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in conjunction with differentiable algorithms employing
backpropagation, typically neural networks [14].

In our work we are particularly interested in hybrid
optics that combine classical refractive lenses, which pro-
vide high diffraction efficiency for focusing light, with
diffractive optical elements (DOEs) for optical encoding [15].
Research on this topic has concentrated on optimizing the
parameters of the encoding element, while neglecting the
question of where to place the DOE relative to the aperture
(or pupil plane). Conventional coded-aperture systems [16],
[17], for simplicity, place the optical encoding on or near
the aperture plane, creating global modulation for the entire
wave field. For idealized unabberrated systems, this results
in a shift-invariant PSF across the image plane. However,
in the presence of off-axis aberrations, the global influence
of the DOE parameters on the whole image becomes an
obstacle for localized aberration correction. To address these
issues, we explore separating the encoding plane from the
aperture plane, so that different regions of the DOE produce
different encoding characteristics based on the incoming
light directions.

It is worth noting that in most imaging scenarios where
the sensor size significantly surpasses that of the pupil,
placing the DOE closer to the sensor increases the total
degrees of freedom as well as the locality of the wavefront
control. Nonetheless, positioning the DOE directly on the
sensor is also not optimal, since the ability to spatially
redistribute light is diminished in this position (Fig. 1). In
this work, we investigate this inherent trade-off between the
locality of control and the ability to redirect light.

The localized control over the wavefront shape is par-
ticularly relevant for wide-FoV imaging, where off-axis
aberrations require a localized phase modulation for PSF
shaping. In this work, we first show that in compact imager
settings, pairing a simple thin lens with an off-aperture
DOE enables the recovery of aberration-free images at 45◦,
outperforming the on-aperture DOE system by over 5 dB
in peak signal-to-noise ratio (PSNR). Expanding on this
achievement, we introduce more complex compound optics
to tackle the challenging task of simultaneous color imaging
and depth recovery at a wide-FoV of around 28◦. This
extension leverages the co-optimization of an off-aperture
DOE with a Cooke triplet configuration [6]—comprising
three refractive lenses positioned near the aperture plane,
which partially corrects large-angle aberrations. This setting
utilizes the high diffraction efficiency of refractive lenses
to focus light, while allowing the DOE to encode high-
frequency information essential for depth estimation. This
hybrid refractive-diffractive system is modeled in two steps;
the differentiable ray-tracing engine dO [18] is used for light
propagation through the refractive lenses, followed by two-
step off-axis wave propagation utilizing the least sampling
ASM (LS-ASM) [19]. This hybrid design preserves the pre-
cise diffractive attributes of the optics, a feature absent in
purely refraction-based systems.

As we showcase applications of multiple optimization
objectives, we devise a lightweight multi-head neural net-
work architecture that effectively extracts different infor-
mation channels (e.g., color and depth) through separate
decoding heads. Our design integrates a shared pre-trained
feature extractor, with individual heads dedicated to specific

tasks. This framework not only alleviates the training bur-
den compared to conventional single-head networks [20],
but also facilitates efficient information encoding. In sum-
mary, our contributions are as follows:

• We present a co-optimized off-aperture encoding
framework tailored for wide-FoV computational
imaging applications. Notably, we explore the critical
impact of off-aperture DOE placement.

• Our approach involves a differentiable refractive-
diffractive hybrid imaging pipeline that integrates
accurate off-axis wave propagation modeling, en-
abling the co-design of an off-aperture DOE and a
multi-head image-processing network.

• Through our simulations, we demonstrate high-
fidelity lightweight lens imaging capability at 45◦

with a PSNR gain over 5 dB compared to on-aperture
systems, and RGBD imaging capability at 28◦.

• We develop two camera prototypes: one equipped
with an off-the-shelf convex lens, while the other
features a customized compound lens incorporating
bespoke computer numerical control (CNC)-turned
aspherical lens geometry. Both prototypes utilize
custom nanofabricated DOEs as encoding elements.
Our systems are rigorously validated using a diverse
range of indoor and outdoor scenarios.

2 RELATED WORK

Coded-Aperture Computational Imaging. Conventional
image system design optimizes optics and algorithms sepa-
rately [16], [21], [22], overlooking their potential synergistic
interaction within a unified system. Computational imaging
addresses this limitation by jointly optimizing encoding
optics and decoding algorithms. Recent advances in AI,
particularly deep neural networks, have facilitated the E2E
design of computational imaging systems, co-optimizing
hardware and software for specific tasks. These systems
employ encoding masks to modulate incident light’s am-
plitude, phase, and polarization, capturing rich scene infor-
mation. Representative applications include hyperspectral
imaging [23], [24], superresolution [11], extended depth-of-
field [3], [25], and depth estimation [1], [26].

Several off-aperture designs have been studied in other
imagers in the past decade. A near-sensor amplitude mask
was analytically designed for light-field encoding [27]. An-
other work placed a DOE at an optimized position in a 4f
system, using approximate off-axis wave simulations [28].
Concurrently, a metalens positioned off the aperture stop
was optimized to maximize the pupil diameter for telescopic
imaging at 20◦ FoV, simulated with geometric optics [29].
Unlike these approaches, our work aims to systematically
explore and characterize this additional design space for
wide-FoV compact imagers.

Wide Field-of-View Imaging. Wide-angle imaging settings
are particularly challenging for optical systems with re-
duced complexity due to significant off-axis aberrations. No-
tably, efforts to recover sharp color and depth information
from defocused images [12], [20] often assume spatial shift-
invariance, valid only within a limited FoV. Expanding the
FoV requires accurate modeling and mitigation of off-axis
aberrations inherent in all imaging systems. Peng et al. [30]
successfully demonstrated an imaging system that supports
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modulation (Sec. 3.2). Finally, wide-FoV images are synthe-
sized through spatial shift-variant convolution between the
object and the PSFs.

3.1 Geometric Optics Simulation

Complex lens elements are widely employed in imaging
systems to enhance performance, particularly in mitigating
off-axis aberrations. To accommodate such design scenarios,
we simulate complex lenses with geometric optics.

The lenses can be optimized, or predefined and then
simulated using a differentiable ray tracing engine dO [18]
to obtain the complex field before wave optics is applied.
Rays are traced from the front to the backplane of the lens
module’s bounding box, which is tangential to the exterior
of the lens module and assumed to be fully refractive within
its boundaries. The backplane functions as the transition
plane, linking refractive and diffractive optics. The complex
fields at this plane represent the transfer functions of the
compound lens at various angles.

The ray tracing process involves tracing rays between
consecutive surfaces of the lenses, the aperture, and the front
and back planes. At each point oi ∈ R

3 on the surface
i, where i = 0, . . . , S − 2 and S is the total number of
surfaces including the backplane, a ray {oi,di} intersects
the subsequent surface i + 1 at oi+1 = oi + tidi. Here,
the direction di ∈ R

3 is a unit vector determined by
the previous ray direction di−1 and the surface material,
following Snell’s law. Notably, for i = 0, di−1 corresponds
to the incident light direction. The ray marching distance
ti ∈ R

+ is computed at surface intersections on i and i + 1
utilizing iterative root-finding techniques such as Newton’s
method.

The total phase shift of a ray is associated with the
optical path length (OPL) through the lenses, given by the
sum of OPLs niti in each propagation medium, where ni is
the refractive index of the medium from surface i to i + 1.
The rays reach scattered points on the transition plane, but
subsequent processes such as wave propagation or sensing
require measurements on a uniform grid. Thus, the points
are interpolated onto a regular grid (ξ, η) using Clough-
Tocher interpolation [43], denoted as g. The phase ϕrefrac at
the wavelength λ is then expressed as

ϕrefrac(ξ, η) =
2π

λ
g

(

S−2
∑

i=0

niti

∣

∣

∣ξ, η

)

. (1)

Consistent with prior works [18], [33], we ignore energy
decay in geometric light propagation and assume uniform
energy for each ray. The intensity Irefrac at the transition
plane is obtained by bilinearly interpolating to adjacent grid
points, accumulating ray energies. The transfer function is
defined as Erefrac =

√
Irefrac exp (jϕrefrac), where j =

√
−1.

3.2 Off-Aperture Diffraction Modeling

Our two-step wave propagation process begins at the tran-
sition plane, traverses the off-aperture DOE, and ultimately
culminates at the sensor plane. To simulate the highly off-
axis wave propagation, we employ the well-established
angular spectrum method (ASM) [44]. The propagation of
an input field Ein(ξ, η) to a finite region on plane (x, y) over
a distance z is expressed as:

ASM(Ein|ξ, η;x, y) = F−1 {F {Ein}H(fX , fY )} , (2)

where H(fX , fY ) = exp
[

jkz
√

1− (λfX)2 − (λfY )2
]

is the

frequency-domain transfer function, k = 2π/λ is the wave
number, and F denotes the Fourier transform operator.

The off-aperture DOE connects two wave propagation
pathways at large angles, which can be computationally
demanding. To address this, we employ the LS-ASM [19]
that introduces a compensation term to the phase of the in-
put field, resulting in a quasi-on-axis field. This reduces the
sampling requirements for simulating off-axis propagation.
For an input field at coordinates (x, y), the compensation
term is defined as ϕcomp(x, y) = −2π(fXc

ξ + fYc
η), where

(fXc
, fYc

) represents the effective spectrum center. The wave
field arriving at the DOE plane is then computed as:

EDOE(p̂, q̂) = ASM
{

Ein(ξ, η) exp[jϕcomp(ξ, η)]
}

. (3)

The learned DOE globally modulates the incident field
with ϕDOE(p, q) = k(nλ0

− 1)h(p, q), where nλ0
is the

refractive index of the substrate material at the nominal
wavelength, and h is the height map of the designed DOE.
However, only a window at (p̂, q̂) is calculated on the DOE
based on the chief ray’s origin oS−1 and direction dS−1

at λ0 from the lens module to encompass the majority of
diffracted energy. Note that the DOE is also compensated.
The complete wave propagation is thus formulated as:

Prop(Ein|ξ, η;p, q;x, y) = ASM
{

EDOE(p̂, q̂)×

exp
{

j[ϕcomp(p̂, q̂) + ϕDOE(p̂, q̂)]
}

}

.
(4)

For our case, a point light source at (x0, y0, z0) results
in Ein(ξ, η) = Erefrac (ξ, η) exp (jkr), thereby the PSF is
computed as the squared amplitude of the complex field
arriving at the sensor plane within the specified window
(x, y):

K(x, y) = |Prop {Erefrac (ξ, η) exp (jkr)}|2 , (5)

where r =
√

(x0 − ξ)2 + (y0 − η)2 + z20 . Refer to Fig. S1 in
the supplementary material for details of the propagation
modeling.

To simulate camera measurements, we convolve the
PSFs with local image patches, assuming local shift-
invariance due to the relatively smooth variations of PSFs
across the FoV. We consider multiple depths z0 = 0, . . . , D−
1 and utilize the established occlusion-aware model [20] to
provide continuous and seamless representation of depth
variations:

I =
D−1
∑

d=0

1

Ud

(Kd ∗ Id)
D−1
∏

d′=d+1

(1− α̃d′) +N , (6)

where α̃d′ = (Kd ∗αd)/Ud, Ud = Kd ∗
∑d

d′=0 αd′ , ∗ denotes
element-wise multiplication, and Kd is the sensor field from
a light source at depth z0 = d. The images are quantized
into D depth layers denoted as Id, accompanied by a binary
mask αd. Each depth layer is normalized by Ud, and Gaus-
sian noise N is incorporated into the simulation. Sensor
spectral response is also applied to image I to address the
sensor’s sensitivity to different wavelengths.
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TABLE 1: Assessment of color images in PSNR (dB)↑ and
depth maps in MAE↓ when optimizing DOEs at two posi-
tions closer and farther from the aperture in the application
of wide-FoV depth and color imaging, and when using a
simple network. These assessments are conducted on three
datasets. The percentages of reduction in MAE of depth
maps are reported.

Dataset
Near-aperture [42]

+ Multi-head
Off-aperture
+ U-Net [12]

Off aperture
+ Multi-head

Sceneflow 31.00 / 0.037 25.27 / 0.046 32.09 / 0.033 (-10.8%)

Dualpixel 27.95 / 0.025 23.69 / 0.027 28.28 / 0.019 (-24.0%)

Instereo2K 30.51 / 0.032 26.06 / 0.124 31.42 / 0.027 (-15.6%)

lens as a base, we integrate a DOE primarily to encode
depth information. Based on the findings discussed in Sec. 5,
we position the DOE at approximately 0.24 of the EFL, or
8.4mm from the aperture plane. Due to the challenges in
simulating the placement of the DOE before the refractive
optics, we compare this off-aperture configuration with a
near-aperture setup, where the DOE is positioned at the
tangential surface of the last lens, approximately 4mm from
the aperture plane (0.11 of the EFL). Figure 5 presents the
optimized PSFs of the off-aperture system, sampled uni-
formly at six depths and three angular directions. Notably,
the system is trained on seven discrete angles (0◦, 2.5◦, 5◦,
7.5◦, 10◦, 12◦, and 14◦), with intermediate angles 1.25◦,
3.75◦, 6.25◦, 8.75◦, 11◦, and 13◦ included during testing.
The optimized DOEs for near- and off-aperture systems
exhibit distinct characteristics in their outer peripheral rings,
highlighting the off-aperture DOE’s ability to efficiently
encode high-frequency information for large-FoV rays with-
out interference from the inner FoV. This represents a key
advantage of the off-aperture design.

Table 1 presents a quantitative comparison of the near-
or off-aperture systems. The off-aperture configuration
achieves approximately 1 dB higher PSNR for color images
and reduces mean absolute error (MAE) for depth maps
by up to 24% across three representative datasets. The
greater improvement in depth maps can be attributed to two
factors: First, the near-aperture system’s DOE placement at
0.11 of the EFL incurs fewer disadvantages compared to
the 0.24 location, and second, the Cooke triplet is optimized
primarily for image performance, leaving more room for
improvement in depth recovery. We further compare the
multi-head network with a simple U-Net-based architec-
ture [12], which outputs image and depth from the same
layer as multiple channels. Our model outperforms the U-
Net architecture in both image and depth recovery.

Figure 6 visually compares the near- and off-aperture
systems at 4K resolution. The off-aperture system demon-
strates notably superior sharpness in recovered color images
compared to its near-aperture counterparts. This enhanced
image quality is evident across various depths and through-
out FoV, including both inner and outer regions. Moreover,
the depth map produced by the off-aperture system exhibits
significantly enhanced fidelity, particularly at wider FoVs.
We further measure the performance at several sampled
points in the Supplementary material. These results align
with the prior observation that a distance between 0.2 and
0.3 represents an optimal choice for off-aperture designs.
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DOE

Fig. 7: (Left) The thin lens, DOE, and aperture in App. 1
and (Center) the three refractive lenses, DOE, and other
components in App. 2. (Right) The experimental setup.

7 EXPERIMENTS AND RESULTS

7.1 Prototyping Details

In Application 1, we utilized an off-the-shelf anti-reflex (AR)
coated N-BK7 bi-convex lens with a focal length of 35mm
(Thorlabs LB1811-A). Given the wide FoV, we employed
a Sony A6400 mirrorless camera equipped with an APS-C
sensor. The DOE has an effective diameter of approximately
12mm and a full diameter of 16mm. It is mounted with
a 3D-printed circular mount with a diameter of 1 inch, in
conjunction with the bi-convex lens. The distance between
the center plane of the lens and the DOE plane is set at
10.5mm. The total length of the imaging system outside the
camera body is only 21.5mm, resulting in a compact and
lightweight wide-FoV imaging system. A mount adapter
has been designed and 3D-printed to connect the SM1 lens
tubes to the camera body.

In Application 2, we utilized one AR-coated N-SF11
bi-concave lens of −15mm focal length (LD2060-A) and
one CaF2 Positive Meniscus Lens of 50mm focal length
(LE5243), and importantly, fabricated one aspherical lens
employing CNC machining capable of 5-axis single point
diamond turning, akin to the techniques reported in state-
of-the-art works [30], [32]. Given the available turning tool,
we opt for polymethyl methacrylate (PMMA) as the sub-
strate material, implying a refractive index of 1.492 at the
principal wavelength of 550 nm. We employ the FLIR GS3-
U3-123S6C-C sensor with 4K resolution.

Our DOE fabrication employs an iterative photolithog-
raphy and dry etching approach to create 24 discrete phase
levels on a fused silica wafer, with a Chromium layer acting
as an optical baffle [51], [52]. Repeating the photolithog-
raphy and reactive-ion etching steps four times preserves
the high-frequency spatial features crucial for the DOE
design. Detailed fabrication parameters are provided in the
supplementary material. We then assembled all optics with
customized focal-tuning mounts. The setup diagrams and
photographs of the components in both applications are
shown in Fig. 1 (center) and Fig. 7.

7.2 PSF Calibration and Network Fine-tuning

We employ a white laser source (LS-WL1 from Edmund Op-
tics) coupled with collimating lenses and a 25µm pinhole to
serve as a point light source. In the first application, the PSFs
captured on the sensor at a distance of 1.4m are measured
at 24 distinct locations within a quadrant of the image plane.
Each measured PSF is spaced approximately 512 sensor
pixels apart. In the second application, we capture PSFs at
five FoVs for each depth plane of the nine depths from 0.8m
to 5m. A detailed comparison between the simulated and
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