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Abstract

We present a novel learning-based framework for reconstructing 3D structures
from tilt-series cryo-Electron Tomography (cryo-ET) data. Cryo-ET is a powerful
imaging technique that can achieve near-atomic resolutions. Still, it suffers from
challenges such as missing-wedge acquisition, large data size, and high noise levels.
Our framework addresses these challenges by using an adaptive tensorial-based
representation for the 3D density field of the scanned sample. First, we optimize a
quadtree structure to partition the volume of interest. Then, we learn a vector-matrix
factorization of the tensor representing the density field in each node. Moreover,
we use a loss function that combines a differentiable tomographic formation model
with three regularization terms: total variation, boundary consistency constraint,
and an isotropic Fourier prior. Our framework allows us to query the density
at any location using the learned representation and obtain a high-quality 3D
tomogram. We demonstrate the superiority of our framework over existing methods
using synthetic and real data. Thus, our framework boosts the quality of the
reconstruction while reducing the computation time and the memory footprint. The
code is available at https://github.com/yuanhaowang1213/adaptivetensordf.

1 Introduction

Tilt-series Cryo-ET is an important imaging tool used in a variety of fields, such as structural
biology [5] and material science [48]. It consists of reconstructing a 3D tomogram from captured
2D projections of the scanned sample. In cryo-ET, due to hardware constraints, the scanning
process is performed from a limited angular range, typically less than 120◦. The tomographic
reconstruction with missing-wedges is known to be a challenging task. In addition, sample motion
and deformation that occurs during the acquisition step, induce misalignment between the projections,
which deteriorates the reconstruction quality. Also, cryo-ET requires a large amount of data, which
makes the reconstruction a resource-intensive task, both in terms of computational time and memory.
Last but not least, to prevent the sample from getting damaged, the scanning is performed with
low-intensity electron beams. This results in high level noise in the captured projections.

In the literature, several approaches have been proposed to overcome some of these challenges. The
misalignment and the motion can be corrected using marker tracking [28, 35, 49], or even by tracking
specific features between the projections [10, 19]. On the other hand, the high level noise was initially
reduced by applying image-based or volume-based denoising approaches on the projections or the
tomogram respectively. Recently, Bepler et al. [7] proposed to reconstruct two copies of the tomogram
using odd/even projections only. Then, using Noise2Noise [29] technique they learn a denoised
version of the tomogram. Kniesel et al. [26] combines a noise model for Scanning Transmission
Electron Microscopy (STEM) and an implicit 3D shape representation in a differentiable framework
to denoise the reconstructed data.
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In this work, we propose a new framework for cryo-ET that jointly reconstructs and denoises the
tomograms. This framework is based on a quadtree structure that we use to define an adaptive
Tensorial Density Fields (TensorDF) representation. Each node of the quadtree is featured with a
tensorial density fields to represent the tomogram’s density at its associated region. The loss function
that guides the learning process is composed of four terms: a differentiable tomographic image
formation model, a total variation term that encourages smoothness in the reconstruction, a boundary
consistency constraint that enforces agreement between the adjacent nodes, and an isotropic Fourier
prior that penalizes directional artifacts and helps in denoising the reconstructed tomogram.

The evaluation of our approach on synthetic and real datasets shows considerable improvements
comparing to state-of-the-art reconstruction methods, including some recent approaches based on
neural representations. The main contributions of our work are summarized as follows:

• We propose an adaptive tensorial density fields representation, based on a quadtree structure,
well-suited to large datasets. This allows us to achieve a breakthrough in 4K-resolution
tomography reconstruction in less than a day.

• We propose a novel isotropic Fourier prior to remove the directional artifacts, and reduce
the noise level.

2 Related Work

Computed tomography (CT). Cryo-ET is one of the various types of tomographic inverse problem,
which reconstructs a density volume of the scanned object from captured projections from different
views. Analytical reconstruction algorithms, such as Filtered Back-Projection (FBP) [13] and
Weighted Filtered Back-Projection (WFBP) [43] are commonly used to solve this problem. These
approaches produce fast and accurate reconstructions but require a considerable number of projections
that are uniformly sampled in the angular space. Algebraic Reconstruction Technique (ART) [18]
and its variants, like the Simultaneous Algebraic Reconstruction Technique (SART) [2], solve
the tomography problem in an iterative way. These methods are well-suited to challenging CT
reconstructions (sparse view, missing wedges, noisy projections, etc.), since they can be combined
with different regularizers like the total variation into optimization frameworks [21, 39, 23]. However,
these approaches suffer from high computational requirements and fastidious hyper-parameter tuning.
Learning-based approaches have been introduced in CT to improve reconstruction quality through
pre-processing projections [3, 17, 52], post-processing the reconstructed tomogram [40, 32], or using
neural networks to learn a differentiable reconstruction operator [1, 25, 20]. More recently, combining
Deep Image Prior [4, 6] and implicit representations [53, 46, 45] with traditional reconstruction
approaches has produced unprecedented reconstruction results. Nevertheless, these approaches are
not well-designed to overcome the several challenges of cryo-ET, mentioned in Section 1, especially
the high level noise.

Cryo-ET data Denoising. Cryo-ET acquisition uses low-dose beams to avoid damaging the sam-
ples, but this results in capturing noisy projections [42]. In the literature, several models have
been proposed for the cryo-ET noise, such as the additive white Gaussian noise [7, 56], or a
Poisson-Gaussian noise [55]. Most existing denoising approaches are applied either before or
after the reconstruction step [14], which is performed using classical algorithms like WFBP. The
pre-reconstruction approaches aim to denoise the 2D projections using denoising algorithms such as
the bilateral filter [24], the non-local means filetering [51], the wavelet shrinkage filter [22], and deep
learning-based techniques [9]. On the other hand, post-reconstruction denoising is applied directly to
the tomograms to save the linearity between captured projections and reconstructed volume. This
approach is unlikely to introduce new artifacts or suppress existing features. Total variation [54],
and BM4D [33] were the state-of-the-art in 3D denoising, for a decade. However, these approaches
require considerable computational resources. In structural biology, subtomogram averaging [8] is
a specific denoising technique for data containing several copies of the same molecule. Recently,
learning-based methods gained great success in denoising tasks. Specifically, unsupervised methods
like Noise2Noise [29], Noise2Void [27], present a great potential for tomograms denoising, given
the absence of ground truth data in cryo-ET field. Thus, the Topaz algorithm [7] produces clean
tomograms by leveraging the Noise2Noise concept to train on pairs of noisy tomograms reconstructed
from odd/even projections. Kniesel et al. [26] proposed to jointly learn a model for 2D sensor noise
and a 3D implicit representation of the scanned sample. However, this approach depends highly on
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the noise level. In our approach, the denoising task is performed during the reconstruction process
through the proposed loss function and the parametrization of our adaptive representation.

3D Neural representation. Neural representation has seen impressive and rapid development
in the last few years [47]. The Neural Radiance Fields (NeRF) [36] use Multi-Layer Perceptron
(MLP) networks to learn a mapping between spatial coordinates and physical scene properties (e.g.,
density field, color). However, NeRF-like approaches, also known as neural representations, suffer
from long training times and slow rendering. Techniques such as octree structures [31, 15, 45, 50],
multi-scale network architecture [34], network factorization [44], caching [16], multi-resolution hash
encoding [37], and tensorial-based representation [11] have been applied to handle this issue. Some
works adapted these neural representations to solve CT reconstruction with impressive results [46,
53, 45, 26]. In this work, we leverage a quadtree structure to build an adaptive tensorial-based
representation. We also incorporate several regularizers in our loss function to handle the high level
of noise in cryo-ET data. In addition, our method can deal with large datasets (4K resolution) in an
unprecedented computational time.

3 Methodology

3.1 Overview

In this section, we introduce our approach, Adaptive TensorDF, which leverages a quadtree structure
to create a multi-scale and effective tensor-based representation for reconstructing noisy tilt-series
cryo-ET tomograms. Our framework represents the scanned sample’s density field as a 3D continuous
neural field. Since the cryo-ET tomograms have a low extension along the z-axis, we use an adaptive
quadtree structure to partition the volume instead of an octree. Inside each node of the quadtree, the
density field is represented using a tensorial representation. Our framework is composed of three
steps: quadtree update, optimization of the tensorial representation, and 3D volume reconstruction.
These steps are depicted in Figure 1. The quadtree update step involves optimizing the quadtree
structure to achieve the best partition of the reconstructed volume. This is done by encouraging
uniform nodes while limiting their total number. In the second step, we optimize a loss function to
build a tensor-based representation of the density field inside each node. The proposed loss function
incorporates a data-fidelity term and three regularizer terms, which we will detail in the following.
The reconstruction step involves uniform sampling of the volume in the region of interest (ROI) and
querying the density values at the sampled positions.

(a) Adaptive tensor density fields optimization. (b) Volume querying.

Figure 1: Our framework is composed of two steps: During the training step (a) we first update the
quadtree structure using downsampled projections. Then, we freeze that structure and update the
tensor representation in each node using the original noisy projections. The second step is the volume
querying (b), where we uniformly sample the ROI, and use the learned representation to estimate the
densities at the selected positions.

3.2 Image formation model

Cryo-electron tomography is a classical tomographic reconstruction problem, where the projection
image captured by the sensor corresponds to the integration of density along the rays between the
source and the detectors in the log space. After discretization, the image formation model for a given
ray, can be written as as follows:

bi = Aix+ ni (1)
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where Ai represents the Radon transform operation along the ray i. bi and ni correspond to the
intensity measured by the detector i and its associated noise, respectively. x is the 3D density vector
that we would like to reconstruct. As discussed in Section 1, the noise in real Cryo-ET acquisitions
is complex and difficult to model, especially after applying the different pre-processing steps such
as the intensity correction and the motion correction. For the sake of simplicity, we assume in this
work a Gaussian white noise in the pre-processed projections. By regrouping all the captured rays,
we deduce the data-fidelity loss from the Equation 1:

Ldata(x) =
1

2
‖K (Ax− b) ‖22 (2)

where K is a binary mask to disable rays intersecting with the fiducial markers. This mask is
introduced to suppress the projection artifacts caused by those markers.

3.3 Coordinate-based representation (CBR)

In tomography applications, the coordinate-based networks have been proposed to map the 3D spatial
coordinates inside the volume of interest to the density field. This mapping is given by:

fφ : pi → xi with pi ∈ R3,xi ∈ R (3)
where pi and xi are respectively the 3D coordinate in the volume to be reconstructed and the
corresponding density. fφ corresponds to the mapping function that should be optimized. With
the CBR, the captured projections are estimated by sampling positions along rays, applying the
mapping to each sample, and then summing their contribution using the Radon coefficients. In
common implicit representation [36, 26], fφ is chosen to be a fully connected MLP, as illustrated
in Figure 2-(a). However, this representation is unsuitable for large volume sizes, as encountered
in cryo-ET. To address this limitation, works like KiloNeRF [44], ACORN [34], and NeAT [45]
suggested partitioning the volume of interest using uniform blocks or multi-scale octree-based
structures, and assigning a smaller MLP or decoder to each partition (block or octree node) for a local
density field representation. In our approach, shown in Figure 2-(b), we partition the ROI using a
quadtree structure. Indeed, cryo-ET data have limited extension in the z-axis. Therefore, we base our
representation on an adaptive quadtree structure of the x-y plan that we extend in the z-axis. For each
quadtree node, we use a tensorial-based representation. Thus, for a given 3D point in the region of
interest pi, we represent the density field using a sum of vector-matrix outer products, as follows:

fφ(pi) : D
( R∑
r=1

VXr (pi)MY,Z
r (pi) + VYr (pi)MX,Z

r (pi) + VZr (pi)MX,Y
r (pi)

)
→ xi (4)

where D is a one-layer decoder network, that converts encoded features to the output density. VXr ,
VYr , and VZr correspond to factorized vectors of the three modes (X , Y , and Z) for the rth component
of the tensor decomposition. Similarly,MY,Z

r ,MX,Z
r , andMX,Y

r are matrix factors for the two
denoted modes: (Y, Z), (X,Z), and (X,Y ), respectively. R is the rank of the representation, which
is a hyperparameter to be tuned according to the complexity of the reconstructed sample. Indeed,
selecting a small rank can help denoise the tomogram, but it may lose some detailed features of the
scanned sample.

(a) (b)
Figure 2: In (a), we show the application of neural radiance field to tomography reconstruction, while
in (b), we illustrate the general idea of our approach. Where we replaced the MLP by an adaptive
differentiable tensor fields for faster optimization and better feature recovery.

The main advantage of the tensor representation is the huge reduction of the number of parameters
needed to represent the volume. Consequently, this representation is well-suited to reconstruct the
large-size volume that we commonly encounter in cryo-ET datasets.
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Furthermore, it is important to take into account the contribution of the regions outside the ROI in the
projection process, to ensure a more accurate output. However, there is no need to have a high-quality
representation in such regions. We propose to use the same representation detailed in Eq. (4), but
with smaller size tensors.

3.4 Regularizations

Total Variation. The Total Variation (TV) loss is commonly used in traditional tomographic
reconstruction as a spatial regularizer to improve the reconstruction quality. The use of TV in neural
fields representation approaches is not always straightforward, and could increase the computational
complexity of the reconstruction. [45] proposed to compute the TV loss in the features space, before
applying the decoder to get the density. [11] used this loss on the vector and matrix factors, to handle
noise and outliers issues in regions with fewer observations. In our implementation, we also apply
the TV prior on the vector and matrix factors of enabled quadtree node in the ROI. Then we average
all the contributions of those nodes to compute the TV loss, which could be expressed as follows:

LTV =
1

NEN

∑
α ·mean (‖∇V(p)‖) + mean (‖∇M(p)‖) (5)

where α is a scaling factor. We find empirically that α = 0.1 produced the best results. ∇V(p) and
∇M(p) represent the gradient of the vector and matrix factors respectively. NEN is the number of
enabled nodes of the quadtree.

Boundary Consistency Constraint. In our proposed framework, each node of the quadtree has its
own feature representation and is optimized separately. This will inevitably introduce discontinuity
artifacts in the final reconstruction. To address this issue, we propose a Boundary Consistency
Constraint (BCC) that penalizes the discrepancy between the features obtained from the tensor
representation of neighboring nodes for sampling points on their shared edge. Our proposed BCC
loss is given by:

LBCC =
∑

(n,m)∈Ob

mean

 ∑
p∈∩n,m

‖fφ(p)m − fφ(p)n‖

 (6)

where Ob refers to all pairs of neighboring quadtree nodes, ∩n,m is the set of sampling points on
the boundary surface between nodes n and m, fφ(p)m and fφ(p)n are the densities evaluated at the
point p using the tensor representation of the nodes m and n, respectively.

Isotropic Fourier Prior. By combining the quadtree structure with the tensor density fields rep-
resentation, we reduced the number of parameters needed to represent the 3D volume, as well as
the reconstruction time. However, a downside of the low rank tensor representation is that it favors
reconstructions with structured artifacts in the form of axis aligned streaks.

In the Fourier space, these artifacts manifest themselves as high peaks along the vertical and horizontal
directions. To solve this issue, we introduced in our loss an Isotropic Fourier Prior (IFP), to penalize
such peaks in Fourier space. This constraint aims to limit the difference between the horizontal and
vertical frequencies and the other frequencies in the Fourier domain. To do this, we first calculate the
mean amplitude for each ring of the Fourier domain, which represents a given spatial frequency for
all possible directions. Then, we apply a penalty to the horizontal and vertical frequencies that are
much higher than this mean amplitude. Furthermore, we apply a weighting coefficient to penalize
more the high frequencies that correspond mainly to the noise. In our implementation, we sample the
ROI coarsely, and we query the volume at those samples. Then, we compute the Fourier transform
slice by slice. Our proposed IFP loss could be expressed as follows:

LIFP =
∑
s,ζ

w(ζ)
(
|Fφ(0, ζ)−mean

(
Fφ(u, v)|(u2+v2=ζ2)

)
|+

|Fφ(ζ, 0)−mean
(
Fφ(u, v)|(u2+v2=ζ2)

)
|
) (7)

where Fφ is the Fourier transform of fφ computed on the slice s. u, v, and ζ are spatial frequencies.
w(ζ) is the weighting coefficient given by:

w(ζ) =
1

exp (ζ0 − ζ) + 1
(8)
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ζ0 is a frequency parameter, to control the weight of the loss according to the frequency. Empirically,
we found that ζ0 = 0.2 provides an optimal weighting for the isotropic Fourier prior.

3.5 Adaptive tensor density field optimization

We have defined our tensor density representation and the different losses used for our optimization.
By combining all those terms, our loss is given by:

L = Ldata + λTV · LTV + λBCC · LBCC + λIFP · LIFP (9)
where λTV , λBCC , and λIFP are the weights of the three regularizers defined previously. In the
following, we describe the key elements of our framework’s training step: updating the quadtree and
sampling along the rays.

(a) (b)

Figure 3: Illustration of (a) the quadtree updating process,
and (b) the ray sampling strategy.

Quadtree update. As mentioned
previously, we build our tensor rep-
resentation using a quadtree structure,
illustrated in Figure 3. First, we ini-
tialize our quadtree structure from the
ROI, and we disable the nodes out-
side this region. Then, we sample uni-
formly the volume of each node, and
compute the standard deviation (STD)
of the density values of the sampled

positions, to define the quadtree update loss. A high STD in a given node indicates that it contains
fine details. Therefore, this node is more likely to be split into four child nodes. On the other hand,
a node with low STD probably contains less features and represents uniform region of the scanned
sample. Such node has higher chance to be merged or kept the same. We use a mixed-integer program
(MIP) [41] to optimize this process, where, in each iteration, the nodes are either merged, split, or
kept the same according to the update loss. During this optimization, the total number of nodes
should stay lower than a fixed limit.

Furthermore, we use a coarse-to-fine strategy to speed up the quadtree update and deal with the high
noise level. We first update the quadtree using down-sampled projections. During this step, we also
update the tensor representation inside each node. This strategy reduces the impact of noise on the
quadtree update. After some epochs, we keep the quadtree structure fixed and continue optimizing
the tensor representation of each node using the original projections.

Ray sampling. During the optimization, we sample each ray to get a list of 3D positions to be used
for the density integration and the loss evaluation. The applied sampling is not uniform, but follows a
stratified random sampling strategy that takes into account on the quadtree structure. For each node
that the ray goes through, we pick Nq 3D positions on the ray, randomly sampled from Nq uniform
segments of the ray. We define Nq as follows:

Nq = dNmax
lq
dq
e (10)

where Nmax is a hyperparameter corresponding to the maximum number of samples per node, lq is
the length of the ray inside the quadtree node q, and dq is the length of the diagonal of q.

4 Experiments

We fully implemented our framework in C++, which helps in speeding-up the reconstruction process.
Implementation details could be found in the Supplement.

We designed a series of experiments to showcase the effectiveness of our framework on both synthetic
and real captured datasets. We compare the performances of our approach to different baseline
methods: (1) SART+TV, a well established iterative reconstruction technique SART combined with
a total variation prior. (2) Kniesel et al., an implicit neural representation for cryo-ET proposed
by [26]. (3) I-NGP, a reimplementation of Instant-NGP [37] for cryo-ET reconstruction. (4)
TensoRF, a reimplementation of Tensor Radiance Fields [11] for cryo-ET reconstruction. For a fair
comparison, all the output densities are normalized into [0, 1].
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4.1 Experiments on synthetic dataset

In our experiments, we used the synthetic dataset introduced in [26]. This dataset consists of randomly
distributed ellipsoidal shells with random densities that mimic the density model of the ZIKV (i.e.,
Zika) virion at 15Å. The simulated tomogram is projected in the angular range of [−70°, 69.5°], with
an angular step of 1.5°. Gaussian noise is then added to the projections and several noise levels have
been tested. When the standard deviation of the noise exceeds 0.05, the simulated projections look
visually close to the captured ones, in terms of noise. This synthetic dataset is used for parameter
tuning and robustness evaluation of our approach to the noise level.

Parameter tuning After several experiments on all the hyperparameters of our approach, it appears
that the most important parameters are the tensor dimensions (the dimension of the matrix-vector
factors) and the feature size. The choice of tensor dimensions affects the speed and quality of the
training and reconstruction. Smaller dimensions lead to faster training and smoother reconstruction,
but they may miss some fine details of the sample. Larger dimensions capture more details, but they
may also introduce overfitting or noise, as the network tends to learn the noise after learning the
structures (See the Supplement for visual comparison). The feature size also influences the training
speed and the reconstruction quality. Smaller features can speed up the training, but they may lose
some details. Larger features can preserve more details, but they may increase the computation
cost. A balance between these trade-offs should be sought for a better recovery. To study the
impact of these two parameters, we measured the 3D Peak-Signal-to-Noise Ratio (PSNR) and 3D
Structural Similarity Index Measure (SSIM) of the reconstructed volume using different values of
these parameters. The results are shown in Table 1 and Table 2.

Table 1: Impact of the tensor dimensions.

10 14 18 22 26 30

PSNR 35.86 36.82 37.15 37.45 37.50 37.12
SSIM 0.769 0.797 0.803 0.820 0.747 0.729

Table 2: Impact of the feature size.

4 8 12 16 20 24

PSNR 37.21 37.45 37.47 37.86 37.42 37.68
SSIM 0.788 0.820 0.819 0.837 0.822 0.827

From the analysis of Table 1 and Table 2, the best performances are obtained with a tensor dimensions
and feature size equals to 22 and 16, respectively.

Figure 4: PSNR and SSIM comparison for different noise levels.

Robustness to the noise level In this experiment, we simulate different noise levels, and compare
our results with baseline methods. Figure 4 illustrates the PSNR and SSIM computed on the results
of each methods for different level of noise in the range [0.01, 0.12] for the standard deviation. Our
approach consistently outperforms the other methods in terms of both PSNR and SSIM, regardless
of the noise level. The neural representation based approaches are quite robust to the noise, since
the performance do not drop consequently for larger level of noise. However, Kniesel et al. is not
adapted to high noise situations, because it relies on the noise levels that it was learned from. In
Figure 5, we show a slice visualization representing the reconstruction results using the different
methods, from simulated noisy projections. The noise level have been selected to be 0.08, to illustrate
the robustness to noise level of each approach. Two regions in the dataset are zoomed in to illustrate
the detail recovery (red frame) and the denoising effect in uniform regions (blue frame). SART+TV
shows a poor detail recovery and maintain a high noise level. Kniesel et al. approach is relatively
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Figure 5: Reconstruction results with different methods from simulated noisy projections (Noise
level=0.08). Zoomed regions show details recovery (red box) and denoising effect (blue box).

good in denoising uniform regions, but the details are not recover correctly. I-NGP and TensorRF
approaches perform relatively good in both preserving details and reducing the noise. TensorRF
introduces, however, some artifacts that we can notice in some ellipses in the General View. Ours
visually has the best performances in both tasks. By comparing Ours and Ours W/O LIFP , we can
see the impact of the Isotropic Fourier Prior in reducing artifacts and improving the denoising effect
(More comparisons can be find in the Supplement).

4.2 Experiments on real dataset

We evaluated our method on tilt-series datasets from EMPIAR (Electron Microscopy Pilot Image
Archive): EMPIAR 10643 [38], and 10761 [12]. The EMPIAR 10643 dataset is a cryo-ET acquisition
of the HIV-1 GagdeltaMASP1T8I assemblies with an angular range of [−60◦, 60◦] and an increment
of 3◦. From this dataset, we reconstructed two different series (40 and 51) independently. The
EMPIAR 10751 dataset corresponds to the cryo-ET acquisition of a HEK cell, with an angular
range of [−60◦, 60◦]. The three used datasets are pre-processed using IMOD [35] for the projection
alignment and contrast transfer function (CTF) correction. For a fair comparison, we normalize all the
output densities to the range [0, 1]. In Figure 6, we show a comparison of the reconstruction results
obtained with our approach and the four baselines methods, on EMPIAR 10643-40 and EMPIAR
10751 datasets. More results could be found in the Supplement.

SART+TV Kniesel et al. I-NGP TensoRF Ours
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75

1

Figure 6: Reconstruction results of the HIV-1 (EMPIAR 10643) and a HEK cell (EMPIAR 10751).
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Figure 7: Intensity profile along the red line in the zoomed regions of the reconstruction of EMPIAR
10643-40 (Left), and EMPIAR 10761 (right) datasets.

Evaluation of the denoising power In Figure 6, the first dataset shows our approach has the best de-
noising in uniform regions. Despite using the TV regularization, SART+TV still exhibit noise within
uniform regions. Increasing the weight of the TV constraint to enhance the SART+TV’s denoising
capabilities would result in the loss of main features. Kniesel et al. yields to an oversmoothed recon-
struction, it could be caused by the difference between the datasets used for their learning of the noise
statistic and our used dataset. I-NGP and TensoRF have a relatively good denoising. Some direc-
tional artifacts degrade the quality of TensoRF. They are due to the impact of dummy regions (outside
the ROI), which are not well modeled with this approach. Besides its best denoising power, our
approach is also the most effective in improving the contrast between the features and the background.

Table 3: Evaluation of the contrast enhancement
(CNR) and the smoothing effect (ENL), (higher is
better).

Metric Dataset SART+TV I-NGP TensoRF Ours

CNR ↑ 10643-40 0.0618 0.5455 0.4123 0.6808

10643-51 0.0578 0.4981 0.4801 0.5367

ENL↑ 10643-40 8.143 52.231 48.293 114.400

10643-51 9.033 24.467 24.419 66.015

To assess quantitatively the denoising effectiv-
ness of each approach, we performed a compari-
son using two statistical metrics: the Contrast-to-
Noise Ratio (CNR), and the Equivalent Number
of Look (ENL) [30]. The CNR metric measures
the contrast between the region of interest and
the uniform background. While, the ENL metric
evaluates the smoothness in the uniform areas.
We did not include the Kniesel et al. apprach in
this comparison, since it does not perform well
in the reconstruction of the real captured data
(See Figure 6). The results shown in Table 3

confirm our qualitative observations by showing higher CNR and ENL values. Our approach en-
hances the contrast between feature regions and the background while producing smoother uniform
regions. The table also indicates that the SART-TV result is the noisiest.

Quadtree regularization The quadtree structure has more benefits than just speeding up the
computation. It allows us to have more local matrix representations in the XZ and YZ planes,
compared to TensoRF which can only have global planes for the whole scene. This can reduce the
noise and misrepresentation in the reconstruction at a sacrifice of only a 50 percent reduction in
parameter size. We compare our approach to: TensoRF W/O LTV , TensoRF, and TensoRF W
LIFP in Table 4 and Figure 8. Our method has better detail preservation and denosing. Our method
achieves a significant improvement in quality.

Table 4: Comparison of the different method in terms of the contrast enhancement (CNR) and the
smoothing effect (ENL).

Metric Dataset TensoRF W/O LTV TensoRF TensoRF W LIFP Ours

CNR ↑ EMPIAR 10643-40 0.2884 0.4123 0.4470 0.6808

EMPIAR 10643-51 0.4530 0.4801 0.5218 0.5367

ENL↑ EMPIAR 10643-40 54.287 48.293 69.483 114.400

EMPIAR 10643-51 21.120 24.419 25.256 66.015
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Figure 8: Reconstruction results of the HIV-1 (EMPIAR 10643) and a HEK cell (EMPIAR 10751).

Detailed feature analysis Figure 6 shows that our approach has the best feature recovery. Thus,
for the EMPIAR 10643-40 dataset, our reconstruction allows a better resolving of the spike proteins.
In addition, our reconstruction of the EMPIAR 10751 results in less blurry and more contrasted
structures of the HEK cell. These observations are confirmed by the intensity profile in Figure 7, where
our approach yields a more regular profile with an important difference between peaks (background
regions) and valleys (features). On the other hand, all other methods show more intermediate peaks
and valleys due to the residual noise in their reconstructions.

5 Conclusion and future work

In this paper, we introduced Adaptive TensorDF as a novel technique for fast and high-quality
Cyro-ET reconstruction and denoising. Our technique leverages a quadtree structure to represent
the density field using a vector-matrix factorized tensors representation. We optimize the quadtree
structure and the tensor representation in a two-stage process, using the down-sampled and then the
original projections. We also combine three priors with the tomographic formation model into the
loss function: a total variation term, a boundary consistency constraint, and an isotropic Fourier prior.

Extensive experiments demonstrate that our technique outperforms the existing methods in terms of
reconstruction quality and speed. It also involves a reasonable number of parameters (three times less
than TensoRF). Besides, Adaptive TensorDF is scalable and efficient, and can handle 4k resolution
projections, as shown in the Supplement, which is significant for high resolution cyro-ET dataset.

A possible direction for future work is to develop a joint alignment and reconstruction approach that
can account for the misalignment between the projections and the volumes. This could improve the
accuracy and robustness of our framework.
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