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ABSTRACT

Tilt-series cryo-electron tomography (cryoET) is an estab-
lished imaging technique used in several scientific fields to
determine samples’ three-dimensional (3D) structures at near-
atomic resolutions. However, the motion and misalignment
that occur during the acquisition stage are major limiting fac-
tors to reaching smaller resolutions. Indeed, they introduce
blur and artifacts, which deteriorate the reconstruction qual-
ity. In this paper, we propose a joint motion-correction and
reconstruction framework to improve the quality of the out-
put volume and, consequently, its resolution. Our framework
first estimates the motion field in the sample in order to cor-
rect the captured data. Then an iterative plug-and-play prior
approach is used to reconstruct the sample. The validation of
our approach on real captured datasets shows a good quality
reconstruction translated in a resolution improvement.

Index Terms— Cryo-Electron Tomography, Motion
Compensation, Computational Imaging.

1. INTRODUCTION

Electron Microscopy (EM) Tomography is a widely used
imaging modality in a variety of fields, from structural biol-
ogy [1] to material science [2]. In the tilt-series EM tech-
nique, a 3D tomogram is reconstructed from a set of 2D
captured projections of the sample. These projections are
acquired from a limited range of tilt angles, usually less
than 120◦, resulting in a “missing wedge” of frequencies
that limits the depth resolution. Moreover, the inevitable
beam-induced motion and the sample deformation during the
acquisition step introduce misalignment between the projec-
tions, which deteriorates the resolution of the reconstructed
samples [3]. The motion correction is then required to im-
prove the reconstruction quality.
Prior work: To tackle the alignment issue and to correct for
the motion in the projections, the most common approach
is to embed gold particles in the sample [4–9]. Then, the
misalignment is estimated by tracking the fiducial markers
in the different projections, which is commonly performed
through a local similarity search between successive projec-
tions [10, 11]. However, this local approach does not guaran-
tee global tracking consistency. Besides, the alignment will
be of low quality in regions with no marker. After the track-

ing step, the sample’ deformation can be generated from the
marker’s motion using different approaches, such as the use of
a parametric 2D/3D quadratic polynomial surface model [9],
or using a global thin-plate splines interpolation [12]. Fi-
nally, after applying the correction on captured projections,
the tomographic reconstruction is usually performed using the
Weighted Filtered Back-Projection method (WFBP) [13].

Fig. 1: General workflow for the reconstruction of a single
highly resolved ribosome, from preprocessed tomograms.

Contributions: In this work, we introduce a new frame-
work for tilt-series cryo-EM tomography. First, we use a
marker-based technique to evaluate the misalignment in the
sample. Then a plug-and-play optimization approach is used
to jointly correct the motion in the sample and reconstruct
the tomogram. The validation of our approach using real
datasets shows better performance than commonly used re-
construction techniques. The main contributions of our work
include: (1) a new framework for joint reconstruction and de-
noising of marker-based tilt-series EM tomography; (2) a new
estimation method for the local motion from the embedded
fiducial markers; (3) considerable improvement of the protein
extraction, which results in a better resolution after the subto-
mogram averaging; and (4) evaluation and validation of our
framework on two real datasets.

2. METHODOLOGY

We assume in the following that the input projections have
been already preprocessed using existing software packages,
such as IMOD [5, 8], or EMAN2 [7]. Thus, the 2D location
of markers in the different projections is detected and used
directly as input to our approach.



In Figure 1, we illustrate our general framework for the
reconstruction of a highly resolved molecule from the prepro-
cessed input tilt-series images. The first step is to estimate the
3D position of the markers. By re-projecting these markers to
each projection, we can estimate the motion of the sample
at the markers’ positions. Then, we apply a natural neigh-
bor interpolation [14] to estimate the sample motion for all
the pixels of the projections. Afterwards, we warp the input
projections using the obtained motion field to correct the sam-
ple motion. The corrected projections are fed to our joint re-
construction algorithm to produce better quality reconstructed
volumes. Finally, if applicable, the individual copies of the
reconstructed molecule are detected and averaged to improve
the reconstruction accuracy.

2.1. Fiducial marker 3D position estimation

For a given fiducial marker j in the sample, the relationship
between its 3D coordinates and the 2D coordinates of its pro-
jection onto the acquired image i is as follows:

wj
i = Kimj + dj

i , (1)

where wj
i = (uj

i , v
j
i ) is the 2D position of the marker j pro-

jected in the captured image i. Ki represents the projection
matrix. mj = (xj , yj , zj ) corresponds to the 3D coordinates
of the jth marker, and dj

i is a 2D offset induced by the motion
of the jth marker.

As mentioned above, the detection of the markers on the
Np captured projections is performed using existing software.
We denote w̃j

i = (ũj
i , ṽ

j
i ) the measured 2D position of the jth

marker in the ith projection. We formulate the estimation of
the 3D position of the Nm detected markers as the following
least-square problem:
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i=1
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∥w̃j
i −
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i

)
∥2. (2)

To solve this optimization problem we follow a common
strategy based on two step refinement. First, we set dj

i to an
initial guess and solve the optimization problem for the dif-
ferent mj . Then, we compute the estimate of dj

i as follows:

dj
i = w̄j

i −Kim̄j , (3)

where m̄j is the centroid of the fiducial j, and w̄j
i is the pro-

jection of the centroid j in the ith image. These two steps are
applied recursively until convergence.

2.2. Motion estimation

Next, we estimate the sample deformation field so we can
compensate for it during the tomographic reconstruction. We
only focus on 2D motion compensation for two main reasons.

First, the deformation is mainly due to a beam-induced mo-
tion, which can be described accurately with a 2D model.
Moreover, using a 3D model for the deformation requires a
larger memory footprint and a higher computational time.

In the previous section, we estimated the 3D position of
the markers (mj) and their corresponding 2D motion (dj

i ).
The 2D deformation of all pixels in the different projections
is obtained by interpolating the 2D motions of the markers
dj
i . This interpolation is performed using the natural neighbor

interpolation technique, presented in [14]. For a given pixel q
in the ith projection, we interpolate its 2D motion d (q) from
the markers’ motion using the following weighted function:

d (q) =

Nm∑
j=1

ωj (q)d
j
i (4)

where ωj (q) are the weights, computed using the approach
described in [14]. After computing these weights for each
pixel in the Np projections, we can obtain an estimation of
the motion field as illustrated in Figure 1.

2.3. Geometry of the reconstructed volume

Before presenting our proposed reconstruction approach, we
define in this section the boundaries of the reconstructed
volume. In electron microscopy tomography, the sample is
scanned using a parallel beam. Due to the rotation of the
sample during the acquisition process, some regions will not
be captured by the detector for all the angles. Thereafter our
region of interest (ROI) should encompass only the region
present in all the projections. Thus, we have to pre-compute
the size of the geometry to minimize the computation load
and preserve the ROI information. This pre-computation
consists of assigning masks for all the projections and for the
3D volume in order to select only the ROI. These masks are
defined in the following equation:

Mpp = {K · f (x, y, z) | (x, y, z) ∈ ROI} (5)
Mvx = {K−1 · p | p ∈Mpp}

where Mp and Mv represent respectively the masks on pro-
jections and the 3D volume. p is a vector that combines all the
projection pixels. K and K−1 are the two matrix that model
the Radon transform operator and its inverse for all used an-
gles. f (x, y, z) is the density at the coordinates (x, y, z), and
x is the 3D volume to be reconstructed.

2.4. 3D volume reconstruction

Next, we present an optimization-based framework to recon-
struct the 3D volume according to the geometry defined in
Section 2.3. This framework is designed to compensate for
the estimated beam-induced motion, to reduce the artifacts
caused by the missing wedge acquisition scenario and to re-
duce the noise level of the output volume.



Optimization framework: The general optimization prob-
lem is formulated as:

(x∗, z∗) = argminx,z Ldata(x) + λ1 · LTV(x) (6)
subject to: x = z = DN (x) in ROI,

where Ldata and LTV are the data-fitting and the smoothness
terms respectively. λ1 is a smoothness weight, and z is a slack
variable, corresponding to the denoised volume. By introduc-
ing a second slack variable u = x − z, we can rewrite the
optimization problem as follows:

(x∗, z∗) = argmin
x,z

Ldata(x) + λ1LTV(x) + λ2∥x− z+ u∥22
(7)

where λ2 is the denoising weight.

Data-fitting term: We define our data-fitting term as a mod-
ified version of the classical tomography least-square term.
Specifically, we introduce a warping operator on the captured
projections, to compensate for the beam-induced motion. In
addition, we apply a pre-computed masks on those projec-
tions to take into account only the defined ROI. The proposed
data-fitting term can be written as follows:

Ldata(x) =
1

2
∥Kx−Mpwarp(p,−d)∥22, (8)

where d is a vector regrouping the estimated motion for all
pixels in the projections. warp(p,−d) is the warping oper-
ator, that warps the projections p by the deformation field−d.

Smoothness prior: We introduce a total variation (TV) prior
to our optimization loss function. The expected role of this
term is to compensate for the ill-posedness of the limited-
angle reconstruction problem and to reduce the streaking and
ghost tail artifacts [15].

LTV(x) = ∥∇s (Mvx) ∥Hϵ (9)

In this term, ∇s refers to the discrete spatial gradient oper-
ator, and Hϵ is the Huber penalty with the threshold equal to ϵ.

Denoising term: In order to improve the reconstruction ac-
curacy, we also introduce a denoising step in our optimization
framework. For the sake of flexibility, we implemented our
framework following the plug-and-play prior scheme [16].
Thus, any denoiser can be easily incorporated in this step.
In our implementation, we used the Topaz-Denoise algo-
rithm [17], which is inspired by Noise2Noise approach [18].
This deep-learning approach does not require ground truth
data for the learning, but instead, it uses a pair of noisy input
data representing the same sample and having the same noise
pattern. This pair of input is used for an inter-learning pro-
cess. In Topaz-Denoise, the model is trained on 32 aligned
cryoET tilt-series datasets. For each dataset, a pair of two

noisy reconstructions is computed from only odd/even pro-
jections. In our framework we apply the denoiser DN (·)
only on the ROI defined above.

Solver: To solve this optimization problem, we opt for an
ADMM scheme [19] to split the optimization into three sub-
problems. The later are solved in an alternating and iterative
fashion as detailed in Algorithm 1.

Algorithm 1 Proposed Plug-and-Play based optimization
framework for the volume reconstruction.
Require: (K,d,Mp,Mv, λ1, λ2, ϵ,Niter)

1: For k = 0 : Niter − 1 do:
2: // Solve the sub-problem in x using the primal-dual

Chambolle-Pock algorithm detailed in [20]
3: xk+1 ← argminx Ldata(x) + λ1LTV(x) + λ2∥x− zk +

uk∥22
4: // Solve the sub-problem in z by applying a denoiser
5: zk+1 ← argminz ∥xk+1 − z + uk∥22 =
DN

(
xk+1 + uk

)
6: // update of the dual variable u
7: uk+1 ← xk+1 + uk − zk+1

8: EndFor
9: return x∗ = xNiter

Subtomogram averaging: If the data contains multiple
copies of the same molecule, a final optional step is to per-
form subtomogram averaging to improve the reconstruction
quality. First, the copies are detected by cross-correlation
calculation. Then, all the identified copies are aligned and
averaged to obtain the final reconstruction of the molecule
of interest. Note that for some samples several molecules
are present. The subtomograms averaging should be done
for each of these molecules. In our work we run this step
using the Relion software and follow the standard protocols
described in [21].

While we make no novel algorithmic contributions to the
subtomogram averaging process itself, we show in the exper-
iments that the number of detected molecules, and therefore
the quality of the subtomogram averaging process, increases
substantially when it is based on our reconstruction output in-
stead of baseline results.

3. RESULTS AND DISCUSSION

Datasets: We evaluate our method on two publicly available
datasets from the Electron Microscopy Pilot Image Archive
(EMPIAR) [22]. The first dataset (EMPIAR 10045) [21]
contains several purified Saccharomyces cerevisiae (yeast)
80S ribosomes. This data was scanned over an angular range
of [−60◦, 60◦], with a step size of 3◦. The second sample
(EMPIAR 10064) [23] contains purified mammalian 80S
ribosomes, which were extracted from rabbit Reticulocyte
Lysate. It was scanned over the same angular range, but



with an angular increment of 2◦. For each dataset, several
tilt-series were available; but we only used one series for
our evaluations. These datasets were pre-processed using
IMOD [8] to align projections, and to extract and localize
markers.

Implementation parameters and baselines: After con-
ducting a parameter search, we selected the following val-
ues: λ1 = 0.05, ϵ = 0.04, and λ2 = 0.003 for all the
experiments. We compare our reconstruction framework
(Ours) to different baselines: (1) the WFBP method using
the IMOD implementation, (2) Motion-corrected WFBP
that we feed with corrected projections using our frame-
work, (3) SART+TV [24], a model-based reconstruction
with TV prior, (4) Motion-corrected SART+TV model-
based appraoch with motion-corrected input projections, (5)
Reference a high-resolution reconstruction obtained through
cryo-EM Single Particle Analysis (SPA). The last baseline
involves several tilt-series (scans) for each sample.

Ablation study: The baselines are selected to evaluate sepa-
rately each component of our framework. Comparing WFBP
with SART+TV shows the importance of combining the TV
prior to an iterative reconstruction. The motion-corrected ver-
sions of these approaches illustrate the impact of correcting
the local motion in the projections. Finally, in our technique
(Ours) all the modules are combined, including the denoiser.

Fig. 2: Slice visualization of the EMPIAR 10045 dataset (us-
ing a binning factor of 3) after reconstruction with WFBP
method (left) and Ours (right).

The slice visualization in Figure 2 shows a clear improve-
ment of our joint reconstruction method over the standard
WFBP, especially in terms of contrast enhancement. Con-
sequently, our method improves the accuracy of the protein
extraction which performed prior to the subtomogram aver-
aging step. For instance, 405, 450, and 458 proteins have
been extracted from EMPIAR 10045 reconstructions using
WFBP, SART+TV, and Ours respectively. This improve-
ment is translated by a better reconstruction quality after the
subtomogram averaging. Indeed, for the EMPIAR 10045, we
run the WFBP and Motion-corrected WFBP methods using
2 different protein positions estimation strategies: ours and
the one provided with the dataset (obtained after a WFBP re-
construction). Note that for all other cases we use the same
protein positions obtained with our method to compute the

subtomogram average.

Fig. 3: 3D visualization of the refined proteins after the subto-
mogram averaging.

The 3D visualization of the reconstructed proteins in Fig-
ure 3, and the computation of the Fourier Shell Correlation
(FSC) to estimate the resolution of the reconstruction (see Ta-
ble 1) both show the improvement introduced by each sin-
gle module of our framework. Usually, after computing the
FSC curve using existing software, the resolution of the re-
construction is the one obtained for a FSC = 0.143. The
resolution obtained with FSC = 0.5 is also used in methods
comparisons.

Table 1: Resolution (in Å) obtained with FSC 0.5 and 0.143.

EMPIAR 10045 EMPIAR 10064
FSC 0.5 FSC 0.143 FSC 0.5 FSC 0.143

WFBP (Provided position) 24.218 15.507
Motion-corrected WFBP
(Provided position)

23.688 17.740

WFBP 14.221 12.591 14.324 11.715
Motion-corrected WFBP 13.987 12.733 15.265 11.730
SART+TV 14.058 12.648 11.595 10.837
Motion-corrected
SART+TV

13.755 9.240 11.419 10.702

Ours 13.548 9.178 11.396 10.593

4. CONCLUSION

We proposed a new reconstruction framework to improve
cryo-EM tomograms’ quality and resolution. The main draw-
back of our approach is the dependence on the fiducial mark-
ers (accessibility, in-homogeneity, and artifacts). In the future
we believe our approach can be adapted to marker-free tilt-
series data by using sample features as virtual markers.
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