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Abstract

In recent years, 3D Particle Imaging Velocimetry (PIV)
has become more and more attractive due to its ability to
fully characterize various fluid flows. However, 3D fluid
capture and velocity field reconstruction remain a challeng-
ing problem. A recent rainbow PIV system encodes depth
into color and successfully recovers 3D particle trajecto-
ries, but it also suffers from a limited and fixed volume size,
as well as a relatively low light efficiency. In this paper,
we propose a reconfigurable rainbow PIV system that ex-
tends the volume size to a considerable range. We intro-
duce a parallel double-grating system to improve the light
efficiency for scalable rainbow generation. A varifocal en-
coded diffractive lens is designed to accommodate the size
of the rainbow illumination, ranging from 15mm to 50mm.
We also propose a truncated consensus ADMM algorithm
to efficiently reconstruct particle locations. Our algorithm
is 5× faster compared to the state-of-the-art. The recon-
struction quality is also improved significantly for a series
of density levels. Our method is demonstrated by both sim-
ulation and experimental results.

1. Introduction
A fully characterized fluid flow is essential for studying

fluid properties in the field of fluid dynamics, and for flow
editing and re-simulations in other applications. However,
investigating complex and three-dimensional fluid phenom-
ena in an easy way remains unsolved. Tomographic Parti-
cle Imaging Velocimetry (Tomo-PIV) [4, 11] has been ex-
tensively studied in recent decades, and its wide applica-
bility to imaging various fluid phenomena has been demon-
strated. Specifically, Tomo-PIV makes use of multiple cam-
eras (normally 4−6 cameras) that observe the volume from
different perspectives, and reconstructs three dimensional
intensity fields and three components of the velocity fields
over a 3D measurement volume (3D-3C) by means of multi-
plicative reconstruction technique (MART) and correlation-
based algorithms respectively. Although Tomo-PIV has
several advantages, such as high spatial resolution, and is

regarded as a standard technique in fluid dynamics, it still
suffers from severe limitations that limit its usage. First
among these is the complexity for setting up and calibrat-
ing the whole system, which usually takes a considerable
amount of efforts. Another practical issue is depth-of-field,
which restricts it from working on volumes with relatively
large depth that typically ranges from 10mm to 20mm [5].
Moreover, it would be impractical to set up multi-camera
systems for many types of flows constrained by limited op-
tical access, in which situation a single-camera system is
preferred.

Recently, single-camera approaches were proposed on a
basis of the plenoptic camera (or light field camera) [9, 7],
addressing part of the issues arisen from Tomo-PIV. Specif-
ically, a plenoptic camera records the full 4D light fields,
which are generated from the scattered light of seeded
particles in the flow. Herein, one can digitally recon-
struct the particle locations using ray-tracing based algo-
rithms [8, 5, 3, 12]. Overall, by using a light field cam-
era, it allows a dramatically simplified setup overcoming
the optical access limitation. Furthermore, it can digitally
refocus the images and thus allows a relatively large depth-
of-field even for a large aperture lens. While as a compro-
mise, the LF-PIV approach sacrifices spatial resolution for
angular information, in order to achieve sufficient axial res-
olution. Furthermore, storing and processing 4D light field
data is computationally expensive and exhibits heavy mem-
ory usage. Besides, light field camera commonly has low
frame rates. All of the above mentioned drawbacks make
time-resolved reconstruction of non-stationary fluid flows
an intractable issue.

A further simplified setup using a single off-the-shelf
RGB camera has been presented in [13]. This Rainbow-
PIV system simultaneously achieves high lateral resolution
and all depths in focus without significant light loss, and
also it is able to reconstruct time-resolved flows based on
captured video frames. In short, it illuminates the volume
using a rainbow light, which is produced by passing a white
beam through a linear variable filter, such that the depth
information is encoded by color. On the acquisition side,
a custom designed diffractive optical element (DOE) man-



ages a wavelength-selective focus so that all light planes
are in focus at the same time. Afterwards, a joint optimiza-
tion solver for particle distribution and velocity vector fields
reconstruction is utilized for time-varying 3D-3C fluid ve-
locity measurements. It also demonstrates its applications
in different flow scenarios and reveals a compelling and ro-
bust reconstruction accuracy.

Nevertheless, the use of the linear variable filter for rain-
bow generation limits the depth range of the optical setup
to a very specific size. Changing the depth range would
require replacing the linear filter with a different version
and changing the collimating optics, which involves rather
large changes to the optical system. Also in this setup, the
rainbow illumination is generated through absorption of un-
wanted wavelengths in the linear filter, which is a very en-
ergy inefficient process. These limitations restrict the above
mentioned system from being adopted to an observing vol-
ume with various depth ranges. A flexible fluid measure-
ment system would be favored for its applicability to flow
phenomena occurred in various length scales. Considering
this, we seek to use two off-the-shelf blazed gratings, and
further design an encoded diffractive optics (see [6]) to con-
struct an easily reconfigurable PIV system. Specifically, we
make the following contributions:

• We propose a single-camera 3D-3C PIV system with a
scalable, reconfigurable rainbow illumination.

• We design and fabricate adjustable diffractive optics
to focus all light planes for a reconfigurable rainbow
volume.

• We propose a computationally efficient and memory
friendly solver for high-precision 3D particle recon-
struction.

• We demonstrate the scalability of our hardware setup
on real fluid scenarios.

2. Overview
In the following, we provide an overview of our designed

system that meets the rainbow scalability requirement, and
improves the particle position reconstruction performances.

To achieve reconfigurability of the rainbow volume, we
require changes to both the illumination and the imaging
system. In other words, the fluid volume containing seeded
particles should be illuminated by a parallel rainbow beam
with readily modifiable size. Furthermore, the imaging sys-
tem should have an easily adjustable focal length, to ensure
that for each rainbow size all particles are in-focus. Fig-
ure 1 illustrates our optical setup. The solution selected
to generate a reconfigurable rainbow is based on the use
of two parallel blazed gratings, combined to a white light
source, a collimator and a cylindrical lens. Indeed, the size
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Figure 1: Reconfigurable Rainbow PIV setup. The illumi-
nation system, based on two parallel blazed gratings, allows
the control of the rainbow’s width. Meanwhile, a varifocal
lens is designed to have a wavelength-selective focus ad-
justable according to the size of the illuminated volume.

of the rainbow is controlled by the distance between the two
gratings as explained in Section 4.1. On the other hand, an
encoded lens composed of two diffractive optical elements
and a refractive lens is used to ensure that all colored planes
of the rainbow will be in-focus. The equivalent focal length
of this encoded lens is governed by the relative angle be-
tween the two DOEs.

The captured images are then used to reconstruct 3D par-
ticle locations in spatial domain. Specifically, it solves an
inverse problem of the image formation model which for-
mulates the imaging process from particle locations to the
observed image. After obtaining two consecutive particle
distributions, volumetric flow reconstruction is performed,
using a modified Horn-Schunck optical flow model. A mod-
ified solver (truncated consensus ADMM) for particle dis-
tribution retrieval is proposed in the consideration of com-
putational efficiency and the reconstruction quality.

3. Reconstruction

3.1. Particle Position Reconstruction

Following the image formation model from [13], parti-
cles in the volume are illuminated by wavelength-dependent
(denoted as λ) light sheets, which are physically depen-
dent on the depth of particle locations, such that the third
dimension (z coordinate) of a specific illuminated parti-
cle can be determined from its spectral information. The
occupancy probability of a specific voxel is described by
P (ξ, λ), where λ indicates on which light plane the voxel
locates and ξ = (x, y) indicates the 2D spatial position in



that light plane. Moreover, a RGB camera is employed for
capturing the regions of interest, thus the response of the
camera to the illuminated particles can be modeled as a se-
ries of point spread functions (PSFs), denoted as Kc(λ),
which vary from the color channels c (c ∈ {r, g,b}) and
wavelengths. The convolution operator for the PSFs can be
further formulated into matrix A = [Ar;Ag;Ab]. The ob-
jective is to reconstruct the particle probability distributions.
Specifically, we solve the following minimization problem:

(p∗) = argmin
p

1

2
‖Ap− i‖22 + α‖p‖1, (1)

where i = [ir; ig; ib] is the stacked vector for the observed
RGB image, p is the vectorization of 3D particle distribu-
tions, and α regulates the sparsity of the reconstructed par-
ticles in spatial domain.

The above minimization problem refers to the basic
LASSO algorithm, which can be solved by the ADMM
framework [1], as in [13]. However this basic solution in-
curs a significant cost both on terms of computational effort
and memory consumption when dealing with a large con-
catenated matrix A. Although some matrix-free solvers,
for instance conjugate gradient, can be applied to avoid
explicitly storing the coefficient matrix, the computational
cost is still significant. To ease both memory consumption
and computational cost, we introduce a consensus based
ADMM solver that allows us to split the problem into
smaller chunks based on the spectral response of the camera
sensor. These individual parts can be solved almost inde-
pendently.

Consensus ADMM solver. Consensus ADMM has
been recently used to solve distributed optimization prob-
lems [14, 1], and large-scale/high-dimensional feature
learning based image processing tasks [2]. In particular, it
solves an optimization problem involving a composite ob-
jective

∑
j fj(xj), where fj : Rn → R refers to jth com-

ponent of the entire objective, and xj are the corresponding
local variables. The local variables are all constrained by a
common global variable y, written as xj = y. For a simple
variation of the objective function with an additional regu-
larization term g, the problem can be expressed as:

minimize
∑

j

fj(xj) + g(y)

subject to xj = y,

(2)

We can fit our particle reconstruction model into the above
consensus problem by decomposing it based on color chan-
nel, such that each subproblem corresponds to a single
color channel. Specifically, for the problem in Eq. (1),
fc(pc) = 1

2‖Acpc − ic‖22 and g(y) = α‖y‖1. The con-
sensus ADMM solver is expressed in Algorithm 1.

Algorithm 1 Consensus ADMM for solving Eq. 2

1: for k = 1 to N do
2: // p-update step (ridge regression)
3: pk+1

c ← (AT
c Ac + ρI)−1(AT

c ic + ρ(yk − qkc ))
4: // y-update step (soft thresholding)
5: yk+1 ← (p̄k+1+q̄k− α

3ρ )+ − (−p̄k+1−q̄k− α
3ρ )+

6: // scaled dual variables update
7: qk+1

c ← qkc + pk+1
c − yk+1

8: end for

Here, p̄ and q̄ denote the averaged value of pc and qc

over color channels respectively. Each subproblem tackles
the reconstruction step in one color channel, and hence it
becomes less computationally intensive and more memory
friendly. While an issue referred to “over averaging” arises
when averaging the local variables in y-update step of Al-
gorithm 1. This issue comes from the fact that the generated
rainbow covers a broadband visible spectrum, ranging from
red to blue light. Herein, one color channel only covers part
of the observing volume in axial direction, for instance red
covers the front part of the volume, blue covers the rear part
and green covers the middle part. Thus each subproblem
can only reconstruct particles over the regions which are re-
ferred by the associated color channel. Therefore, averaging
the solutions to the subproblems leads to degraded results,
which causes the “over averaging” issue. To overcome this
issue, we present a truncated consensus ADMM solver, be-
sides, it achieves higher computational efficiency.

Truncated Consensus ADMM solver. The general idea
for the proposed truncated consensus solver is illustrated
in Figure 2. Since one color channel provides partial in-
formation of the particle distributions in the volume along
z-axis, we can discard those useless regions and retain the
regions with the corresponding color information for each
channel. Therefore, every modified subproblem only recon-
structs partial particle distributions. Recall the notations in
Figure 2, Atr

c denotes the truncated matrix of Ac and ptrc
denotes the particle distributions referred by the color chan-
nel c.

Moreover, depth-dependent weights will be applied for
the L1 penalty term in order to compensate for the camera
spectral sensitivity. For instance, the spectral response of
the green channel of the camera sensor may be effective to
wavelengths roughly ranging from 500nm to 600nm, while
it has the peak response at 530nm. This will lead to a non-
uniform distributions of reconstructed particles, which are
preferred to be placed at wavelength levels exhibiting large
response. The compensatory weighting term enables us to
ease the biased reconstruction results, which is expressed
as:

wc(λi)
i∈1,...,M

=
‖Kc(λi)‖22

max
i

(‖Kc(λi)‖22)
α, (3)
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Figure 2: Illustration of the truncated consensus solver.
Each subproblem only tackles part of the observing volume
which is referred by the involved color channel.

where wc(λi) refers to the weights of the c color channel
at depth level of wavelength λi, and M is the number of
discretized levels in axial direction. As we can observe, this
formula assigns smaller penalties to the wavelength levels
with less sensitive spectral response and larger penalties to
levels with higher sensitivity.

3.2. Volumetric Flow Reconstruction

The algorithm used for tracking the fluid motion is
adopted from [13], except that we only work on two frames,
instead of a video sequence, to validate the scalability of our
proposed PIV system. The tracking algorithm is a variant
of standard Horn-Schunck model, in which the brightness
constancy term is replaced by a particle presence consis-
tency term, and also the divergence-free constraint is taken
into account.

Specifically, we solve the following optimization prob-
lem

u∗ = argmin
u

∫
Ω

p1

2
� (p1 − p2(u,−∆t))

◦2
dΩ

+ β ‖∇u‖22 + ΠCDIV
(u),

(4)

where � and .◦2 are component-wise (Hadamard) opera-
tors. The terms in this optimization problem are respec-
tively a Horn-Schunck style “photoconsistency” term on the
particle occupancy probabilities, an advection term, and an
incompressibility term. We refer to [13] for detailed deriva-
tions of these terms. The method for solving this optimiza-
tion problem is reproduced in Algorithm 2 for the sake of
completeness. For lightening the notation, we define

p̂k2 = p2(uk,−∆t)

H = p1 � (∇p̂k2)◦2 + 2β∇2

t = p1 � (p̂k2 − p1 −∇p̂k2uk)∇p̂k2

Algorithm 2 ADMM for solving Eq. 4

1: for k = 1 to K do
2: // u-minimization step
3: uk+1 ← (ρH + I)−1(yk − qk − ρt)
4: // pressure projection step
5: yk+1 ← ΠCDIV(uk+1 + qk)
6: // scaled dual variables update
7: qk+1 ← qk + uk+1 − yk+1

8: end for

4. Hardware setup
4.1. Double Blazed Gratings Rainbow Generation

In this subsection, we explain our approach to generate
a rainbow beam to illuminate the tank. This rainbow vol-
ume should consist of a stack of parallel, nearly monochro-
matic planes, where the density of the planes (and therefore
the thickness of the rainbow volume) is easily adjustable in
size. Furthermore, the system should provide a good light
efficiency. To meet these requirements we propose to use
a setup based on two parallel gratings respecting the blaze
condition, as shown in Figure 3.

A white light beam is generated by a plasma light source
combined with a liquid light guide (HPLS245, Thorlabs).
The beam becomes parallel after passing through the col-
limator. Then a cylindrical lens is employed to focus the
light into a line that will reach the first blazed grating. After
being diffracted by the first grating, the obtained rainbow
beam is divergent and spreads out in the perpendicular di-
rection to the rainbow plane. A second blazed grating, iden-
tical and parallel to the first one, will diffract the rainbow
beam with the same angles as the previous one, yielding a
parallel rainbow beam.

The blazed gratings are adopted in our setup because
they concentrate the maximum optical power for a given
diffraction order (the first order in our case), while the en-
ergy of other orders (including the zeroth order) is min-
imized. The selected blazed gratings have the follow-
ing characteristics: blaze wavelength 500nm, blaze angle
17◦27

′
, 1200 grooves/mm, dimension 50mm× 50mm×

9.5mm and 60− 80% grating efficiency at the blaze wave-
length. The width of the obtained rainbow beam can be
simply controlled by the distance between the two gratings.

4.2. Encoded Diffractive Optical Elements

Once the particles of interest are illuminated by the re-
configurable rainbow light generated by the double blazed
gratings, a varifocal DOE lens is necessary to adapt to the
changing volume length. This varifocal DOE lens should
be able to continuously adjust to the color depth of field
all over along the volume range. Thereby, a single DOE
as used in [13] is not sufficient. We propose to adopt the
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Figure 3: Illustration of rainbow generation using two paral-
lel blazed gratings (BG1 and BG2 / BG2’). A parallel white
beam reaching BG1 with an incidence angle (α) equal to the
blaze angle (θBlaze), is diffracted at the same angle (β) for
the blazed wavelength (green ray). The second diffraction
occurs at BG2 / BG2’ with the same angles for each wave-
length. The obtained rainbow is then parallel, and its width
is controlled by the distance between the two gratings.

encoded diffractive lens as previously reported by Heide et
al. [6] to realize the varifocal DOE lens.

An encoded diffractive optical element (EnDOE) con-
sists of two DOEs that are optimized to form the phase
function of an ideal lens when the two are aligned face-to-
face. The focal lengths of the EnDOE are encoded in the
relative rotation angles between the two components. Over
a specific angle range 0 6 θmin 6 θmax 6 π, the focal
length can be designed in the range of [−fmax,−fmin] ∪
[fmin, fmax].

For a given volume range [Lmin, Lmax], we need to de-
sign the focal length range of the EnDOE. Consider the op-
tical layout in Figure 4 (a). Assume the wavelength range
of the rainbow illumination is [λ1, λ2]. The EnDOE is de-
signed at wavelength λ0, which lies in the middle of the
range. The nominal focal length of the EnDOE is fE,0,
and the focal length of the refractive lens is fL for all the
wavelengths (here we assume the refractive lens is achro-
matic). For wavelength λ other than the design wavelength,
the corresponding focal length of the EnDOE is determined
by λfE,λ = λ0fE,0. Applying the Gaussian lens formula,
we have

1

s(λ)
+

1

s′
=

λ

λ0fE,0
+

1

fL
− d λ

λ0fE,0

1

fL
, (5)

where s and s′ are respectively the object distance and im-
age distance measured from the principal plane. The right
hand side of Eq. (5) is the effective focal length of the entire
system, and d is the distance between the EnDOE and the

refractive lens. Taking derivatives over both sides of Eq. (5)
and doing simple re-arrangement, we have

L = ∆s ≈
∣∣∣∣ fL − d
λ0fLfE,0

∣∣∣∣ s2
0∆λ, (6)

where s0 is the object distance at design wavelength λ0.
We design the rainbow illumination in the range between

460nm and 660nm. The refractive lens is a 50mm Canon
DSLR lens. We place the particles at s0 = 220mm in front
of the lens to keep a compact system. Ideally, the EnDOE
and the refractive lens should be as close to each other as
possible. In practice, there is a certain distance caused by
the mechanical mounts. We approximate this distance d ≈
5mm. The actual volume size depends on all the factors
indicated by Eq. (6).

As shown in Figure 4 (b), the volume length ranges
roughly from 15mm to 75mm as fE,0 changes from
±1000mm to ±200mm. Considering the fabrication con-
straints, we design the focal length range as (−∞,−300] ∪
[300,∞)mm. We still keep a considerable volume range
from 15mm to 50mm.

The phase functions of the two constituent DOEs are op-
timized by complex matrix factorization [6]. In the design
focal length range, we sample at 6 focal lengths, and calcu-
late the respective rotation angles. The target phase func-
tions are ideal lens phase functions at the corresponding fo-
cal lengths. Due to the symmetry of rotation angles, we
choose the angle range to be as large as possible, such that
the focal length variation with angles are not too sensitive
to small deviations. The optimized rotation angle range is
[−114◦, 114◦].

Since fabricating continuous height profiles on glass sub-
strates are challenging, we exploit multi-level photolithog-
raphy techniques to fabricate the EnDOE. We first convert
the optimized phase profiles to 16-level discrete phase func-
tions. The drop in diffraction efficiency caused by this
discretization could be significant if fewer levels are used,
while 16-level profiles are already able to approximate the
continuous profile very well [6, 10]. Each fabrication cell
in the DOE is 2µm, and the apertures of both DOEs are
16mm. All the samples are fabricated on 0.5mm thick
fused silica wafers with a 200nm thick, Chromium aper-
ture (16mm diameter) to prevent stray light.

5. Results
5.1. Calibration

Since wavelength changes approximately linearly in dis-
tance along longitudinal direction, we can uniformly dis-
cretize the volume in wavelength domain, and one discrete
wavelength level is associated with a depth layer. It is essen-
tial to obtain the camera response to each of the wavelength
level, and thus one can retrieve the depth information from
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Figure 4: Optical system. (a) The combination of the EnDOE and refractive lens bring all the wavelengths to a common
focal plane. (b) The volume size is approximately inversely proportional to the nominal focal length of EnDOE. (c) The
two constituent DOEs (left) at rotation angles 114◦ (top) and −23◦ (bottom) create lens profiles of 300mm and −1500mm
respectively. 3D profiles (right) of the fabricated DOEs was taken by Zygo NewView 7300.

captured data. In our setup, rainbow with spectrum ranging
from 460nm to 660nm was generated. We discretize the
spectral range into 20 levels, resulting in a spectral resolu-
tion of 10nm/layer. When calibrating the camera response
at one particular wavelength level, one can either physically
block the rest wavelengths or use a wavelength filter, but
the former one is preferred in our experiments as it has no
extra energy loss. Similar to the work in [13], a RGB cam-
era is applied for calibration and frame data capture, such
that each PSF refers to a color image. In our setup, how-
ever, the calibration should be re-performed after changing
the rainbow size.

5.2. Simulation Results

In order to quantitatively evaluate the reconstruction ac-
curacy of the particle retrieval algorithm, we synthetically
generate a number of three-dimensional particles, employ
the calibrated PSFs and add Gaussian white noise of vari-
ance 0.001 to produce a simulated observed image. The re-
construction accuracy is examined by the metric of quality
factor (Q), which refers to the normalized correlation coef-
ficient of the real and reconstructed probability fields, given
by

Q =

∑
p · p∗√∑

(p)2 ·
∑

(p∗)2
(7)

where p and p∗ denote the reconstructed and ground truth
probability fields respectively. The simulation is proceeded
on a volume of dimensions 100 × 100 × 20 with different
seeding densities. In the truncated approach, color infor-
mation with ‖Kc(λi)‖22 ≤ 0.25 is discarded. We compare
the proposed truncated ADMM solver (“Trun-ADMM”),
with the standard ADMM solver “ADMM” and consensus
ADMM solver “CADMM” under the same parameter set-
tings (α = 0.05, ρ = 1). The results are shown in Fig-
ure 5(a), where the solid horizontal line (Q = 0.75) de-
fines the base line for a sufficiently accurate reconstruction
result [4]. It suggests that the proposed method reveals a
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Figure 5: (a) Reconstruction quality factor (Q) versus a
number of seeding densities (ppp) for different approaches.
The solid line means the criterion for a reasonably accu-
rate reconstruction. (b) Execution time for ADMM solver
and Trun-ADMM solver using conjugate gradient (CG) and
Cholesky decomposition (CD) respectively.

considerable improvement in reconstruction quality at all
densities, while that of consensus solver is degraded signif-
icantly due to the “over averaging” issue.



We then evaluate the execution time of ADMM solver
and Trun-ADMM solver for various X/Y dimensions. Con-
jugate gradient (CG) and Choleskey decomposition (CD)
are independently applied for those two solvers to deal with
the linear system of line 3 in Algorithm 1. Note that CG
is implemented as a matrix-free solver and CD is precon-
ditioning factorized, which is not counted in the running
time. It takes around 31 and 36 iterations to reach the
same stopping criteria for “ADMM” and “Trun-ADMM”,
respectively. The results of the execution time are shown
in Figure 5(b). The processing time for “ADMM-CD” in-
creases dramatically with the dimensions, and for CG meth-
ods it increases moderately, roughly in linear. Even though
the proposed truncated consensus solver (“Trun-ADMM-
CD”) takes more iterations, it still achieves higher compu-
tational efficiency, especially realizing about 5× speedup
over “ADMM-CG”, which is a standard way for solving this
type of problem.

5.3. Refocusing

We evaluate the reconfigurability of our system by two
experiments with various rainbow sizes, 50mm and 30mm,
the results for which are shown in Figure 6. We can observe
that with the usage of EnDOE, the images are well focused
in both cases even with a large aperture, while the lens-only
setup fails to focus on all particles with the same f-number.
Although we can reduce the aperture size for a larger depth-
of-field, as a tradeoff, the light efficiency is sacrificed and
get poorer images. It should be noted that due to the diffrac-
tion efficiency, some light energy lost in the camera side,
however, we can still obtain sufficiently high quality im-
ages comparable to reducing the aperture. We clarify that
the size of our proposed system is not limited on the two test
examples, but can be adjusted continuously from 15mm to
50mm.

5.4. Fluid Flow Measurements

At last we test our system and algorithms on real fluid
flows to verify the ability for measuring flows within a vol-
ume with alterable depth ranges. The experiments take
place on a test section in the size of 40mm×20mm (x×y),
and the size of z dimension varies with the generated rain-
bow. We proceeds on the datasets as partially shown in Sec-
tion 5.3, such that the size in axial direction is 30mm or
50mm. The working volume is discretized into grids with
resolution of 400 × 200 × 20, therefore, the voxel pitch in
x−y plane is 100µm, and the pitch size in z-axis is 1.5mm
or 2.5mm respectively for two generated rainbows. The
pictures are captured at a frame rate of 30 fps, and the seed-
ing density is about 0.03 ppp. The parameters for recon-
structing the probability fields are the same as listed in Sec-
tion 5.2. As for reconstructing volumetric flow, the parame-
ters are common for all experiments: β = 5e−6, ρ = 1, and

DOE + f/1.8 f/1.8 f/5.6

f/8.0f/1.8DOE + f/1.8

Figure 6: Images captured using the encoded DOE with lens
(DOE+f/#) and lens-only (f/#) with different aperture set-
tings. The first and second rows show the captured image
with rainbow size of 50mm and 30mm respectively. Left:
Encoded DOE and lens with f/1.8 since the depth-of-field of
EnDOE setup is not affected by the aperture size (see Eq. 5),
the largest available aperture was chosen to maximize the
light efficiency. Middle: lens-only with an aperture of f/1.8.
While the light efficiency matches that of our setup, depth-
of-field blur is significantly worse. Right: lens-only with
stopped down apertures of f/8.0 (top) and f/5.6 (bottom).
Here the blur is approximately matched to our setup, but
the light efficiency is decreased by a factor of 19.7 and 9.6,
respectively.

the ADMM iteration is 3. The running time for the first step
is about 60 seconds for each frame, and for flow reconstruc-
tion is roughly 40 minutes on a 2.50Ghz Intel Xeon E5-2680
CPU with 128GB RAM. The reconstructed flow vectors for
different flow phenomena in an alterable volume size are
visualized in Figure 7, and they coincide well with the real
fluid flows. These results successfully demonstrate the fea-
sibility of our proposed system in fully characterizing the
3D flow velocities for fluid scenarios in arbitrary volume
size within designed depth range.

6. Conclusion
In this paper we have demonstrated a reconfigurable

rainbow PIV system that can efficiently track particle flows
in 3D with a considerable range of volume sizes. Com-
pared to existing PIV methods, our system is easy to imple-
ment, and is much more flexible and re-configurable. We
introduce a high efficiency parallel double-grating system
to generate scalable rainbow illumination by simply adjust-
ing the distance between the two. In the camera end, we ex-
ploit a varifocal encoded DOE lens to accommodate differ-
ent sizes of the rainbow illumination, ranging from 15mm



Figure 7: Flow vector visualizations for the fluid flow cap-
tured in rainbow sizes of 50mm (top) and 30mm (bottom).

to 50mm. Moreover, we propose a truncated consensus
ADMM algorithm to reconstruct 3D particle distributions.
Our algorithm is 5× faster than the prior arts. The recon-
struction quality factor is also improved significantly for a
series of density levels.

Similar to [13], the axial resolution is still a limitation for
the proposed system. Specifically, two factors determine the
axial resolution: the spectral resolution of the illumination,
and the spectral resolution of the camera. The illumina-
tion spectrum spreads continuously over the volume width,
thus the wider the volume is, the finer spectral resolution
it reveals. However, representing full spectral information
by only three color channels in an RGB camera leads to
metamerism, which adds to the ambiguity to resolve spec-
tral features by the camera. The benefit of the increased il-
luminating spectral resolution could not compensate for the
loss of spectral information, hence the axial resolution is
decided by the camera spectral resolution. Capturing more
color channels can enhance the spectral resolution on the
camera side, however, high resolution, multi-spectral video
cameras are not readily available for high-res, video-rate
capture as required by PIV.

Our system could be further improved in future work.
First, although the light efficiency has been significantly im-
proved compared to existing rainbow generation (e.g. linear

variable filter), the double-grating system still suffers from
light loss in undesired diffraction orders. This could prob-
ably be addressed with the use of prisms instead of blaze
gratings, although the prisms would have to be quite large,
which adds to the bulk of the system, as well as its cost. Sec-
ond, instead of using plasma white light source, a supercon-
tinuum white light laser could be employed to improve the
SNR, and hence smaller and less reflective particles could
be tracked. Because of the reconfigurability of our system,
it is fairly straightforward to apply this technique to both
large scale and microscopic PIV applications.
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