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1 Implementation Details
We fully implemented our framework in C++. During our validation experiments, we
ran our framework on two different workstations: both are equipped with the processor
Intel(R) Xeon(R) Gold 6242 CPU, and have 512 GB memory. The first workstation is
equipped with Nvidia RTX 8000s, while the other has an Nvidia A6000s GPU. Both
of these workstations were running on Ubuntu 18.04 LTS.

During the optimization of the density grids, we took the root mean squared prop-
agation optimizer (RMSProp), and defined the learning rate as 0.01.
The convergence is obtained after 25 epochs, where an epoch is here defined as one
pass through all the available projection data. During the first 15 epochs, the octree is
updated using the downsampled projections described in the main paper. Then, during
the remaining epochs, the octree structure is fixed, and only the differentiable density
grids are fine-tuned using the original projections, which improves the reconstruction.
We set the maximum number of octree-nodes (that stores the density grids) to be equal
to 320. The grid size depends on the final volume size to be reconstructed. Here, we
took the grid size to be equal to 42×42×42 in real scenes and 24×24×24 for syn-
thetic data.

After a parameter tuning search we found that setting λbc ∈
[
10−4,4 ·10−4

]
will

give better boundary consistency in all cases, and λtv is also a parameter that could be
selected in a range of

[
10−4,6 ·10−4

]
. While only adding a small weight for the CNLC

(for example, λcnlc = 10−6) will produce good denoising.

1.1 Mask generation
For each projection we design a mask to exclude the fiducial markers used for the
alignment. In our approach the alignment is a preprocessing step, that we perform
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using IMOD. Thus, the positions of the fiducial beads is contained in the ”*.fid” files,
output by IMOD. We run the model2point command of IMOD to convert it into a ”.txt”
file, containing the markers’ positions. At this stage, we double-check that all markers,
inside the region of interest, are detected. For some datasets, the input projections are
already aligned. In this case, we use the imodfindbeads command in IMOD to detect
the beads, and retrieve their positions as above.
We also exclude from our mask the padding regions, to keep only the region of interest.
This step could be undertaken automatically if we know the alignment matrix and the
original projection by coding. Then our final masks are obtained by merging the masks
on fiducial markers and those on padding regions, as shown in Figure 1.

Figure 1: Mask generation

2 Experiments on synthetic dataset
The synthetic dataset used in our experiments is similar to the one proposed in Kniesel
et al. [2022]. It corresponds to randomly distributed ellipsoidal shells with random den-
sities, that reproduce the density model of the ZIKV (i.e., Zika) virion at 15 Å Long
et al. [2019]. The 3D volume is then projected in the angular range of [−70◦,69.5◦],
with an angular step of 1.5◦. Gaussian noise is finally added to the obtained projec-
tions. Several noise levels have been tested. When the STD of the noise is higher than
0.05 (see Section 2.2), the obtained projections look visually close to the real captured
cryo datasets, in terms of the noise. In the following, we present the results of our
studies using the synthetic data, where we compare the performances of our method
with different grid sizes and in the presence of different noise levels.

2.1 Impact of the grid size
As described in the density grids optimization, the grid size Nx ×Ny ×Nz with Nx =
Ny = Nz defines the number of blocks stored inside each octree node (i.e., density grid).
For smaller grid sizes, the training is faster, and the reconstructed volume is smoother
and cleaner. However, the grid is not efficient enough to learn detailed features. On the
other hand, with large grid sizes, more details are recovered, but the reconstruction is
prone to overfitting and reproducing noise. This is well illustrated in the Figure 2. In
this figure, the zoom of the blue frame shows a detailed feature, while the zoom of the
red frame shows uniform regions of the sample. One can notice that with the smallest
grid size (12), the uniform regions are well retrieved, but the star in the blue frame is
blurred. With the largest grid size (34), the star is relatively well retrieved with low
blur effect. However, the uniform regions contain more noise than the same regions for
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the other grids. A compromise should be found for a better recovering of the detailed
features, while removing as much noise as possible.

12×12×12 24×24×24 34×34×34 Ground Truth

Figure 2: Comparison of the impact of different grid sizes on the reconstruction of the
synthetic dataset.

We also conducted a quantitative evaluation of the Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM) of the reconstructed volume
for different grid sizes. The PSNR is given as follows:

PSNR = 20log10

 max(g)√
mean∥r−g∥2

2

 (1)

The SSIM is formulated as:

SSIM(r,g) =
(2µrµg + c1)(2σrg + c2)

(µ2
r +µ2

g + c1)(σ2
r +σ2

g + c2)
(2)

where g represents the ground truth of the volume, and max(g) is the maximum
value in the volume, r is the reconstructed volume. µr and σ2

r refer to the mean and
variance in the reconstructed volume. µg and σ2

g refer to the mean and variance in the
ground truth volume. σrg is the covariance of the reconstructed volume and the ground
truth volume. c1 and c2 are two small variables to stabilize the division.
Note that the SSIM is evaluated only on a region containing detailed features, as shown
in the second line of the Figure 2.

In this experiment, we set the standard deviation of the noise to 0.5. We represent,
in Table 1, the PSNR and SSIM for different grid sizes. We compared our approach
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with and without using the non-local constraint. Globally, we notice good PSNRs
(higher than 39.5dB) for all the grid sizes. The best PSNRs are obtained for grid
sizes (Nx,Ny,Nz) between [16,22]. However, the SSIM is the maximum for a grid size
equal to 24, which seems to be the best compromise in terms of recovering details
and removing noise. In the following, we will use this grid size for evaluations on the
synthetic dataset.

Table 1: Quantitative evaluation of the impact of the grid size(larger is better)

Grid Size
Method Ours W/O CNLC Ours

PSNR (dB) ↑ SSIM ↑ PSNR (dB) ↑ SSIM ↑

12×12×12 42.0416 0.8658 41.7882 0.8590
14×14×14 42.2870 0.8938 42.1812 0.8819
16×16×16 42.3510 0.9027 42.3725 0.8991
18×18×18 42.2464 0.9182 42.4315 0.9160
20×20×20 42.0243 0.9121 42.3148 0.9182
22×22×22 41.6389 0.9066 42.1616 0.9150
24×24×24 41.1991 0.9027 41.7771 0.9228
26×26×26 40.7861 0.8927 41.4353 0.9102
28×28×28 40.3329 0.8836 41.0690 0.9034
30×30×30 39.8482 0.8807 40.5566 0.9021
32×32×32 39.3598 0.8751 40.0843 0.8921
34×34×34 38.8721 0.8610 39.5352 0.8830

2.2 Impact of the noise level
In this experiment, we compare the performance of our approach to different base-
line methods, for different noise levels. The first baseline is (SART + TV), a well-
established iterative reconstruction technique (SART) combined with a total variation
prior. We also used two recent neural based approaches: Kniesel et al. Kniesel et al.
[2022], and NeAT Rückert et al. [2022]. We also report the results of our reconstruction
without using the non-local constraint. For a fair comparison, all the output densities
have been normalized into the same range [0,1].

In the Figure 3, we show the results obtained with the compared methods for two
different noise levels: 0.02 and 0.05. Similarly to the previous experiment, we provide
a zoom on two regions in the dataset: the blue frame for the detailed feature, and the
red frame for the uniform region. As we can see in this figure, SART+TV can recover
the details poorly, but it maintains a lot of noise even for low noise levels. Kniesel et
al. approach is good in denoising the reconstruction when the noise level is low, but it
is not robust to high noise levels. Moreover, the details are poorly retrieved even for a
low noise level. NeAT is relatively good at preserving the details, even for the higher
noise level. However, it is not robust for denoising high levels of noise. On the other
hand, our approach (Ours) has better robustness in denoising uniform regions, while it
has a good recovering of features. The impact of the non-local constraint can be clearly
seen in denoising uniform regions in the case of high noise levels.
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SART+TV Kniesel et al. NEAT Ours W/O CNLC Ours Ground Truth
N

oi
se

L
ev

el
0.

02 G
en

er
al

V
ie

w
D

et
ai

l
D

en
oi

se
N

oi
se

L
ev

el
0.

05 G
en

er
al

V
ie

w
D

et
ai

l
D

en
oi

se

Figure 3: Comparison of reconstruction results using different methods. From left to
right: SART+TV Kniesel et al., NeAT, Ours W/O CNLC and Ours. We depicted
two different noise levels and zoomed in to view the details and denoise effect visually.

(a) PSNR comparison for different noise levels (b) SSIM comparison for different noise levels

Figure 4: Comparison of the PSNR/SSIM obtained with different reconstruction meth-
ods for different noise levels.
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3 Additional experiments using real datasets

3.1 Validation of the TV prior
Figure 5 illustrates the impact of TV prior on the quality of the tomogram reconstruc-
tion. We ran our validation on EMPIAR 10643-40, and we can see apparent quality
improvement with TV prior as a base prior.

Figure 5: Comparison of a reconstruction using only Ldata in the loss function (left
side), with another that uses both Ldata and Ltv (right side)
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3.2 Validation of the BC prior

Figure 6: Comparison of a reconstruction that does not involve the edge preserva-
tion constraint (left side), with another that uses the BC prior (right side). The edge
preservation constraint removes the block-like artifacts and improves the reconstruc-
tion quality.

Figure 6 illustrates the impact of BC prior on the quality of the tomogram recon-
struction. We ran our validation on EMPIAR 10643-40, and we can see apparent
boundary discontinuity without BC prior. When we use BC prior, the artifacts are
completely removed.
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3.3 Validation of the CNLC prior

Figure 7: Comparison of a reconstruction that does not involve the non-local constraint
(left side), with another that uses the non-local constraint (right side). The non-local
loss helps denoise the reconstructed tomogram, while saving most of the important
features.

To validate the effectiveness of the CNLC regulariser on the final result, we il-
lustrate in the Figure 7 a slice visualization of the reconstructed tomogram using the
CNLC (right side), and the same sample reconstructed without using this prior (left-
side). One can see clearly the denoising effect of this non-local prior.
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3.4 Selection of CNR and ENL regions
In the main paper we introduce the CNR and ENL metrics to evaluate the effectiveness
of our method in denoising the reconstructed tomogram. We illustrate in this para-
graph how to select the regions to compute these two metrics. Indeed, we manually
select CNR region pairs and ENL regions, and apply the selection to all the comparing
methods. Here to compare the volume, we use 3D metrics by adding a depth of 10 to
the selected rectangle planes as depicted in Figure 8.

EMPIAR 10653-51 EMPIAR 10453

Figure 8: CNR region pairs and ENL region selected for EMPIAR 10643-51 and EM-
PIAR 10453. The CNR region pairs, one with features and the other with background
noise, are represented by red rectangles. The chosen homogeneous areas used for com-
puting the ENL are represented by yellow rectangles.
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3.5 Evaluation of the reconstruction resolution

Figure 9: FSC computed for the reconstruction of EMPIAR 10643-40 dataset using
different methods

Figure 10: FSC computed for the reconstruction of EMPIAR 11462 dataset using dif-
ferent methods

In Figure 9 and Figure 10 we illustrate the result obtained when computing the FSC
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for the different compared method on the EMPIAR 10643-40 and EMPIAR 11462
datasets respectively.

3.6 Slice View of EMPIAR 10643-40
We visualize the reconstruction slices from EMPIAR 10643-40 using our method. Our
method can denoise the whole volume, as seen from these slices.

Figure 11: Reconstruction slices from EMPIAR 10643-40 with our methods.

4 Number of parameters and Running time
The MLP-based representation used in Kniesel et al. approach requires around 2.7 M
parameters, NeAT 168 M parameters, while Ours uses 28 M parameters. Even if our
approach uses 10 times more parameters than MLP-based approaches, it has a faster
convergence and remains manageable for the GPUs.

We compare in the Table 2 the total execution time needed to perform the training
/optimizing and reconstruction using each approach. In this table, we did not report the
running time of the SART+TV, because this approach is implemented and accelerated
using OpenMP, and runs on CPU. It lasts around one hour to converge, when using our
workstations Intel(R) Xeon(R) Gold 6242 CPUs, with 64 threads. From this table, we
can notice that the non-local constraint represents around 66% of the execution time
in our approach. Nevertheless, even when using this constraint, our approach remains
slightly faster than NeAT. Kniesel et al. is the slowest approach.
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Table 2: Comparisons of running times (hours) used for the different reconstruction
methods.

Method GPU Kniesel et al. NeAT Ours W/O CNLC Ours

Synthetic RTX A6000 100.65 0.62 0.2 0.6
EMPIAR 10643 (40 and 51) RTX A6000 33.45 0.78 0.19 0.56
EMPIAR 10453 RTX 8000 33.03 0.65 0.24 0.63
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