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Abstract

Optically multiplexed image acquisition techniques have
become increasingly popular for encoding different expo-
sures, color channels, light fields, and other properties
of light onto two-dimensional image sensors. Recently,
Fourier-based multiplexing and reconstruction approaches
have been introduced in order to achieve a superior light
transmission of the employed modulators and better signal-
to-noise characteristics of the reconstructed data.

We show in this paper that Fourier-based reconstruction
approaches suffer from severe artifacts in the case of sen-
sor saturation, i.e. when the dynamic range of the scene
exceeds the capabilities of the image sensor. We analyze
the problem, and propose a novel combined optical light
modulation and computational reconstruction method that
not only suppresses such artifacts, but also allows us to
recover a wider dynamic range than existing image-space
multiplexing approaches.

1. Introduction and Related Work
Photography has evolved as one of the primary means by

which we represent and communicate the three-dimensional
world around us. Over the past decade, we have
seen a push to digital photo-sensors, such as charge
coupled device (CCD) and complementary metal-oxide-
semiconductor (CMOS) sensors, which have largely re-
placed traditional film photography.

Digital sensors, however, have a relatively limited dy-
namic range compared to both the human visual system and
photographic film. The recent development of consumer
displays that support a high dynamic range [24] has in-
creased the demand for high contrast content beyond the
scope of movie theaters.

In order to capture a high dynamic range image or other
visual information with standard digital sensors, a variety
of multiplexing techniques have been proposed. One of the
most popular approaches is to successively capture different
exposures of the same scene with a single camera [9, 17,
23]. Alternatively, multiple aligned image sensors can be
employed to simultaneously capture images of a scene that
are either differently exposed or filtered [4, 16]. The latter

approach is costly, while the former usually does not allow
for acquisition of dynamic environments.

Different optical information can also be encoded into a
single photograph. Examples of this approach include high
dynamic range imaging [19], photography with color filter
arrays (CFAs) [7, 8], and light field acquisition [14, 2, 20,
13]. These techniques can be generalized as Assorted Pix-
els [18], where each sensor pixel captures an exposure or
some other part of the plenoptic function [3]. Micro-lens
arrays can be equipped with different apertures to capture
high dynamic range light fields [10].

Recently, more sophisticated multiplexing schemes have
been explored. Modulators that optically encode light prop-
erties in different spatial frequency bands have been pro-
posed for the acquisition of light fields [26, 25] and oc-
cluder information [12]. The corresponding reconstruction
has usually been performed in the Fourier domain, although
a recent analysis [11] shows that a spatial reconstruction is
possible. Compared to standard spatial multiplexing tech-
niques, Fourier multiplexing methods allow for a superior
light transmission and potentially increased signal-to-noise
ratio (SNR) of the demultiplexed signal.

Although the effect of sensor saturation on spatial recon-
structions of multiplexed data is well understood, it has so
far been ignored for Fourier-based reconstruction methods.
We analyze the problem and show that saturation results in
severe artifacts for these approaches as the global frequency
content is altered by the saturation.

Inspired by the idea of Fourier-based image reconstruc-
tion, we present a joint optical light modulation and com-
putational reconstruction approach to boosting the dynamic
range of multiplexed photographs. Previously, plausible dy-
namic range values were estimated from demosaicked im-
ages using heuristics [22, 6, 15] or priors on the color distri-
butions for the case of a single saturated color channel in a
photograph [28]. In contrast to this, we develop a numerical
optimization method for Fourier-based reconstruction and
dynamic range boosting of multiplexed data that precedes
the demosaicking step and recovers the raw sensor data.

Restoration of clipped general [1] and ultrasonic [21]
signals based on inequality constrained optimization has
been successful, but it does not consider the artifacts in-
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troduced by reconstructing individual channels from a satu-
rated multiplexed signal.

Specifically, our contributions are
• An analysis of the effects of sensor saturation for mul-

tiplexed image reconstruction in the Fourier domain
(Section 2).
• A numerical optimization method for Fourier-based

dynamic range boosting of multiplexed data. The ap-
proach is introduced for dynamic range multiplexing
with neutral density filters (Section 3).
• A prototype that allows novel color filter arrays and

other multiplexing masks to be developed and tested
in a macroscopic scale (Section 4).
• A novel color filter array that allows our dynamic range

boosting technique to be applied to full color pho-
tographs (Section 5).

2. Saturation Analysis in Fourier Space
The principle of Fourier multiplexed image reconstruc-

tion is illustrated in Figure 1. A band-limited optical signal
is filtered with a periodic light modulator that is mounted
directly on the sensor, such as a color filter array (CFA) or
an array of different neutral density (ND) filters. The op-
tical filtering, or multiplication, of incident light and mod-
ulator is, according to the convolution theorem, equivalent
to a convolution in the Fourier domain. The convolution
enables a copy mechanism that allows Fourier multiplexing
approaches to directly encode desired visual information in
different frequency bands of the image. As shown in Fig-
ure 1 (lower right), these can then be cropped in the Fourier
transform of the sensor image and individually transformed
back to the spatial domain.
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Figure 1. A simulated, band-limited optical signal is filtered with a
semi-transparent mask placed directly in front of the image sensor.
This multiplication (upper row) corresponds to a convolution in
the frequency domain (lower row). Fourier multiplexing exploits
the resulting copy mechanism to capture several differently filtered
versions of a scene in different frequency bands of a photograph.

Although specialized Fourier multiplexing masks have
so far only been used to acquire light fields [26, 25, 12] it is
straightforward to extend this concept to color filter arrays

(see Section 5). The potential of Fourier-based reconstruc-
tion methods for color demosaicking of raw CFA imagery,
even with standard Bayer filters, has only recently been dis-
covered [5].

In order to understand the effects of sensor saturation on
the individual Fourier tiles, let us consider a 1D unmodu-
lated, band-limited scene as shown in Figure 2 (left). Due
to the band-limited nature of the signal, only low image fre-
quencies are present that occupy a single frequency band
(Fig. 2, lower left), while all other frequency bands are
empty and reserved for additional information to be opti-
cally encoded with a modulator. Sensor saturation, as illus-
trated in Figure 2 (right), destroys the band-limited nature
of the signal by modifying the frequency content of the sig-
nal. The frequency bands that were originally reserved for
additional data are corrupted with high frequency compo-
nents.
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Figure 2. A band-limited signal (upper left), consisting of a single
scanline taken from a high dynamic range image, and the same
signal clipped at 0.8 maximum intensity level (upper right). The
Fourier transform of the original scanline is band-limited (lower
left), while the Fourier transform of the clipped version of the same
scanline is corrupted by high frequency components.

In order to understand the effect of saturation, let us now
consider a simple example scene, shown in Figure 3, where
a constant white signal is captured through an attenuation
mask consisting of different neutral density (ND) filters.
The Fourier transform of the underlying signal is a single
value for the DC term. According to the Poisson summa-
tion formula, the Fourier transform of the unsaturated peri-
odic sensor image is a series of differently weighted Fourier
peaks as seen in Figure 3 b. If the dynamic range of this
mask-modulated scene exceeds that of the sensor, some of
the ND filters are saturated (c), and the global scale of the
Fourier copies is altered (d). In this case only parts of each
super-pixel, that is one spatial period of the modulator, are
saturated; therefore, we refer to these regions as being par-
tially saturated.

Another case of saturation occurs when the scene region-
ally exhibits a very high dynamic range. Here, one or more
spatially neighboring super-pixels are fully saturated. Due
to the spatial structure of the super-pixels being completely
removed in such regions, the local information cannot be
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Figure 3. A constant signal captured through a 3 × 3 pattern of
neutral density filters (a) and its Fourier transform (b). Partial satu-
ration of this sensor image (c) causes changes in the magnitudes of
the signal’s Fourier copies (d). Peak magnitudes are color-coded.

copied into the high frequency bands of the image. Instead,
other frequency bands are corrupted.

In summary, saturation has a significant impact on the
performance of Fourier multiplexing techniques. Satura-
tion, if not dealt with properly, can introduce severe arti-
facts in multiplexed information. In the next section, we
demonstrate how to recover lost information and extend the
dynamic range of the captured content.

3. Dynamic Range Optimization
Based on our previous analysis, we now introduce an op-

timization approach to recover dynamic range in the satu-
rated regions of a multiplexed image. As seen in Figure 2,
even a band-limited signal has contributions in all frequency
bands when saturation occurs. Previous approaches [1, 21]
to restoring the original signal in this case constrain the fre-
quency bands (1D) or tiles (2D) that are not occupied by
the unsaturated signal to be zero. Unfortunately, these con-
strains are infeasible for multiplexed data, because all fre-
quency bands are used by the encoded channels and there-
fore non-zero.

For the case of multiplexing a monochromatic signal
with an array of neutral density filters, we know that the un-
saturated multiplexed image encodes differently scaled ver-
sions of the same scene in each tile (see Fig. 1). The indi-
vidual scales are determined by the transmission and layout
of the ND filters. In the presence of saturation, however, we
have seen that each channel is corrupted. Following the idea
of constraining the reconstructed signal, or in our case each
individual channel, to be band-limited, we propose to add a
zero-constraint to the differences of the properly scaled fre-
quency tiles. This enforces each of the reconstructed chan-
nels to be band-limited and directly proportional to all the
other channels.

Let us denote each of the N frequency tiles of a 2D sen-
sor image L (x, y) as Ti (fx, fy) = si · (Fi{L (x, y)}+ ηi),
where ηi is the Fourier-transformed sensor noise, and si is
the scale of frequency tile i introduced by the modulation
mask. Fi projects the full-resolution sensor image into a
single frequency tile and can be constructed from the DFT
matrix by zeroing all the rows that do not belong to tile i.
The squared `2-norm of the tile differences is given as

ε =
N−1∑
i=1

N∑
j=i+1

‖Ti (fx, fy)− Tj (fx, fy)‖22. (1)

For notational simplicity we assume in the following that
all tiles have been normalized by dividing through the cor-
responding factor after capture.

In addition to the prior placed on the channel differ-
ences we also need to incorporate the measured observa-
tions, which are the unsaturated intensity values of the
multiplexed image. For this purpose, we split the mask-
modulated sensor image L into a part where the sensor pix-
els saturate, and a second part where they do not. That is
L = Lunsat + Lsat, where

Lunsat(x, y) =
{
L(x, y) ;L(x, y) < Lmax

0 ; else

Lsat(x, y) =
{

0 ;L(x, y) < Lmax

Lmax ; else

The challenge is to estimate the parts of the sensor image
that are saturated during capture, i.e. to replace Lmax in the
Lsat image by values satisfying the Fourier domain con-
straint imposed by our setup. Since the Fourier transform
is linear, the additive relationship between Lsat and Lunsat

holds for the Fourier representations of the signal compo-
nents: F{L} = F{Lunsat}+F{Lsat}. The individual tiles
are therefore given as

Ti = Fi{Lunsat}+ Fi{Lsat}+ ηi. (2)

The term Fi{Lunsat} can readily be computed from the
captured image, and represents measured data. Fi{Lsat} in-
cludes the unknown variables (the non-zero subset of Lsat)
that causes the saturation error in the Fourier domain. Com-
bining Equations 1 and 2 yields

ε =
N−1∑
i=1

N∑
j=i+1

‖Fi{Lunsat} − Fj{Lunsat} (3)

+Fi{Lsat} − Fj{Lsat}+ηi + ηj ‖22.

We assume that the sensor noise is independently dis-
tributed in the spatial domain and observes a zero-mean
Gaussian distribution in the per-pixel image intensities.
Thus, ηi has a uniform power spectrum with a Gaussian
characteristic in each Fourier coefficient. This simple noise
model allows us to use a quadratic error norm for optimiza-
tion in Fourier space.

We encode ε in a linear system of equations, where we
optimize the spatial pixel intensities Lsat using an error
metric defined in Fourier space. We show a simplified ex-
ample assuming one copy at the DC peak and one copy of
equal scale in a higher frequency band:

min ||

 1 −1 0
0 0 0
0 −1 1

 F1

FDC

F ∗
1

 (Lunsat +Lsat)||22. (4)



In matrix notation, Equation 4 becomes
min ||RF (Lunsat + Lsat)||22, with R encoding the re-
lationship between the different Fourier copies, and F
performing the transformation from the spatial domain into
the individual frequency tiles. Because we are minimizing
differences, matrix R does not have full rank. We com-
pensate for this by adding a regularizer S = ∆F−1FDC

favoring smooth spatial reconstructions of the DC Fourier
tile. Note that the implementation of this idea is compli-
cated by the fact that the optimization procedure recovers
the mask-modulated image which contains high frequen-
cies everywhere. Therefore, FDC extracts the DC Fourier
tile, while F−1 transforms it back into the spatial domain
in tile resolution. The Laplacian ∆ then enforces spatial
smoothness. The choice of this regularizer is justified by
the assumption of a band-limited signal:

min ||(RF + αS)(Lunsat + Lsat)||22. (5)

Differentiating Equation 5 with respect to Lsat and
equating the gradient with zero, we obtain a least squares
description of our error measure:

(F ∗R∗RF + αS∗S)Lsat =
− (F ∗R∗RF + αS∗S)Lunsat.

(6)

Note that the right hand side of this system is constant
and represents our image space measurements.

Our combined error metric and regularizer boost the re-
constructed intensity values beyond the limits that are im-
posed by the optical ND filters. The smoothness prior im-
posed by S effectively applies similar inequality constrains
as proposed in [1, 21], because it penalizes possible solu-
tions with infeasible pixel values in the saturated regions as
these would most certainly be non-smooth. Unlike simple
inequalities, our approach also ensures smooth transitions
between saturated and unsaturated image regions.

Equation 6 describes the final optimization process that
we use to estimate lost dynamic range. The equation can be
solved using any linear solver. In our work, we employ con-
jugate gradients for least-squares (CGLS), combined with
image-space operations, which allows us to represent the
system without explicitly forming the matrix. The result of
the optimization process is a restored mask-modulated im-
age where the saturated image regions have been replaced
by optimized ND-filter values. A high dynamic range pho-
tograph can then be obtained by the procedure described
in [19].

4. Experimental Validation
Prototype. To validate this optimization procedure on
real data, we built a digital camera from a flatbed scan-
ner [27]. This camera is easy to construct, provides a very
high-resolution, and is large-scale, which makes it easy to
use simple transparencies as masks. Rather than focus-
ing the camera directly on the sensor and applying color

filters outside the camera as proposed by Wang and Hei-
drich [27], we attach our modulation masks directly onto
the glass plate, where the incoming light as well as the un-
derlying sensor elements are focused. A holographic dif-
fuser, which allows the incident light to form an image, is
also mounted over the filter on the scanner glass plate as
seen in Figure 4. It simultaneously serves as a band-limiter
for the light incident on the sensor.

Figure 4. Our prototype is a large format high-resolution scanner
camera. The filters are mounted under a diffuser on the scanner’s
glass plate.

Our masks are high resolution RGB digital images, ex-
posed onto photographic film using light-valve technology
(LVT). Color transparencies with a resolution of up to 2032
dpi and a high contrast can be ordered at professional print
service providers such as Bowhaus (www.bowhaus.com).
We use 4”x5” transparencies and perform scans with 2400
dpi.

Due to slight mis-registrations (rotation and shift) of the
filter in front of the sensor in our prototype camera, as well
as dust and scanner sensor artifacts, the point spread func-
tions (PSFs) of the filter tiles in the Fourier domain do not
exactly correspond to the filter specification before the print.
In order to calibrate for these effects, we estimate the PSFs
of the individual filter tiles in the Fourier transform of a cal-
ibration image.

Optimization Results. An example scene containing sat-
urated regions is shown in Figure 5. Two magnifications
of the multiplexed image captured with our scan camera
prototype (2628 × 1671 px) are shown on the upper left
(a, top). Three of the Fourier tiles are individually trans-
formed back into the spatial domain and presented above
the Fourier transform of the image (b). One of them is also
enlarged in Figure 6. Note that they are differently affected
by saturation and sensor noise, as well as scanner artifacts.
Figure 5 (c) shows the tone-mapped result of our HDR re-
construction. In order to compute it, we performed our opti-
mization on a grid of 3× 3 tiles in the Fourier domain, each
with a resolution of 876 × 557 pixels. The data was in the
range of 0-1 and our optimization algorithm converged in
about 750 iterations to a residual of 10−6. The large number
of iterations can be explained by the very high noise level of
our camera prototype. The dynamic range of the captured



Figure 5. A mask-modulated LDR image captured with a prototype scan camera (a). The pattern introduced by the mask and saturated
regions are enlarged on the upper left. The Fourier transform of the captured image (b) contains nine copies, of which three (b, top) are
individually transformed into the spatial domain and reveal saturation artifacts (see Figure 6 for enlargement). The tone-mapped result (c)
does not contain the mask pattern or Fourier copies. The right part shows a linearly mapped exposure sequence of an unmodulated LDR
image (d) and our reconstruction (e) compared to ground truth images (f).

scene is extended by a factor of 1.58 in this case. Note that
this factor is obtained after the tiles have already been di-
vided by their relative intensity scale factors si, as described
in Section 3. Therefore, the factor of 1.58 is an additional
improvement on top of the one that would be obtained by
using the same neutral density filter array in combination
with Assorted Pixel spatial reconstruction [19]. The total
gain in dynamic range compared to an unmodulated image
is 1.58 times the contrast of the used filters.

Figure 6. Sensor saturation yields ringing and other artifacts in
Fourier multiplexed data. This image is the spatial version of one
of the higher frequency tiles in Figure 5.

For validation, we compare our result to a high dynamic
range ground truth image that was generated by combin-
ing 12 exposures of an SLR camera located next to the scan
camera. As seen in the multi-exposure sequence on the right
side of Figure 5 (e), the dynamic range can be faithfully re-
covered. Note in particular the structure recovered in the
cold fluorescent light bulb. The depicted LDR image (d)
was photographed using our scan camera without the atten-
uation mask, and lacks details in bright image regions. The
SLR image is shown at the bottom (f).

Another example scene is presented in Figure 7. Here,
we also show results of our optimization for saturation in
dark regions (highlighted in green), as well as in bright im-
age parts (red highlights). The magnifications in the lower
row illustrate how saturation (c,d) is recovered (e,f) using
our approach. Due to the noise floor in the sensor image,
our approach can, in this case, not successfully push the in-
tensity values below the blacklevel in dark image regions.
Although saturated pixels in the close-ups (c,d) should be
entirely flat, errors are introduced by camera noise and the

calibration image of the mask which distort the final recon-
struction slightly.

Figure 7. Outdoor scene captured with our scan camera prototype.
The sensor image (a) has saturated parts indicated in red (bright)
and green (dark); (b) is the reconstructed HDR image. The mag-
nified parts show linearly mapped intensities before (c,d) and after
(e,f) reconstruction for bright and dark saturation respectively.

Comparison to Spatial Reconstruction. We show com-
parisons of our image reconstruction and the Assorted Pix-
els approach [19] for a 1D and a 2D scene in Figures 8 and 9
respectively. For the former case we simulated a 1D sensor
image by multiplying a repetitive array of neutral density
(ND) filters with a test signal taken from a real HDR image
and saturating it at 8% of the dynamic range of the scene.
The Assorted Pixels approach [19] performs the reconstruc-
tion by dividing by the ND mask values followed by a bi-
cubic interpolation to estimate the saturated pixels (blue line
in Figure 8, right). Alternatively, we can apply our Fourier-
based reconstruction approach to get a much better estimate
of the original function (cyan-colored line in Figure 8).

The 2D comparison presented in Figure 9 shows three
different exposures of an HDR image (left column), recon-
structions of a simulated sensor image with the Assorted
Pixels approach (center column), as well as our method
(right column). The sensor image was saturated at 7% of
the dynamic range of the scene. The mask was in this case
a repeating pattern of 2 × 2 ND filters with transmission
values of 1, 0.5, 0.25, and 0.125. As expected, dividing by
the mask and performing a bi-cubic interpolation can only
recover a maximum image intensity that is defined by the



ND filter with the lowest light transmission. Our approach
can boost the recovered intensity beyond that limit.

original
our reconstruction
cubic interpolation

mask original
saturated

Figure 8. A band-limited 1D signal (left) is modulated with an
attenuation mask pattern (one of the repeating tiles shown in in-
set), and captured by a simulated sensor with a limited dynamic
range (red dotted line, center). Our reconstruction (right, magenta)
performs better than previously developed interpolation methods
(right, blue).

Figure 9. A 2D comparison of previously proposed interpolation
and our reconstruction for a repeating 2×2 pattern of neutral den-
sity filters. The simulated sensor image is saturated at 7% of the
dynamic range of the scene. Three different exposures of the HDR
images are shown in rows 1-3 and color coded intensities are visu-
alized in the lower row.

Limitations. For very large areas of saturation, we expect
our method to eventually produce unsatisfying images, be-
cause the regularization term results in an over-smoothing
of such regions. In order to test the performance of our al-
gorithm under extreme situations, we photographed a scene
that exhibits a very high dynamic range with a number of
different aperture settings using our scanner camera proto-
type as seen in Figure 10. As the size of fully saturated re-
gions grows, an unregularized solution of Equation 6 would
become less stable, thus the regularization term counteracts
this by filling in smooth image data. The gain in dynamic
range is highest for an aperture of 32 (c), because the satu-
rated region is not too large, and the lost dynamic range of

the original image is higher than that of the smaller aper-
tures. The gain, however, gets lower for aperture 22 (d), as
the equation system becomes more ill-conditioned; the reg-
ularization term starts to dominate and over-smooth the so-
lution. The effect is even stronger for aperture 11 (e), where
we stopped the optimization after 1000 iterations without
convergence. We expect a smooth and plausible solution
with more iterations, this example just demonstrates slower
convergence behavior for larger saturated regions and the
effect of over-smoothed solutions. Artifacts in the captured
images with aperture settings 22 (d) and 11 (e) are caused
by sensor blooming in our prototype camera.

Figure 10. A set of images captured with different camera aper-
tures. For very large fully saturated regions, the optimization over-
smoothes the solution. Saturated sensor images are shown in the
upper row, tonemapped HDR reconstructions in the lower. The
right case did not yet converge for the maximum of 1000 itera-
tions.

5. Combined Color & HDR Multiplexing
So far we have only considered the grayscale case. In

this section, we show how to incorporate our reconstruction
approach into a Fourier multiplexed capture of color im-
ages. This is practically useful, as we introduce a novel
color filter array that, in combination with our dynamic
range boosting technique, allows us to simultaneously cap-
ture RGB imagery and a high dynamic range.

Our color filter array is inspired by a recent analysis of
standard Bayer CFAs in the Fourier domain. As discov-
ered by Alleyson et al. [5], a raw sensor image captured
through a Bayer pattern inherently contains four differently
filtered copies of the image in the Fourier domain. Specif-
ically, these copies are one luminance tile (R + 2G + B),
two similar chrominance tiles (R − B), and a fourth tile
(R − 2G + B). Instead of redundantly encoding the same
chrominance tile twice (R−B), we propose a CFA design
that contains two different chrominance tiles (R − G) and
(B − G) as well as two differently scaled luminance tiles
(R+ 2G+B) in the Fourier transform. Our CFA, just like
a Bayer pattern, comprises a repeating pattern of colored
super-pixels with a resolution of 2 × 2 pixels. Rather than
sampling each color channel directly, the color distribution
for each of our CFA’s super-pixels in the spatial domain is

R =
(

0.5 0.25
0 0.25

)
, G =

(
0.5 0.25
0.25 1

)
, B =

(
0.5 0
0.25 0.25

)
.

(7)
Figure 11 shows a raw sensor image captured with our

scanner camera prototype through the proposed color filter



Figure 12. A comparison of imaging through a standard Bayer color filter array (center left column), an RGBW CFA with the same light
transmission (center right column), and our CFA with the proposed reconstruction (right column). A sensor image was simulated for all
three cases with a dynamic range of 4% of that of the photographed scene. The upper row shows the tone mapped original image and the
three reconstructions with linearized magnifications. The lower row shows color coded logarithmic intensities and linear intensities in the
magnifications.

Figure 11. A sensor image captured with our prototype through
a novel CFA with saturated regions in red (a). The mask creates
two differently scaled luma and two chroma copies in the Fourier
transform (b). The dynamic range of the captured image can be
significantly extended using our optimization approach as seen in
the recolored magnifications in the lower images.

array. The photograph contains saturation (a); the spatial
pattern of our CFA and a corresponding region of the sen-
sor image are magnified (a, upper left). We illustrate the
chrominance and differently scaled luminance tiles in the
Fourier domain (b).

Our optimization can, in this case, be applied to the two
different luminance tiles. This implies that no color infor-
mation can be recovered in saturated regions, as the dy-
namic range is only boosted in the luminance channel. The
lower part of Figure 11 shows two exposures for different
reconstructions of the example scene. The left column (c)
is directly reconstructed from the saturated sensor image.
It therefore represents an image that is comparable to one
captured through a Bayer pattern. Our reconstruction (col-
umn d) can significantly increase the dynamic range and

reconstruct saturated image regions. The right column (e)
shows an HDR image assembled from photographs of the
scene without our mask, but with pure red, green, and blue
filters, and 3 different aperture settings each. A gain factor
of 1.9 in dynamic range could be achieved for our recon-
struction, as compared to the standard reconstruction from
the sensor image. The high noise level of our camera pro-
totype results in a different black level for the ground truth
and mask modulated images. Color differences can be ex-
plained by imperfect PSF calibration.

A synthetic result is shown in Figure 12. For this exam-
ple, the original HDR image (left column) was modulated
by a Bayer pattern and reconstructed with standard color
demosaicking (center left column). Additionally, we sim-
ulated a sensor image by applying an RGBW CFA (center
right column) with the same mean light transmission as a
Bayer pattern and our CFA. The RGBW CFA consists of
one red, green, and blue filter each, and an additional white
ND filter. A sensor image with our CFA was simulated and
saturated at the same intensity as the Bayer and the RGBW
sensor images. The result of our reconstruction is shown in
the right column of Figure 12. We can see that the dynamic
range of the reconstruction can be significantly boosted by
our approach.

Many alternative CFA designs are possible, the one pre-
sented in this section is just one example for a design that
is compliant with our optimization approach. The average
light transmission of our CFA is similar to that of a Bayer
pattern and the same band-limitation requirements apply, as
both CFAs consist of repeating 2× 2 super-pixels.

6. Discussion
In summary, we have presented an analysis of satura-

tion artifacts for Fourier-based reconstruction approaches
of multiplexed imaging. Based on this analysis, we have
proposed an optimization framework that uses optically en-
coded information in the Fourier transform to facilitate the



suppression of such artifacts, as well as an expansion of
the dynamic range. Rather than trying to estimate plau-
sible intensity values in saturated regions of demosaicked
images using heuristics [22, 6, 15], we use a joint opti-
cal light modulation and computational reconstruction ap-
proach to optically encode data that guides the customized
post-processing algorithms. We have shown limitations
of the proposed reconstruction, and have presented an ap-
proach for applying our framework to boosting the lumi-
nance of Fourier multiplexed color images.

In the future we wish to experiment with alternative color
masks, and test our optimization in the context of further op-
tical Fourier multiplexing applications, such as light fields.
An interesting avenue of future research is the possibility
of integrating our approach into a spatial reconstruction of
Fourier multiplexed data [11]. In this case our optimization
could be performed as a pre-processing step before the ac-
tual image reconstruction, e.g. color demosaicking in the
case of multiplexed color channels.
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