
1

dO: A differentiable engine for Deep Lens design
of computational imaging systems

–Supplemental Document–
Congli Wang, Ni Chen, and Wolfgang Heidrich, Fellow, IEEE

Abstract

In this supplemental document we provide implementation details, discussions, and additional results in support of the main
paper: Lens system details (Section I); Optimization details (Section II); Design prescription and optimization details (Section III);
Additional details on end-to-end wavefront coding (Section IV); Additional details on end-to-end large field-of-view co-design
(Section V); Misalignment estimation optimization details (Section VI).

I. LENS SYSTEM DETAILS

A. Optical surfaces

In this work, we consider three specific types of parameterized lens surfaces to represent lens and freeform surfaces, yet
in theory alternative parameterization forms (see [1]) should also work. Surfaces are defined in a Cartesian coordinate system
(x, y, z), with z-axis being chosen as the optical axis (if any). Recall that we have formulated optical surfaces as parameterized
surfaces in implicit form f(x, y, z;θθθ) = 0 along with its spatial derivatives ∇f(x, y, z;θθθ). Surface normals are normalized
spatial derivatives, i.e., n = ∇f/ ∥∇f∥.

Aspheres: Let ρ = x2+y2 since aspheric surfaces are axially symmetric. The sag distance function s(ρ) of aspheric surfaces
and its derivative with respect to ρ are:

s(ρ) =
cρ

1 +
√
1− αρ

+

n∑
i=2

a2iρ
i, (S1)

s′(ρ) = c
1 +
√
1− αρ− αρ/2

√
1− αρ

(
1 +
√
1− αρ

)2 +

n∑
i=2

a2iiρ
i−1, (S2)

where c is the curvature, α = (1 + κ)c2 with κ being the conic coefficient, and a2i’s are higher-order coefficients. Spherical
surfaces are special cases of aspheric surfaces, with κ = 0 and a2i = 0 (i = 2, · · · , n). In implicit form:

f(x, y, z;θθθ) = s(ρ)− z, (S3)
∇f(x, y, z;θθθ) = (2s′(ρ)x, 2s′(ρ)y,−1) , (S4)

where differentiable parameters θθθ = (c, κ, a2i).
XY polynomials: XY polynomial surfaces extend lens surface representation beyond axial symmetry. The implicit surface

function f(x, y, z;θθθ) and its spatial derivatives are:

f(x, y, z;θθθ) =

J∑
j=0

j∑
i=0

ai,jx
iyj−i + bz2 − z, (S5)

∇f(x, y, z;θθθ) =

 J∑
j=1

j∑
i=0

ai,jix
i−1yj−i,

J∑
j=1

j∑
i=0

ai,j(j − i)xiyj−i−1, 2bz − 1

 , (S6)

where differentiable parameters θθθ = (b, ai,j).
B-splines: We employ B-splines [2] to represent high degree-of-freedom freeform surfaces. In general, the sag distance

function g(x, y) is represented as a spline of degree (in our case, it is three, i.e. the cubic B-spline) on the rectangle area, with
predefined number of knots and knot positions. With that, spline functions Si,j(x, y) are fixed, and g(x, y) is determined by
spline coefficients ci,j :

f(x, y, z;θθθ) =

n∑
i

m∑
j

ci,jSi,j(x, y)− z, (S7)

∇f(x, y, z;θθθ) =

 n∑
i

m∑
j

ci,j∇xSi,j(x, y),

n∑
i

m∑
j

ci,j∇ySi,j(x, y),−1

 , (S8)

2

where differentiable parameters θθθ = (ci,j), and the spatial gradients of the spline functions ∇xSi,j and ∇xSi,j are efficiently
evaluated via modified de-Boor’s algorithm [2].

B. Optical elements
Optical elements are defined to contain at least two optical surfaces. To enable sensitivity analysis and further degree-of-

freedom, each optical element is described by differentiable positional parameters θθθ = (θx, θy,pshift). Figure 1 demonstrates
the physical meaning of these parameters, given a doubly convex lens (Thorlabs, LB1757).

0 5 10 15 20 25 30 35

z [mm]

−
1
0

0
1
0

y
[u

m
]

Nominal setup

0 5 10 15 20 25 30 35

z [mm]

−
1
0

0
1
0

y
[u

m
]

Yaw/pitch (θx, θy)

−5 0 5 10 15 20 25 30 35

z [mm]

−
1
0

−
5

0
5

1
0

1
5

2
0

y
[u

m
]

Shift pshift

0 5 10 15 20 25 30 35

z [mm]

−
1
0

−
5

0
5

1
0

1
5

y
[u

m
]

All θθθ = (θx, θy ,pshift)

Fig. 1: Positional parameterization of an optical element.

C. Lens system
We follow the standard lens design pipeline [3], [4] to model a lens systems. We focus on the sequential mode, where

starting from one end of the lens system, rays are sequentially traced through a sequence of parameterized optical surfaces
(including the image plane, i.e., the sensor plane), intersecting only once for each surface, while traveling towards the other end
of the lens system. This is demonstrated in Figure 2 with a double-Gauss lens [5]. In the sequential mode, the exact visibility
ordering of the surfaces is known a priori, and thus no need for finding the closest surface intersection when performing ray
tracing.

Depending on the needs, rays can be traced through the lens system in two different modes, forward mode or backward
mode. In the forward mode, rays are traced starting from the object plane towards the image plane. This is the preferable way in
lens design for aberration analysis, e.g., generation for spot diagrams. In the backward mode, rays are traced reversely, starting
from the image plane towards the object plane. This is a sampling efficient way for sensor image rendering, and thus is the
preferable way in computer graphics to render realistic images. We will be using these two modes interchangeably depending
on specific needs.

The above two ray tracing procedures are unitedly described as in Algorithm 1: The lens system can be formulated as a
“black-box” operator A(·) that is a function of all lens parameters θθθ. The lens system A transforms input ray {oin,din} into
output ray {oout,dout} at wavelength λ:

A({oin,din}, λ;θθθ) = {oout,dout}. (S9)

Ray propagation through a lens system involves two major steps, finding the ray-surface intersection point, and refraction of
the ray at material interfaces with chromatic effects. Only valid rays are traced in continuity, whereas invalid rays happen when
the intersections are outside of the lens geometry or when total internal reflection takes place.

Though in this work we focus on the sequential mode where optical surfaces are fixed in a known order, non-sequential
mode should also be possible with proper extensions and modifications on the current ray tracing engine.

← (object plane, usually at −∞)

(image plane) →

lens group sensor

type distance 1/curvature diameter material
O 20 0 100 AIR
S 5.0 78.360 76.0 1.79668/45.5
S 9.8837 469.477 76.0 AIR
S 0.1938 50.297 64.0 1.77279/49.4
S 9.1085 74.376 62.0 AIR
S 2.9457 138.143 60.0 1.6727/32.2
S 2.3256 34.326 51.0 AIR
A 16.0698 0 49.6 OCCULDER
S 13.0 -34.407 48.8 1.74/28.3
S 1.938 -2906.977 57.0 1.77279/49.4
S 12.403 -59.047 60.0 AIR
S 0.3876 -150.890 66.8 1.78797/47.5
S 8.333 -57.890 67.8 AIR
S 0.1938 284.630 66.0 1.78797/47.5
S 5.0388 -253.217 66.0 AIR
I 74.1 0 86.53 AIR

Fig. 2: Lens system schematic and its prescription file.

3

Algorithm 1 Ray tracing through a lens system A.

1: procedure A({oin,din}; λ)
2: Initialize {o(0),d(0)} ← {oin,din}
3: for optical surface fi (∀i = 1, · · · , N) do
4: Find intersection point o(i)

5: Compute refraction direction d(i)

6: if valid then
7: update ray as {o(i),d(i)}
8: end if
9: end for

10: return {oout,dout} ← {o(N),d(N)}
11: end procedure

II. OPTIMIZATION

Recall to optimize a design, a merit function ϵ(·) : R2m 7→ R is applied to p, producing a scalar error ϵ(p(θθθ)) ∈ R, as an
indicator for design performance. Design optimization aims to solve for an optimal θθθ∗ by minimizing the error:

θθθ∗ = argmin
θθθ

ϵ(p(θθθ)). (S10)

Given the derivatives ∆θθθ from back-propagating Eq. (S10), dO performs optimization and iteratively changes the variable
parameters θθθ. When there are constraints in the design, e.g., positive air-spacing, minimum glass thickness or back focal length,
maximum system overall size, Eq. (S10) can be modified by adding a vector constraint function.

A. Optimization spirit

Specific optimization method depends on the number of variables. When the number of variables is small (for example
θθθ ∈ Rn, n < 20), damped least squares [6] are employed to efficiently optimize Eq. (S10), that the required Jacobians can
be constructed from the derivative vectors. In this case it does not take full advantage of the derivative-aware property of
dO. When n is large, popular gradient descent methods such as Adam [7] is employed. If desirable, additional regularization
terms are possible, for example when solving Eq. (S21). This optimization flexibility feature differentiates dO from existing
software.

Recall our goal is to perform design optimization by minimizing the error metric function in Eq. (S10), for the engine to
find a set of optimal parameters θθθ∗ that minimizes ϵ(p(θθθ)). The scalar-valued error function ϵ(p(·)) is not necessarily linear
and can only be evaluated numerically. Depending on the dimensionality of variables, gradient descent or damped least squares
are employed to optimize Eq. (S10).

B. Unconstrained optimization methods

Gradient descent and variants: Since gradient information is available from back-propagation, Eq. (S10) can be easily
optimized using gradient descent methods such as Adam [7], with the learning rate αk being strategically tuned for each
iteration k:

θθθk+1 ← θθθk +∆θθθ, ∆θθθ = −αk
∂ϵ

∂θθθ

∣∣∣∣
θθθ=θθθk

. (S11)

Damped least squares: When the error function follows the form of ϵ(θθθ) =
∑

i ∥Ai(θθθ)∥2 where Ai(·) is a function that
can be numerically evaluated, and the total number of variables is small, we employ the well-known damped least squares [6],
[8] for optimizing Eq. (S10), which can be re-written as follows to simply notation:

θθθ∗ = argmin
θθθ

ϵ(θθθ), ϵ(θθθ) =
∑
i

∥Ai(θθθ)∥2. (S12)

This problem is solved in an iterative fashion. At each iteration k, the damped least squares method solves for a least squares
sub-problem with respect to a small variable change ∆θθθ, which is Tikhonov regularized to enhance solution stability, with an
iterative changing damping factor ρk:

θθθk+1 ← θθθk + argmin
∆θθθ

∑
i

∥Ai(θθθ
k +∆θθθ)∥2 + ρk∥∆θθθ∥2. (S13)

By approximating Ai(θθθ
k +∆θθθ) using first-order Taylor expansion:

Ai(θθθ
k +∆θθθ) ≈ Ai(θθθ

k) + Ji∆θθθ, (S14)

4

where Ji is the Jacobian matrix at Ai(θθθ
k), Eq. (S13) is solved by the normal equation, with I denoting the identity matrix:(∑

i

J T
i Ji + ρkI

)
∆θθθk = −

∑
i

J T
i Ai(θθθ

k). (S15)

One nice feature of using automatic differentiation is that the right hand side can be efficiently evaluated using back-propagation
(the backward mode), with the left hand side being obtained using the forward mode.

C. Constraint handling

When there are constraints in the design, e.g., positive air-spacing, minimum glass thickness or back focal length, maximum
air-spacing overall size, Eq. (S10) needs to be constrained, which can be re-phrased as two vectors bl and bh, i.e., a bounding
box constraint:

θθθ∗ = argmin
θθθ

ϵ(θθθ), s.t. bl ≤ θθθ ≤ bh. (S16)

This linear constraint turns the original unconstrained problem into a constrained one, preventing ∂ϵ/∂θθθ to be evaluated at
boundaries. Consequently, the unconstrained optimization methods in the previous subsection are revised by simply projecting
the variable to a feasible solution space after obtaining ∆θθθ from Eq. (S11) or Eq. (S15), at each iteration k applying an
element-wise maximum-minimum operation to θθθk +∆θθθ:

θθθk+1 ← max(bl,min(θθθk +∆θθθ,bh)). (S17)

III. DESIGN PRESCRIPTIONS

A. Spherical aberration optimization

We minimize the spherical aberration of an asphere lens as described in Table I. We optimized these parameters using
damped least squares.

TABLE I: Asphere lens prescription. Changed variables are marked in bold.

(a) Initial design

type distance 1/curvature diameter material conic higher aspheric coefficients
0 O 0 ∞ 0 AIR
1 AS 0 20.923 50.0 1.5229/58.50 -0.6405 2.0e-06
2 S 21.0 ∞ 50.0 AIR
3 I 26.0 ∞ 50.0 AIR

(b) Optimized design

type distance 1/curvature diameter material conic higher aspheric coefficients
0 O 0 ∞ 0 AIR
1 AS 0 20.9403 50.0 1.5229/58.50 -0.6262 1.6405e-06
2 S 21.0 ∞ 50.0 AIR
3 I 26.0 ∞ 50.0 AIR

B. Photographic camera design optimization

The Nikon lens prescription is shown in Table II. Our target is to reset the aspheric surfaces to spherical surfaces, and the
goal is to use our ray tracing engine to minimize RMS spot size by optimizing all lens surface curvatures, the conic and
aspherical coefficients of Surface 17 & 18. We optimized these parameters using damped least squares.

C. Sensitivity analysis

In sensitivity analysis we analyzed a nominal Cooke triplet design, shown in Table I. The goal was to analyze the potential
effect of how each lens element misalignment would affect the optical performance of the design. These potential effects are
illustrated by the Jacobian matrices in the main document.

TABLE I: Cooke triplet prescription.

type distance 1/curvature diameter material
0 O 0.0 ∞ 0.0 AIR
1 S 0.0 22.014 19.0 1.6204/60.31
2 S 3.259 -435.760 19.0 AIR
3 S 6.008 -22.213 8.0 1.6200/36.37
4 S 1.000 20.292 7.72 AIR
5 S 4.750 79.684 15.0 1.6204/60.31
6 S 2.952 -18.395 15.0 AIR
7 I 42.208 ∞ 36.346 AIR

5

TABLE II: Nikon lens prescription. Surface 12 is the pupil plane, Surface 17 and 18 are aspheric surfaces, and Surface 23 is the sensor
plane. Changed variables are marked in bold.

(a) Original design

type distance 1/curvature diameter material conic higher aspheric coefficients
0 O 0 ∞ 0 AIR
1 S 0 5.267 1.694 1.5168/64.12
2 S 0.102 0.961 1.392 AIR
3 S 0.309 1.442 1.322 1.9027/35.72
4 S 0.246 10.280 1.250 1.5955/39.21
5 S 0.083 1.215 1.092 AIR
6 S 0.411 -1.099 1.048 1.6990/30.05
7 S 0.088 2.918 1.172 1.9108/35.25
8 S 0.258 -1.669 1.202 AIR
9 S 0.009 1.643 1.248 1.5928/68.62

10 S 0.379 -1.412 1.226 1.7205/34.70
11 S 0.069 -2.572 1.214 AIR
12 A 0.118 ∞ 1.110 OCCLUDER
13 S 0.604 -0.973 0.952 1.5927/35.31
14 S 0.051 -24.080 0.980 AIR
15 S 0.009 2.376 1.086 1.5928/68.62
16 S 0.282 -1.306 1.138 AIR
17 AS 0.239 -7.317 1.208 1.6935/53.20 0 (-0.240, -0.4268)
18 AS 0.122 -2.200 1.254 AIR 0 (-0.05053, -0.3491, 0.1459, 0.07718)
19 S 0.154 -1.545 1.324 1.4875/70.44
20 S 0.083 -7.257 1.424 AIR
21 S 0.750 ∞ 2.400 1.5168/64.12
22 S 0.074 ∞ 2.400 AIR
23 I 0.043 ∞ 1.912 AIR

(b) Optimized design

type distance 1/curvature diameter material conic higher aspheric coefficients
0 O 0 ∞ 0 AIR
1 S 0 6.843 1.694 1.5168/64.12
2 S 0.102 0.972 1.392 AIR
3 S 0.309 1.439 1.322 1.9027/35.72
4 S 0.246 11.065 1.250 1.5955/39.21
5 S 0.083 1.232 1.092 AIR
6 S 0.411 -1.095 1.048 1.6990/30.05
7 S 0.088 2.825 1.172 1.9108/35.25
8 S 0.258 -1.662 1.202 AIR
9 S 0.009 1.644 1.248 1.5928/68.62

10 S 0.379 -1.314 1.226 1.7205/34.70
11 S 0.069 -2.537 1.214 AIR
12 A 0.118 ∞ 1.110 OCCLUDER
13 S 0.604 -0.980 0.952 1.5927/35.31
14 S 0.051 -15.827 0.980 AIR
15 S 0.009 2.502 1.086 1.5928/68.62
16 S 0.282 -1.379 1.138 AIR
17 AS 0.239 -8.237 1.208 1.6935/53.20 132.663 (-0.1154)
18 AS 0.122 -2.053 1.254 AIR -0.883 (0.0349)
19 S 0.154 -1.581 1.324 1.4875/70.44
20 S 0.083 -7.257 1.424 AIR
21 S 0.750 ∞ 2.400 1.5168/64.12
22 S 0.074 ∞ 2.400 AIR
23 I 0.043 ∞ 1.912 AIR

achromatic lens

phase plate (characterized by θθθxy)

image sensor

Fig. 3: Layout diagram of the end-to-end wavefront coding imaging system. The field of view of this F/8 imaging system is around 1◦.
Here, the central view is depicted.

IV. END-TO-END WAVEFRONT CODING IMPLEMENTATION DETAILS

A. Imaging system and phase plate parameterization

The imaging system consists of an achromatic doublet and a phase plate, as shown in the ray tracing layout diagram Figure 3.
Prescription of the imaging system is in Table II. The wavefront coding phase plate is parameterized by θθθxy ∈ R4, the cubic
polynomial coefficients. Thus, the phase plate height map is described as:

h(x, y;θθθxy) = θθθxy,1x
3 + θθθxy,2x

2y + θθθxy,3xy
2 + θθθxy,4y

3. (S18)

6

TABLE II: Image system prescription.

type distance 1/curvature diameter material note
0 O 0.0 ∞ 0.0 AIR
1 S 0.0 62.8 12.7 1.51680/64.17
2 S 4.0 -45.7 12.7 1.67270/32.21
3 S 6.5 -128.2 12.7 AIR
4 S 8.0 ∞ 12.7 1.51680/64.17
5 C 10.5 N.A. 12.7 AIR phase plate; characterized by Eq. (S18)
6 I 96.0 ∞ 1.7664 AIR

64 12832 32 32 64 64 128 128 256 256 256 512 256 512 256 128 256 128 64 128 64 32
3x3 Conv, bnorm, ReLU Pooling Unpooling 1x1 Conv Skip & Concat

64 32 32

Idraw(θθθxy) Idnet(θθθxy, θθθnet)

Fig. 4: U-Net architecture used in end-to-end training. All sub-stage blocks were connected by 3x3 Conv, batch-norm followed by ReLU
(green arrows).

B. Image simulation

We assume the object is a planar texture image plane, located at distance d away from the imaging system. When using the
backward mode for simulation image generation, the acquired raw image is a function of d and θθθxy, denoted as Idraw(θθθxy). Due to
the huge memory consumption in the back-propagation pass, total number of ray samples is limited. The image resolution was
set to 256 by 256, with a pixel pitch of 6.9 µm, with an exit pupil aperture sampling of 7 by 7. The exact pupil sampling location
was randomly perturbed each time to avoid strike-like artifacts. Though the ray sampling rate is low, we have empirically
verified that the rendered images were of high enough quality for post-processing by a neural network. We rendered channels
of an RGB image at three different wavelengths, 656.2725 nm, 587.5618 nm, and 486.1327 nm.

C. Optimization and loss functions

In extended depth of field applications, the goal is to deconvolve Idraw(θθθxy) and recover the ground truth image Igt. This task
could be accomplished using a post-processing algorithm (here, a neural network) parameterized by θθθnet as a black-box solver,
such that the post-processed output image is close to the ground truth image, for each d:

Net(Idraw(θθθxy);θθθnet) = Idnet(θθθxy, θθθnet) ≈ Igt. (S19)

Optimizing Eq. (S19) is a joint processing of optimizing optics parameterization θθθxy and algorithm parameterization θθθnet.
We employed the standard U-Net [9] architecture as the post-processing algorithm, aiming to deconvolve the blurry raw
images at different defocus distances. More advanced neural network architectures are possible, our choice here only offers a
demonstration for the end-to-end capability of our differentiable engine. To optimize θθθxy and θθθnet, we generated a synthetic
dataset for training, using samples from ImageNet [10]. To ensure a robust reconstruction, we optimize the following loss
function (shown in the main paper):

min
θθθxy, θθθnet

L(θθθxy, θθθnet) = Lmse + Ltv + Lvgg16, (S20)

by employing the following loss functions to regularize Eq. (S19):

Lmse = α1∥Idnet(θθθxy, θθθnet)− Igt∥2, (MSE error)

Ltv = α2∥∇Idnet(θθθxy, θθθnet)∥1, (total variation)

Lvgg16 = α3∥V(Idnet(θθθxy, θθθnet))− V(Igt)∥2, (pretrained VGG-16 feature error)

where αi(i = 1, 2, 3) are trade-off parameters, V(·) denotes extracted features from 15 layers from pretrained VGG-16. We
implemented the network in PyTorch, and used Adam [7] for training, with a number of 800 epochs and 10 iterations for each
image per d. The training took around three days to finish on a GPU (Nvidia, GeForce RTX 2080 Ti). Figure 4 shows the
U-Net architecture. Additional results are shown in Figure 5.

V. END-TO-END LARGE FIELD-OF-VIEW IMPLEMENTATION DETAILS

A. Imaging system and training

The imaging system consists of a cemented doublet of an F/5, 40◦ large field-of-view end-to-end imaging system, as shown
in the ray tracing layout diagram Figure 6. Prescription of this imaging system is in Table III. Bold fonts are differentiable

7

parameters that are changable during the end-to-end training. With only a doublet and three surfaces, compared to a standard
Cooke triplet design, the total degree of freedom is insufficient to fully compensate most lower-order aberrations, and hence the
blurriness is unavoidable. Here, we anticipate the trained neural network to act as an image reconstruction layer appended to
remove the unwanted blurriness. Training (loss function and strategy) is similarly to Section IV, but the neural reconstruction
algorithm is based on a modified version of Ref. [11]. See Figure 7 for additional results.

Fig. 6: Layout diagram.

type distance 1/curvature diameter material 4th aspheric coefficient
0 O 0.0 ∞ 0.0 AIR
1 AS 0.0 19.163 30.0 1.62040/60.31 0
2 S 5.0 51.503 30.0 1.620/36.37
3 AS 2.006 30.347 30.0 AIR 0
4 A 9.063 ∞ 10.466 OCCLUDER
5 I 45.0 ∞ 48.437 AIR

TABLE III: Image system initial prescription.

VI. MISALIGNMENT ESTIMATION

In the main paper, we demonstrate misalignment estimation with a revised cost function on MSE error metric. This is
important for a successful estimation, because the overlapping area is too small for the current estimate I and the target real
image Ireal, as such the gradient of the MSE error ∥I − Ireal∥2 is close to zero regardless of local spot movements, resulting
in the so-called stagnation problem for optimization. To overcome this issue, we regularize the MSE error with a centroid
alignment loss, with C(·) being the centroid function for a given image. That is:

θθθ∗ = argmin
θθθ

ϵ(θθθ), ϵ(θθθ) = ∥I(θθθ)− Ireal∥2 + µ∥C(I(θθθ))− C(Ireal)∥2, (S21)

where µ is a tradeoff parameter to balance between MSE error and spot position. We minimize Eq. (S21) by alternating
between Adam and damped least squares. Specifically, each optimization contains 50 Adam + 15 damped least squares + 50
Adam + 15 damped least squares + 50 Adam iterations. We first optimized sensor distance and light source origin For θx = 0
misalignment, then fixed these values for subsequent estimations, and optimized for lens origins instead. Optimization details
are shown in Figure 8, Figure 9, Figure 10, Figure 11, and Figure 12.

REFERENCES

[1] J. Ye, L. Chen, X. Li, Q. Yuan, and Z. Gao, “Review of optical freeform surface representation technique and its application,” Optical Engineering,
vol. 56, no. 11, p. 110901, 2017.

[2] C. de Boor, A practical guide to splines. springer-verlag New York, 1978, vol. 27.
[3] J. M. Geary, Introduction to lens design: with practical ZEMAX examples. Willmann-Bell Richmond, VA, USA:, 2002.
[4] C. Kolb, D. Mitchell, and P. Hanrahan, “A realistic camera model for computer graphics,” in Proceedings of the 22nd annual conference on computer

graphics and interactive techniques, 1995, pp. 317–324.
[5] K. Wakamiya, “Great aperture ratio lens,” 1984, u.S. Patent 4448497.
[6] J. Meiron, “Damped least-squares method for automatic lens design,” Journal of the Optical Society of America, vol. 55, no. 9, pp. 1105–1109, 1965.
[7] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” in International Conference for Learning Representations, 2015. [Online].

Available: http://arxiv.org/abs/1412.6980
[8] M. J. Kidger, “Use of the levenberg-marquardt (damped least-squares) optimization method in lens design,” Optical Engineering, vol. 32, no. 8, pp.

1731–1739, 1993.
[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proceedings of International Conference

on Medical Image Computing and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.
[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in IEEE Conference on Computer

Vision and Pattern Recognition. Ieee, 2009, pp. 248–255.
[11] O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, “DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better,” in IEEE/CVF International

Conference on Computer Vision, 2019, pp. 8878–8887.

http://arxiv.org/abs/1412.6980

8

raw processed raw processed raw processed

4
.5
m

6
.0
m

8
.0
m

4
.5
m

6
.0
m

8
.0
m

4
.5
m

6
.0
m

8
.0
m

Fig. 5: Additional results on end-to-end wavefront coding. Here raw and post-processed images by the neural network are shown at three
different defocus distances.

9

raw processed

Fig. 7: Additonal results of large field-of-view end-to-end training.

10

sensor distance [mm] light origin [mm,mm,mm] lens yaw θx [◦] lens pitch θy [◦]
initial 130.0 (0.0, 0.0, -660.0) 0 0

optimized 123.05 (0.65, -2.00, -864.01) 2.45 1.34

0 25 50 75 100 125 150 175
iteration

0.25

0.50

0.75

1.00

1.25

1.50

1.75

er
ro

r f
un

ct
io

n

Initial image Optimized image Target (real image) Loss function

Fig. 8: Positional estimation for small angle (around θx = 0◦) misalignment.

lens origin [mm,mm,mm] lens yaw θx [◦] lens pitch θy [◦]
initial (0, 0, 0) -1 0

optimized (-0.0065, -0.1122, -0.5569) -2.72 1.20

0 25 50 75 100 125 150 175
iteration

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

er
ro

r f
un

ct
io

n

Initial image Optimized image Target (real image) Loss function

Fig. 9: Positional estimation for small angle (around θx = 5◦) misalignment.

lens origin [mm,mm,mm] lens yaw θx [◦] lens pitch θy [◦]
initial (0, 0, 0) -6 0

optimized (-0.0239, -0.2938, -0.2993) -9.6423 1.6439

0 25 50 75 100 125 150 175
iteration

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

er
ro

r f
un

ct
io

n

Initial image Optimized image Target (real image) Loss function

Fig. 10: Positional estimation for small angle (around θx = 10◦) misalignment.

11

lens origin [mm,mm,mm] lens yaw θx [◦] lens pitch θy [◦]
initial (0, 0, 0) -21 0

optimized (-0.0229, -0.7511, -1.6763) -25.0738 1.9460

0 25 50 75 100 125 150 175
iteration

0

10

20

30

40

er
ro

r f
un

ct
io

n

Initial image Optimized image Target (real image) Loss function

Fig. 11: Positional estimation for small angle (around θx = 25◦) misalignment.

lens origin [mm,mm,mm] lens yaw θx [◦] lens pitch θy [◦]
initial (0, 0, 0) -26 0

optimized (-0.0251, -0.8970, -2.6649) -30.0409 1.4138

0 25 50 75 100 125 150 175
iteration

2

4

6

8

10

12

14

er
ro

r f
un

ct
io

n

Initial image Optimized image Target (real image) Loss function

Fig. 12: Positional estimation for small angle (around θx = 30◦) misalignment.

	Lens System Details
	Optical surfaces
	Optical elements
	Lens system

	Optimization
	Optimization spirit
	Unconstrained optimization methods
	Constraint handling

	Design Prescriptions
	Spherical aberration optimization
	Photographic camera design optimization
	Sensitivity analysis

	End-to-end wavefront coding implementation details
	Imaging system and phase plate parameterization
	Image simulation
	Optimization and loss functions

	End-to-end large field-of-view implementation details
	Imaging system and training

	Misalignment estimation
	References

