ring generator (figure 2) beneath the tank to produce
specific flow scenarios for measurements. This is composed
of a cylindrical chamber, with an elastic latex membrane in
the lower third. At the top, the cylinder is covered with a 3D
printed capwith a circular aperture. An air pulse enters the bot-
tom chamber and pressurizes the membrane upwards, driving
water out of the top chamber through the aperture, and finally
generating the desired vortex rings.

For Tomo-PIV processing, by converting the RGB images
to 8-bit grayscale images, a 1120× 780× 560 particle intens-
ity field is reconstructed using theMARTmethod, followed by
a multi-pass cross-correlation with reduced interrogation win-
dow size and 75% overlap. The reconstructed velocity field
has a size of 50× 35× 25, resulting in a spatial resolution of
1 mm along all 3 axes. All of the algorithms employed here
are constructed using LaVision Davis software.

3. RainbowPIV tracking and reconstruction

3.1. Joint optimization framework

In order to fully reconstruct dense 3D-3C velocity fields, prior
work has utilized a pipeline approach that first estimates the
particle distribution fields at successive time steps, and then
reconstructs the corresponding flow fields using the estimated
particle distributions. Separating particle distribution field and
velocity field reconstructions neglects temporal coherence as a
strong physical cue. Specifically, particles present at one time
step should also be present at the next, as well as the previous
time steps (excluding a small number of particles entering or
leaving the observation volume), and their location should be
consistent with the estimated 3D-3C flow fields. RainbowPIV
was the first approach to utilize a joint optimization framework
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for the reconstruction of particle distribution fields and fluid
velocity vector fields on sequentially captured video frames.
As illustrated in [26], the benefit of this prior information is the
refinement of any ambiguous particles computed from a single
frame, resulting in more precise flow fields. This joint optim-
ization framework has also been utilized for multi-camera 3D
Fluid Flow Estimation [9] and x-ray computed tomographic
applications [29], and has demonstrated improved reconstruc-
tion quality in the respective works. Specifically, the integrated
optimization problem for RainbowPIV can be expressed as:

(p∗,u∗) = argmin
p,u

1
2

∥∥∥∥∥A
[
p1|...|pT

]
−

[
i1|...|iT
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2

2

+κ1 ∥diag(w)(p1; ...;pT)∥1 +Π[0,1] (p1; ...;pT)
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ˆ
Ω
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+κ3
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∥∇ut∥22 +
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ΠCDIV(ut)

+κ4

T∑
t=1

(
∥ut−ΠCDIV(ut−1(ut−1,∆t))∥22

+ ∥ut−ΠCDIV(ut+1(ut,−∆t))∥22
)
, (1)

where p∗ and u∗ denote the target particle distribution field and
the fluid velocity vector field, respectively. The above energy
function is minimized using a coordinate descent method,
alternating on these two variables. Specifically, we alternate
between keeping u fixed, and solving for p, then fixing p and
solving for u. The following sections provide intuitive motiv-
ations and explanations for the above optimization problem.
More detailed derivations and solutions for this issue can be
found in [26].

3.2. Particle distribution (p) reconstruction

From a starting point of extracting particle distributions from
a single RGB image, straightforward approaches have been
proposed in [11, 23], which relate hue values of the cap-
tured image to particle depths in the volume. This type of
approach, as discussed before, cannot correctly extract the loc-
ations of overlapped particles due to color mixing. Instead,
we express the imaging system as a forward model (illus-
trated in figure 3), written by Apt, with A being the coeffi-
cient matrix, and pt being the particle distribution field at time
step t (1≤ t≤T). Denoting the corresponding captured image
as it, ideally, we have Apt = it. However, this linear system
is under-determined (or ill-posed), since we have fewer con-
straints than unknown variables.

Introducing regularization terms and constructing a min-
imization problem are common strategies to tackle this kind
of problem. A sparse distribution of particles in the volume is
expected, and the value of the particle distribution fields should
be within the range of 0 and 1. These two constraints account
for the second and third terms in line 2 of equation (1), where
∥ · ∥1 is the L1 norm, and κ1 is the penalty parameter enforcing

Figure 3. Image formation model illustration. Particles in different
depths will be illuminated by different colors, leading to a
corresponding camera response on the sensor (various point spread
functions (PSFs)). The response of overlapped particles will be
mixed.

the sparsity. Here, diag(w) denotes the weights compensat-
ing the sensor sensitivity to different wavelengths [25]; Π[0,1]

is the operator projecting the value to the convex set [0, 1].
The fourth summation term in equation (1), referred to as the
particle occupancy consistency, incorporates temporal coher-
ence into the minimization problem, where pt+1(ut,−∆t)
indicates the advection of the particle distribution fields at time
step t+ 1 under flow field ut by −∆t units of time. Note that
this term is also used for reconstructing velocity fields.

3.3. Velocity field (u) reconstruction

Having captured the particle fields in sequential time steps,
we can then perform velocity estimation, in order to gen-
erate time-resolved velocity fields. A common method for
such velocity estimation is Digital Volume Correlation (DVC),
based on the cross-correlation of volume neighborhoods, or
windows [14]. However, the selection of an appropriate win-
dow size can be difficult, since large windows result in overly
smooth flowfields, while small windows can result in incorrect
matches, particularly in the case of noisy, low-light images.
Furthermore, such algorithms require a sufficiently high dens-
ity of particles, which cannot always be satisfied for every flow
scenario, especially in 3Dmeasurements. Moreover, the cross-
correlation based framework does not easily support adding
extra physical constraints, such as divergence free flows in the
case of incompressible fluids.

An alternative method is therefore adopted from the com-
puter vision community, which solves the variational ‘optical
flow’ problem (corresponding to 2D digital image correla-
tion), by finding the correspondence between two success-
ive particle distribution fields. The Horn-Schunck algorithm is
the most widely used global variational optical flow method;
this assumes a consistency of brightness between success-
ive images, together with the smoothness of the flow vectors
in the spatial domain. Here, instead of assuming the photo-
consistency of 2D image intensities (the brightness consist-
ency constraint does not hold, since the color of particles will
change when they traverse different depth levels in axial direc-
tion), our 3D version of Horn-Schunck assumes a consistency
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Figure 4. Discretization scheme for the precedent RainbowPIV
(left) and the proposed strategy (right).

of particle distribution fields p, as described in section 3.2. In
this way, the particle occupancy consistency term ties particle
and velocity reconstruction together into a joint optimization
problem.

The framework described above is also amenable to the
easy incorporation of the physical parameters of a given fluid.
A number of works have already taken the physical constraints
governed by Navier–Stokes equations into account when com-
puting flows [6, 7, 16, 22, 26, 28]. In this work, we consider
the fluids to be nonviscous and incompressible, which indic-
ates zero divergence in the flow vectors. Moreover, the incom-
pressible Navier–Stokes equation describes the time evolu-
tion of fluid flows. These two physical parameters account for
the last two terms of equation (1). Here, ΠCDIV is the opera-
tion to project arbitrary flow vector fields onto a space hav-
ing a divergence-free velocity field, where ut+1(ut,−∆t) and
ut−1(ut−1,∆t) approximate the time evolution of the flow vec-
tor fields backward and forward, respectively. Note that we
are not using the Navier–Stokes Equations to simulate flows;
instead, we are incorporating them into the optimization prob-
lem as regularization terms.

A coarse-to-fine strategy is applied in our flow computation
framework to solve large displacements. Roughly computed
flow fields in the coarsest level are transmitted into finer levels
as an initial guess, and are then iteratively updated, based on
the fixed-point theorem (here, a pyramid of four levels and
10 inner iterations are applied). The algorithm stops when it
reaches the finest level,where one vector per voxel is achieved.

3.4. Depth super-resolution

The depth resolution of the RainbowPIV system is depend-
ent on the number of discretized depth levels, which is basic-
ally the number of PSFs. In our implementation, PSFs are
expressed by a batch of 3× 5× 5 matrices, representing three
color channels and a 5× 5 spatial window. Owing to the relat-
ively low sensitivity of the camera sensor to subtle wavelength
shifts, only a limited number of PSFs is calibrated in the ori-
ginal RainbowPIV system, resulting in a relatively low depth
resolution.

Figure 5. Calibrated curves for the normalized camera response to
different depth levels (0 - 25 mm) for red, green and blue channels.
Spectral responses to 20 depth levels are obtained from calibration,
and the curves are generated by linear fitting. These curves match
well with the camera’s spectral sensitivity curve with respect to
wavelengths. Within a small spectral band, linear curve fitting is a
simple, yet effective model for approximating camera response.

Specifically, the axial reconstruction accuracy relies on two
factors: the camera’s wavelength sensitivity, and the quantiza-
tion error. The sparser the sampled signal, the larger the result-
ing quantization error. In this work, we show that it is feasible
to reduce the quantization error by increasing the number of
PSFs, using a simple linear interpolation scheme to generate
in-between PSFs. As indicated in figure 4, in the prior imple-
mentation of RainbowPIV, the sampling rate in the axial dir-
ection is far lower than that in lateral directions, giving rise to
a relatively large quantization error. With the proposed inter-
polation scheme, the same sampling rate can be achieved in all
directions. While this change in PSF with wavelength is not
linear over a large spectral range, piecewise linear approxim-
ations such as ours provide a good model of the true intensity
change in each RGB color channel (see figure 5) over small
spectral bands. With this simple digital adaptation (no hard-
ware adjustment is required), we are able to generate super-
depth particle distribution fields and flow vectors with reduced
axial quantization errors. A similar interpolation scheme is
also applied to reconstruct subpixel flow vectors between two
images [8].

We now assess the effectiveness of this interpolation
scheme on simulated data. Here, we simulate a volume with
a fixed lateral dimension of 20 mm × 20 mm, and vari-
ous axial dimensions (2 mm, 4 mm, 8 mm, 16 mm), yielding
different depth-to-width ratios. We use the calibrated PSFs to
model the camera’s response to different depth levels. The lat-
eral dimension is discretized by a size of 200× 200, yielding
a spacing of 0.1 mm. A random particle distribution of ppp
= 0.05 is generated, and is advected following simulated flow
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Figure 6. Averaged errors for reconstructed flow velocities in the
axial direction with respect to various depth-to-width ratios. The
error is normalized by dividing the volume depth.

Figure 7. Experimental setup for both Tomo-PIV and RainbowPIV.

velocities, as described in [26]. We compare the reconstruc-
tion errors of the flow vectors in the axial direction (referring
to uz) for both standard RainbowPIV and the proposed depth
super-resolved RainbowPIV. The results are shown in figure 6.
When the depth-to-width ratio is 0.1, RainbowPIV and the
new proposed approach are identical, as they have the same
axial spacing. When the depth-to-width ratio increases, Rain-
bowPIV samples the volume more sparsely in the axial direc-
tion, yielding increased axial reconstruction errors (almost lin-
ear to the depth-to-width ratio). Using the interpolated scheme,
the axial reconstruction accuracy is significantly improved,
based on the simulated results; errorsare reduced by roughly
half when the depth-to-width ratio reaches 0.8. The accuracy
of the reconstructed flow vectors using this approach is further
experimentally validated below.

Figure 8. A single captured RainbowPIV image with ppp = 0.05.
Note that with the employment of the specifically designed
diffractive optical element, different colored particles share a similar
level of focus with the maximum aperture (f/1.8), even though they
have different object distances.

4. Experimental results

4.1. Validation experiments

Here, we validate the proposed strategy using experimental
data, including information relating to ground truth motion,
based on the approach in [26]. We immerse the particles into
a tank containing high viscosity liquid to ''freeze'' them.
The tank is then put on a multi-dimensional rotation/transla-
tion stage. The true movement of particles can thus be man-
aged by manipulating the stage. We move the tank in x and
z directions, respectively, so as to compare the accuracy of
both lateral and longitudinal reconstruction . A translation of
0.2 mm in the x direction and 0.5 mm in the z direction is
applied. As a result, the standard RainbowPIV implementa-
tion [26] recovers a motion vector of 0.18 mm/time units, the
mean value of the norm of the reconstructed velocity in the lat-
eral translation, with a standard deviation of 0.015 (mm/time
unit), and the proposed method delivers a similar reconstruc-
tion accuracy, 0.18 mm/time unit with standard deviation of
0.014 (mm/time unit). With regard to the longitudinal trans-
lation, 0.35 mm/time unit, with a standard deviation of 0.079
(mm/time unit) is achieved by the original RainbowPIV, while
our super-resolved approach achieves 0.42 mm/time unit with
a standard deviation of 0.045 (mm/time unit). We therefore
observe a significant improvement with respect to axial recon-
struction accuracy in this simple scenario, while the lateral
reconstruction accuracy is unaffected.

In both implementations, the recovered lateral flows
exhibit greater accuracy than the axial flows. As explained
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Figure 9. (a)–(b): Reconstructed flow vectors and vorticity magnitudes using RainbowPIV (the vector fields are shown every other 4 vectors
for visualization purposes). (c)–(d): Reconstructed flow vectors and vorticity magnitude using Tomo-PIV. This simultaneous measurement
is conducted at ppp = 0.05. The length of the arrow indicates the magnitude of the flow vectors. All the plots are in the same length scale.

in section 3.4, quantization errors and camera wavelength
sensitivity both affect the axial resolution. In the case of the
original RainbowPIV, the sampling rate along the axial dir-
ection is lower than the lateral sampling rate, resulting in
larger quantization errors. The super-resolved approach, in
contrast, achieves an identical sampling rate in lateral and
axial directions; however, the camera is more sensitive to lat-
eral particle motions (changes in pixel positions) than axial
motions (changes in wavelength). This fact brings in a great
degree of uncertainty in relation to the estimation of axial
flows.

4.2. RainbowPIV and Tomo-PIV

We further validate our method by directly comparing it with
a four-camera Tomo-PIV system in relation to practical fluid
flow phenomena. The simultaneous experimental setup for
four-camera Tomo-PIV and single-camera RainbowPIV is
shown in figure 7. The effective resolution of the captured

RainbowPIV images is 1600× 1120 (pixels). We downsample
the images by a factor of 8 in both dimensions (no further
image preprocessing required), resulting in 200× 140 (pixels)
images, and each particle occupies roughly 3× 3 pixels. The
depth dimension is discretized into 100 levels in order to obtain
regular voxels, where the PSFs of 20 levels (1.25 mm per
level) are obtained by calibration, and the intermediate PSFs
are digitally generated by linear interpolation, based on the cal-
ibrated neighbor PSFs. Therefore, the size of the reconstruc-
tion grid is 200× 140× 100, with a voxel spacing of 0.25 mm
along all three axes. One vector per voxel will be generated
by the proposed algorithm; therefore, the reconstructed velo-
city field has the same dimensional size and spatial resolution
as the grids (200× 140× 100). The particle image density is
roughly 0.05 ppp (particles per pixel), and one example of the
captured RainbowPIV image at this particle density is shown
in figure 8. A qualitative comparison of the reconstructed velo-
city fields for the introduced vortex ring at one time step is
presented in figure 9. Two sliced views (one perpendicular and
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Figure 10. Isosurface visualization for the vorticity magnitude computed from RainbowPIV (a) and Tomo-PIV (b) at ppp = 0.05; The
divergence of the velocity fields (∇· u) by RainbowPIV (c) and Tomo-PIV (d).

the other parallel to the image plane) of the reconstructed flow
vectors and the color-coded vorticitymagnitude are visualized.
The overall flow structure obtained by RainbowPIV agrees
well with that computed by Tomo-PIV. Nevertheless, with its
multiple perspectives, Tomo-PIV demonstrates greater depth
resolving capability than the proposed single view approach.
We can observe that the reconstructed flow vectors from Rain-
bowPIV with a large z component are noisier than flow vec-
tors in the x− y plane. As discussed in section 3.4, this is due to
the relatively lower sensitivity of the camera to the wavelength
change, so that the camera is less sensitive to particle motions
in the axial direction than to in-plane motions. Quantitative
comparisons between Tomo-PIV and RainbowPIV show an
average difference of about 0.05 m s−1 for flow vector com-
ponents in the x− y plane, and 0.1 m s−1 for vector compon-
ents in the z direction, with a maximum flow magnitude of
0.53 m s−1. In comparison, the original RainbowPIV imple-
mentation has the same in-plane average difference, whereas

the out-of plane difference is 0.21 m s−1. Although the uncer-
tainty of the axial flow vectors is still larger than for the
lateral flow vectors, these results affirm the improved axial
resolution.

An additional comparison is conducted by visualizing the
isosurface of the vorticity magnitude, as shown at the top
of figure 10. The figures reveal the similarity of the core
structures reconstructed by these two measurement techno-
logies. We further verify the mass conservation properties of
the reconstructed flow fields, which should comply with their
physical properties. The divergence of the computed flows is
shown in the bottom of figure 10. Zero divergence is expec-
ted everywhere for incompressible fluids. This divergence-free
property is explicitly enforced by our reconstruction method,
whereas Tomo-PIV fails to generate flow fields obeying this
physical property, and in addition does not readily support
the addition of this constraint during computation. This result
demonstrates that, despite the overall high quality and detail
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Figure 11. Reconstructed flow vectors and vorticity magnitude from RainbowPIV at ppp = 0.015 (a)–(b) and ppp = 0.005 (c)–(d).

Figure 12. Captured RainbowPIV images, where ppp = 0.015 (a)
and ppp = 0.005 (b), respectively.

of the Tomo-PIV solution, it can in fact not be considered as a
ground-truth solution.

4.3. Low particle seeding density

Next, we evaluate the RainbowPIV system in low particle
density situations, which are far below the desired particle
density required by Tomo-PIV. The correlation-based
algorithms applied in Tomo-PIV require sufficiently dense
seeding particles to extract accurate flow fields, and usually
perform poorly at low particle densities. The variant of the
optical flow method presented here, however, ameliorates this
issue by exploiting a local constraint (particle occupancy con-
sistency), which ensures that in those regions where particles
are present, the reconstructed local flow vectorsmatchwith the
practical particle motion, and two global constraints (global
smoothness constraint and temporal coherence), transmitting
the accurate local flow vectors to those regions where particles
are not present. Moreover, the physical properties are always
satisfied, regardless of the particle density.

The tested particle image densities are roughly calcu-
lated as 0.005 and 0.015 ppp, and the captured images for
these are shown in figure 12. The reconstructed flow vectors

9
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and vorticity magnitude are also visualized in figure 11,
which demonstrates that RainbowPIV successfully captures
the expected flow structures for vortex rings at various low
density levels. Owing to its use of both local and global con-
straints, the proposed method delivers decent results at rather
low particle densities. Under such conditions, particle tracking
systems would be preferable to Tomo-PIV. However, this gen-
erates Lagrangian flow vectors with sparse descriptors, rather
than the desired Eulerian vector fields. As a result, we believe
that RainbowPIV can also be very competitive in experiments
where uniform particle seeding is difficult or impossible.

5. Discussions

Depending on the setup, there are a number of possible altern-
atives for illumination, including high power white LEDs, or
even super-continuum lasers. The volume size will determine
the total light output required, but also the amount of spa-
tial coherence or beam divergence of the rainbow. This then
determines the choice of light source.

Currently, the reconstruction algorithm assumes a single
exposure per video frame. Pulsed illumination at one pulse
per frame could be used to suppress motion blur, without
any changes to the software. However, multiple exposures per
frame would require changes to the reconstruction; this may
be a fruitful avenue for future research.

The maximum flow velocity retrieved by our technique is
constrained by two factors: from the algorithmic perspective,
the maximum flow vectors which can reliably be generated
are 8 voxels (0.24 m s−1) between consecutive time steps (a
coarse-to-fine strategy is applied to tackle the issue of large
displacements). From the image quality perspective, like all
other PIV measurement systems, fast-moving particles (along
the lateral directions) cause severe motion blur in the captured
images, which downgrades the reconstruction accuracy.

As indicated in figure 5, the sensitivity of the color-based
depth-encoding scheme is non-uniform along the depth axis.
However, we did not observe correlations between the flow
reconstruction accuracy and depth-encoding sensitivity. The
main reason for this is that our flow estimation framework
is composed of both local and global constraints (elaborated
in section 4.3). The sensitivity of the depth-encoding scheme
only accounts for the local constraint, and the reconstructed
flows are also managed by the other global constraints.

6. Conclusion

In this article, we have proposed a depth super-resolved Rain-
bowPIV system which overcomes the limitations of axial res-
olution inherent in the precedent RainbowPIV system. A com-
prehensive study has been conducted to compare RainbowPIV
with the well developed four-camera Tomo-PIV approach,
using a simultaneous measurement setup. Both qualitative and
quantitative results demonstrate the good agreement achieved
by these two systems. In addition to velocity consistency,
due to the physically-constrained velocity estimation model,
RainbowPIV delivers divergence-free velocity fields for the

measured incompressible fluids, whereas Tomo-PIV fails.
Moreover, with the employment of both local and global con-
straints, RainbowPIV successfully reconstructs velocity fields
at rather low particle densities, which is restricted using Tomo-
PIV. All the observations confirm the potential application of
RainbowPIV in 3D volumetric velocity measurements, partic-
ularly in applications with limited optical access and low or
non-uniform particle densities.
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