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ABSTRACT

Computational Wavefront Sensing:

Theory, Practice, and Applications

Congli Wang

Wavefront sensing is a fundamental problem in applied optics. Wavefront sensors that

work in a deterministic manner are of particular interest. Initialized with a unified theory

for classical wavefront sensors, this dissertation discusses relevant properties of wavefront

sensor designs. Based on which, a new wavefront sensor, termed Coded Wavefront Sen-

sor, is proposed to leverage the advantages of the analysis, especially the lateral wavefront

resolution. A prototype was built to demonstrate this new wavefront sensor.

Given that, two specific applications are demonstrated: megapixel adaptive optics and

simultaneous intensity and phase imaging. Combined with a spatial light modulator, a hard-

ware deconvolution approach is demonstrated for computational cameras via a high resolu-

tion adaptive optics system. By simply switching the normal image sensor with the proposed

one, as well as slight change of illumination, a bright field microscope can be configured to

a simultaneous intensity and phase microscope. These show the broad application range of

the proposed computational wavefront sensing approach.

Lastly, this dissertation proposes the idea of differentiable optics for wavefront engineer-

ing and lens metrology. By making use of automatic differentiation, a physically-correct

differentiable ray tracing engine is built, with its potentials being illustrated via several chal-

lenging applications in optical design and metrology.
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Chapter 1

Introduction

In optics, an optical wavefront is the locus of points propagating with the same phase. By

definition, wavefront is only meaningful under purely coherent conditions, either spatially

coherent (lighting from a single source) or temporally coherent (phases of light synchronize

in time). Figure 1.1 visualizes the definition of a wavefront in wave and ray representations,

where a plane wave is transformed into a spherical wave by a thin lens. Here, a wavefront

is defined as a manifold curve along the propagation direction. An equivalent ray represen-

tation illustrates the same optical phenomenon.

Wavefront representation is an important criteria for characterizing imaging quality and

quantifying aberration. Consequently, wavefront gives a sense for engineers to understand

optical systems, alerting potential performance decrease for specific tasks. For example,

perfect imaging requires a spherical wavefront, and hence the actual wavefront deviation

defines more or less the degree of aberration of an imaging system. Once wavefront is

measured, advanced techniques may be employed to improve imaging quality, e.g., using
thin lens

plane wave→

← spherical wave

Wave representation Ray representation

Figure 1.1: Definition of a wavefront. Wavefront are manifold curves where the wave has
the same phase of the underlying electromagnetic sinusoidal field. Alternative ray repre-
sentation depicts local directions that are orthogonal to the wavefront surface.
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adaptive optics or computational deconvolution algorithms.

Wavefront is also useful when examining thin transparent biological samples. In this

scenario, wavefront is ordinarily referred as optical phase, i.e., the phase delay of the con-

sidered electromagnetic radiation. These biological samples are difficult to examine using

normal bright field microscopy, because illumination light propagates directly through the

transparent sample, with only slight angular shifts and almost no change of radiance, and

hence special microscopes are required. Quantitative phase imaging is one of the useful

specific techniques to acquire phase, i.e., wavefront, to reveal sample biological structures.

The problem of characterizing wavefront is called wavefront sensing. Since imaging

sensors are sensitive to irradiance but not ray directions, wavefront cannot be directly mea-

sured, and hence proper hardware revision is necessary in order to acquire wavefront. A

wavefront sensor is such a specialized instrument to measure optical wavefront.

This dissertation introduces a new computational imaging approach to wavefront sens-

ing, and proposes a new wavefront sensor called the Coded Wavefront Sensor. A unified

theoretical framework is derived to understand the sensor principle, as well as for classi-

cal wavefront sensors. Several practical applications are demonstrated using the proposed

sensor. These works comprise the majority of this dissertation.

In spite of wavefront measurement, wavefront engineering is also considered in this dis-

sertation. Modern machine learning techniques are leveraged to this purpose, and a general

differentiable ray tracing framework is proposed for both lens design and metrology.

1.1 Overview

This dissertation focuses on wavefront sensing and relevant applications.

Coded wavefront sensor [1] is a novel single-shot, high spatial wavefront resolution sen-

sor that we proposed. The sensor itself, like Shack-Hartmann, consists of a coding optic

and a bare image sensor. In [1], we chose the fabrication-friendly binary amplitude mask

as the coding optics, which was placed in a close proximity to the sensor, at a distance z
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approximately equals 1.5mm. The binary mask serves as a wavefront modulator, in that

the perceived images under plane wave illumination are quasi-random speckles, denoted as

I0(x), with x being the pixel coordinate. When input is a distorted wavefront φ(x) (in the

unit of optical path differences), the speckle pattern image distorts, denoted as I(x). The

distortion displacements from I0(x) to I(x) are proportional to bothmask-to-sensor distance

z and wavefront slopes ∇φ, mathematically written as:

I(x+ z∇φ) = I0(x). (1.1)

We developed a curl-free optical flow algorithm to solve φ(x) out of I0(x) and I(x). In

theory, if the algorithm is smart-enough to distinguish all displacements, φ(x) is at sensor

resolution. The algorithm is highly parallelizable, and a CUDA implementation runs in

real-time for megapixel image resolution at 30Hz on a gaming laptop.

Megapixel adaptive optics [2] is an Adaptive Optics (AO) application of [1]. Since

φ(x) is of megapixel, together with a megapixel Spatial Light Modulator (SLM), we built a

closed-loop megapixel AO system to correct for large-scale wavefronts, on top of a vision

camera system. All computations (wavefront solver, SLM control, AO loop) were imple-

mented on a single Graphics Processing Unit (GPU), in either native CUDA code or based

on OpenGLAPIs (for display controls). Due to the slow response of the SLM liquid crystal,

the AO prototype worked at 10Hz. To improve light efficiency, we changed the amplitude

mask in [1] to a binary phase mask of random patterns. We also revised the wavefront solver

with a pyramid scheme to accelerate convergence for large-scale wavefronts, whose peak-

to-valley values were usually at tens of wavelengths, and are usually beyond detection range

of opponent sensors, e.g., Shack-Hartmann wavefront sensor of a similar spatial resolution.

Quantitative phase and intensity microscopy [3] is a phase microscopy application of

Coded Wavefront Sensor [1]. We switched the bare sensor with our wavefront sensor to

complete this application. To tackle the varying amplitudes of biological samples, we re-
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vised Eq. (1.1) to include an unknown sample amplitude |A(x)|:

I(x+ z∇φ) = |A(x)|2I0(x). (1.2)

Solving simultaneously the amplitude |A(x)| and wavefront φ(x) leads to results of intensity

and phase maps. Since new variables need to be solved, the new GPU solver ran at 10Hz

per megapixel frame.

Modeling classical wavefront sensors [4] analyzes the diffraction effect behind Eq. (1.2).

We established a general theoretical framework for all classical wavefront sensors. Given

the framework, we analyzed the modeling accuracy of Eq. (1.2) and gave an upper bound

for spatial lateral wavefront resolution regarding z.

Differentiable ray tracer [5] proposes and builds a differentiable lens system using au-

tomatic differentiation, via which custom optimizer and data-driven machine learning tech-

niques are employed for a board number of applications, including classical applications

such as design optimization and sensitivity analysis, and advanced applications such as

caustic engineering, end-to-end wavefront coding, and misalignment calibration.

Self-calibrated differentiable refractive deflectometry [6] takes onemore step beyond [5].

We reversed the purpose of the differentiable ray tracer and employed it for lens metrology,

using phase-shifting deflectometry in the refractive mode. The framework is self-calibrated,

and we were able to estimate lens curvatures and asphere/freeform surfaces.

1.2 Dissertation structure

In the remainder of this dissertation, Chapter 2 gives a brief background for wavefront sens-

ing techniques, optimization, and related work. Next, Chapter 3 represents a theoretical

analysis for general wavefront sensors, aiming to understand and unify the performance

characteristics of different wavefront sensors types, along with the introduction of a new

type of wavefront sensor that maximizes the previously analyzed criteria, and practical us-
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age is demonstrated for the proposed sensor. Two applications are later described using the

proposed sensor. In Chapter 4, a megapixel adaptive optics system is built for computa-

tional cameras to do hardware deblurring. In Chapter 5, a quantitative phase microscopy

application is demonstrated. These chapters establish a knowledge structure of the proposed

wavefront sensor, from theory to practice, and to applications.

Starting from Chapter 6 and Chapter 7, we step out of the comfort zone of the cur-

rent wavefront sensing technique, and focus on wavefront engineering and lens metrology,

which are classical problems that could be formulated in a parametric way. We propose the

concept of a differentiable lens, where a differentiable ray tracing system is built based on

automatic differentiation and a differentiable renderer, via which data-drivenmachine learn-

ing techniques are employed for: (i) Differentiable lens design for task-specific applications

in Chapter 6, and (ii) Optical element metrology in Chapter 7.

Finally, we conclude this dissertation with future research points in Chapter 8.
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Chapter 2

Background and Related Work

2.1 General wavefront sensing techniques

In this section, we briefly review techniques that enable wavefront information acquisition.

To be general, these techniques are not necessarily limited to wavefront sensors.

A general non-interferometric wavefront sensing system consists of three parts: a (par-

tially coherent) light source, sensing optics, and an image sensor. To encode wavefronts

into image measurements, one may opt for either illumination-side or sensor-side coding,

as the duality reflects.

2.1.1 Background-oriented Schlieren

Illumination-side coding techniques include differential phase contrast and variants [7, 8,

9], Fourier ptychography [10], background illumination [11], and many others, including

Schlieren imaging.

Schlieren imaging is a qualitative technique for flow visualization. Background Ori-

ented Schlieren (BOS) [12] is an improved variant of Schlieren imaging, with the goal of

reducing unnecessary optical components as well as acquiring for quantitative information.

In BOS, a textured background is placed at the back of the testing subject, with a vision cam-

era measuring the background pattern. When there is flow motion, a computer algorithm

tracks the spatial distortion of the background pattern as a result of the motion. This spatial

distortion indicates local flow movement compared to the static state, and hence encodes

the optical path difference information. Technical variants of BOS have been successfully
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applied, to detect tomography gas flows [13] or to visualize refractive indexes [14]. The

proposed Coded Shack-Hartmann wavefront sensor in this dissertation, shares similarity

with the BOS technique, in that the background pattern is now placed from the object side

to the sensor side, as a foreground instead.

2.1.2 Wavefront sensors

Sensor-side coding, on the other hand, employs a point light source (so-called guide star)

or annular illumination [15], in company with custom optics or moving elements to encode

wavefronts onto the image sensor, including Shack-Hartmann [16] or Hartmann masks [17],

pyramid sensors [18], lateral shearing interferometry gratings [19, 20], curvature sensors [21,

22, 23], speckle-enhanced sensing based on Transport of Intensity Equation (TIE) [24, 25]

and speckle-tracking sensors [26, 27, 28, 29, 1, 30, 3].

Wavefront sensing using speckle tracking technique was first proposed in X-ray phase

imaging [26, 31, 28, 27, 32], and then for optical wavefront retrieval [1, 30], adaptive op-

tics [2], and trial lens metrology [33]. Simultaneous reconstruction for absorption, phase,

and dark field images from one single speckle-pattern measurement image have also been

shown [29, 34, 35]. This speckle tracking technique can be regarded as a generalization

of Shack-Hartmann [16] or Hartmann masks [36]. Closely related special cases are the

shearing interferometers [37, 38] and variants [19, 20, 39, 40, 41] that enable closed-form

solutions in Fourier domain for wavefront retrieval.

The classical Shack-Hartmannwavefront sensor [16] tracks the 2Dmotion of focus spots

generated by a microlens array to recover the unknown wavefront slopes. It offers high

frame rates, but the spatial wavefront resolution is limited to the number of lenslets. High

spatial resolution (e.g. 2 × 2 pixels per lenslet in Altair [42]) can be achieved by increas-

ing the number of lenslets, but proportionally at the cost of decreased ability to measure

large wavefront slopes. Similar tradeoffs exist for other slope-tracing wavefront sensors, for

example the pyramid wavefront sensors [18] and the quadriwave lateral shearing interfero-
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metric wavefront sensors [43, 17].

On the other hand, curvature wavefront sensors [22], based on TIE [21], offer full sensor

spatial wavefront resolution at high frame rates. Typical curvature sensors require coherent

illumination and mechanical scanning to obtain multiple images for later computational

phase reconstruction [44]. There has been work on curvature wavefront sensing using a

single color sensor [45], exploiting the lens chromatic aberration, and thus avoiding the

mechanical scanning. Interferometric wavefront sensors also require coherent illumination

and a complicated setup with highly sensitive alignment.

2.1.3 Light field cameras

The light field is a function that describes the amount of light flowing from one point in

each direction [46, 47]. As such, light fields are normally employed in an incoherent light

setting, in the framework of ray optics, and at most first-order wave optics [48]. Intrinsically

speaking, the trajectory of a wavefront is an angular-spatial slice of a light field.

Light field cameras are devices to capture light fields, and they are closely related to

wavefront sensors. One of the core benefits of light field cameras is the ability to refocus

images post-capture [49]. Light field cameras typically consist of multiple lenses, either

camera lenses or microlens arrays, e.g., [50, 51]. This layout is similar to the design spirit of

a Shack-Hartmann sensor [16]. Recent works on light field cameras replace the microlens

array with specifically designed modulators, for example using amplitude masks [52, 53,

54], a single diffuser [55], or from a partially wetted window with water drops [56].

2.2 Proximal algorithms

In this dissertation, most of the time we are trying to solve an optimization problem. This

turns to the question of finding appropriate solvers. We rely on proximal algorithms and

variants [57, 58, 59]. Proximal algorithms can be used to solve complex optimization prob-

lems by splitting different regularization terms into several smaller yet easier sub-problems
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that are independently solved, and then combined to find a solution to the original problem.

2.2.1 Proximal operator

These sub-problems are oftentimes formulated in the form of proximal operator [59]:

proxµf (u) , argmin
x

f(x) +
1

2µ
‖x− u‖2. (2.1)

Proximal operators are of importance for proximal algorithms. Fortunately, many functions

(even for non-smooth functions, e.g. `1-norm) have a closed form proximal operator. This

offers great advantage for implementation of proximal algorithms.

2.2.2 Alternating Direction Method of Multipliers (ADMM)

Consider the following unconstrained optimization problem:

minimize
x

f(x) + g(Kx), (2.2)

where f(x) : RN → R, linear operator K ∈ RM×N , and g : RM → R is proxiable function

(i.e. proxλg(·) exists and is easy to evaluate). Eq. (2.2) can be solved by proper splitting,

such as:
minimize

x, z
f(x) + g(z),

subject to z = Kx.
(2.3)

Using Alternating Direction Method of Multipliers (ADMM) [57], Eq. (2.3) can be solved

using Algorithm 1.

For convex problems in the form of Eq. (2.2), the convergence of Algorithm 1 can be

shown under some easily satisfied assumptions [57]. Throughout this dissertation, we will

assume our model automatically satisfies such assumptions for convergence.

The importance of Algorithm 1 is that the original optimization problem is split into

two relatively easier sub-problems, and each of them is solved in alternation. For each sub-
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Algorithm 1: ADMM for solving Eq. (2.3).
1 Initialize x0 and u0, set λ > 0 and K
2 for k = 0, 1, · · · , K − 1 do
3 x-update: xk+1 = argmin

x
f(x) +

1

2λ

∥∥Kx− zk + uk
∥∥2
2

4 z-update: zk+1 = proxλg(Kxk+1 + uk)

5 u-update: uk+1 = uk +Kxk+1 − zk+1

6 end

problem, usually there exist fast direct solvers (for example, circular structure linear systems

can be efficiently solved by Fourier methods), or have closed form solutions (for example,

evaluation of `1-norm proximal operator).

One great benefit of splitting is parallelization. When speed is an important issue, dis-

tributed computation blocks (e.g. GPU) heavily accelerate specific applications, however

this requires separability of the applied algorithm. Algorithm 1 fulfills separability, as long

as the two sub-problems are parallelizable.

It is worth noting that there exists other also important optimization frameworks besides

ADMM, e.g. proximal point algorithm [60], forward-backward splitting [61], the Pock-

Chambolle algorithm [58], the split Bregman [62], ISTA [63] and FISTA [64], and half-

quadratic splitting [65]. For other types of primal-dual optimization techniques, please refer

to a review paper by Komodakis and Pesquet [66].
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Chapter 3

Theory and Practice

This chapter initializes a general theory for classical wavefront sensors, aiming to provide a

theoretical formulation for wavefront sensors. Based on the theoretical criteria, a prototype

masked sensor is demonstrated to maximize wavefront sensing capability.

We present an image formation model for deterministic phase retrieval in propagation-

based wavefront sensing, unifying analysis for classical wavefront sensors such as Shack-

Hartmann (slopes tracking) and curvature sensors (based on TIE). We show how this model

generalizes commonly seen formulas, including TIE, from small distances and beyond. Us-

ing thismodel, we analyze theoretically achievable lateral wavefront resolution in propagation-

based deterministic wavefront sensing. Finally, via a prototype masked wavefront sensor,

we show realistic wavefront measurements.

3.1 Introduction

We refer to classical wavefront sensors as deterministic, sensor-side coded wavefront sen-

sors under collimated illumination. These wavefront sensors are considered as determin-

istic for phase retrieval, since their image formation models are simple and numerically

easy to invert. However, deterministic models are usually considered separately for differ-

ent wavefront sensors, for example using centroid tracking (slope tracking) for modeling

Shack-Hartmann sensors, or using the TIE for modeling curvature sensors.

In this work, wemodel classical wavefront sensors in a unified framework, extending our

conference paper [67] with extended analysis and results. We consider wavefront sensors
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working under collimated white light illumination with sensor-side coding using custom

optics. Figure 3.1 shows such a general modeling of single-shot or dual-plane wavefront

sensors, where an optical element (e.g., a microlens array, or a phase mask, see Table 3.1

for examples) is placed distance z in front of a bare image sensor. Two images are captured,

one without the sample (reference image I0(r)), another with the sample (measurement

image I(r)). A numerical solver recovers the unknown wavefront φ(r) from image pair

I0(r) and I(r). In Section 3.2, we derive a formula relating I0(r) and I(r).

Calibration (w/o samples)

col
lim

atio
n

opt
ics

sen
sor

z

I0(r) cached solver

φ(r)

Measurement (w/ samples)

wave
fro

nt
opt

ics
sen

sor

z

I(r)

Figure 3.1: General single-shot wavefront sensor model. The unknown wavefront φ(r) is
numerically solved from cached I0(r) and single-shot measurement I(r).

Table 3.1: Optics and corresponding reference image of different wavefront sensors. δp(x)
is the Dirac comb function with period p (the lenslet or pinhole pitch). r = (x, y).

Name Optics Reference image I0(r)
Shack-Hartmann [16]
/ Hartmann mask

micro-lens arrays
/ pinhole arrays

δp(x)δp(y)

Lateral shearing [20] sinusoidal gratings (freq. ω) cos2(ωx) cos2(ωy)
Curvature sensor [22] none 1

Coded wavefront sensor [1, 30] random gratings or diffusers random speckles

3.2 Theory

In this section we derive a new image formation model for general wavefront sensors in

Figure 3.1, and discuss its relationship with previous models.
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3.2.1 Ray optics derivations

Damberg and Heidrich [68] proposed a warping based phase optimization image formation

model for computational lens design, in which the core idea is that the energy conservation

law is valid in each local differentiable area, and consequently a ray optics based formula is

derived relating caustic images and the freeform lens. Similar approach has been proposed

in [69] to yield the same result as in [68], including higher order terms. Here, we revisit

these approaches to further account for sample absorption A(r) and general custom optics

(i.e., different I0(r)) as in Table 3.1, resulting in a ray optics model for general classical

wavefront sensors. See Appendix A.2 for more details from a wave optics perspective.

In the following, we assume ray optics, in that the optical field of interest is fully inco-

herent. Specifically, we consider plane wave illumination onto the wavefront sensor, and

denote the reference image as I0(r). This reference image is different from sensor-to-sensor,

is design-dependent, and is only relevant to the coding optics placed in front of the image

sensor, as discussed in Table 3.1. Consider a sample impinges the wavefront sensor, with a

non-uniform intensity |A(r)|2 and a distortion wavefront d(r) quantified in terms of Optical

Path Difference (OPD). Here, the ray optics assumption forces the considered wavefront to

be an “average” phase, and hence local ray deflection angles can be written as∇d(r) where

∇ is the spatial gradient operator. Consider free space light propagation in Figure 3.2, for a

paraxial single ray of interest (∇d(r)� 1), we have:

r′ = r+ z∇d(r) I(r′) dr′ = |A(r)|2I0(r) dr,

(geometry relationship) (energy conservation)
(3.1)

Rearranging yields

I (r+ z∇d(r)) = |A(r)|
2I0(r)

1 + z∇2d(r)
≈
(
1− z∇2d(r)

)
|A(r)|2I0(r), (3.2)

where the approximation is a consequence of the small local curvature assumption that
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Figure 3.2: Image formation model for deterministic wavefront sensors (single-shot).

z|∇2d(r)| � 1, as required for near-field diffraction to hold (see Eq. (A.20) derived from

Eq. (A.5) in Appendix A.2). When consider monochromatic illumination with a wavelength

of λ, we may rewrite OPD d(r) = λφ(r)/(2π) where φ(r) is the wavefront, therefore

I

(
r+

λz

2π
∇φ
)

= |A(r)|2
(
1− λz

2π
∇2φ

)
I0(r). (3.3)

To convert OPD back to wavefront or phase, a nominal wavelength (e.g., λ = 500 nm)

can be used, as normally seen in other white light wavefront sensing techniques such as

Shack-Hartmann. Equation (3.3) is the main model of this dissertation, and is a natural

consequence of [68, 69]. Notice the derivation here is based on ray optics, and thus this for-

mula works under broadband illumination, as been experimentally verified [3]. Our formula

here could be thought as a variant of the generalized eikonal equation for partially coher-

ent beams [70]. We made no specific assumptions about optics, thus Eq. (3.3) presumably

works for all wavefront sensors in a similar configuration of Figure 3.1. Some examples are

in Table 3.1.

3.2.2 Connection to previous formulas

We now see how Eq. (3.3) is connected to previous formulas for single-shot or dual-plane

wavefront sensing. Table 3.2 summarizes these formulas, as will be discussed below.
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Table 3.2: Theoretical models used in classical wavefront sensing research.

Model Formula Articles
Curvature sensing ∇I · ∇φ+ I∇2φ = −k ∂I

∂z [21, 22, 23, 71, 72, 44, 73, 74]
Flow tracking I

(
r+ λz

2π∇φ
)
= I0(r) [16, 27, 28, 32, 1, 30, 19, 40]

Amplitude-combined I
(
r+ λz

2π∇φ
)
= |A(r)|2 I0(r) [20, 29, 39]flow tracking or I(r) = |A(r)|2 I0
(
r− λz

2π∇φ
)

Zanette et al.’s model I(r) = |A(r)|2
[
Ī0 +D(r)∆I0

(
r− λz

2π∇φ
)]

[34]
Eq. (3.3) (this work) I

(
r+ λz

2π∇φ
)
= |A(r)|2

(
1− λz

2π∇
2φ
)
I0(r) [68, 69, 3]

I1(r)

r

(1st plane)
I2(r′)

r′

(2nd plane)

ray r′
I2(r′)

r
∇d(r)

z

wavefront

Figure 3.3: Image formation model revised from Figure 3.2 for deriving TIE (dual-plane).

Transport-of-Intensity Equation (TIE)

The well-known TIE, also known as the irradiance transport equation [21], serves as the

basic principle for curvature wavefront sensors and variants [22, 23, 71, 72, 44, 73, 74].

We may revise the previous derivations carefully, by depicting a dual-plane TIE setup in

Figure 3.3. The sensor measurements I1(r), I2(r) at the two planes can thus be formulated

similarly by Eq. (3.1):

r′ = r+ z∇d(r), I1(r) = |A(r)|2, I2(r′) dr′ = |A(r)|2 dr. (3.4)

Simplifying above, and let the optical field be monochromatic of wavelength λ, with d(r) =

φ(r)/k where phase φ(r) is defined at wave number k = λ/(2π), yields a variant of

Eq. (3.3):

I2

(
r+

z

k
∇φ
)
≈
(
1− z

k
∇2φ(r)

)
I1(r). (3.5)
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With an additional approximation, by 1st-order Taylor expanding I2(r + z
k
∇φ) around r,

yields:

I2

(
r+

z

k
∇φ
)
≈ I2(r) +

z

k
∇I2 · ∇φ. (3.6)

With Eq. (3.5) and Eq. (3.6), we have:

I2(r)− I1(r)
z

= −1

k

(
∇I2 · ∇φ+∇2φ

)
. (3.7)

Notice the left hand side is a finite difference approximation when z is small. Let z → 0,

denote mean sample intensity as Ī that Ī = |A(r)|2 = I1 ≈ I2, we arrive at the standard

TIE form:
∂Ī

∂z
= −1

k
∇(Ī · ∇φ). (3.8)

We just witnessed how the finite difference form of TIE can be derived from Eq. (3.3).

As a result, we believe that Eq. (3.3) generalizes TIE to larger distances z, i.e., to regions

beyond the convergence radius of the 1st-order Taylor expansion, and hence beyond the finite

difference range. It has been shown [44] that larger propagation distance z prevents high

frequency information to be included in the finite form of TIE due to ignored diffraction

in the derivation. This effect and limitation of the proposed model will be discussed in

Section 3.2.3.

Flow tracking

By dropping the sample amplitude and wavefront curvature, Eq. (3.3) reduces to:

I

(
r+

λz

2π
∇φ
)

= I0(r), (3.9)

which we recognize as the famous optical flow formulation in computer vision [75], or the

classical centroid tracking model for Shack-Hartmann, as well as the underlining model for

previous speckle-pattern tracking phase imaging techniques [26, 27, 28, 32, 1, 30].
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Amplitude-combined flow tracking

If dropping out only the wavefront curvature term, Eq. (3.3) reduces to

I

(
r+

λz

2π
∇φ
)

= |A(r)|2I0(r), (3.10)

which we recognize as models typically employed in X-ray phase imaging applications [29].

Another commonly seen formulation is

I(r) = |A(r)|2I0
(
r− λz

2π
∇φ
)
, (3.11)

which can be derived by assuming A
(
r − λz∇φ/(2π)

)
≈ A(r) as in Eq. (A.24) of Ap-

pendix A.2.

Dark field model

It is worth noting that Eq. (3.3) only considers refraction and absorption effects, excluding

scattering contributions, i.e., the dark fields. Yet, we provide a connection to Zanette et

al.’s dark field model [34], illustrating the feasibility of future development on Eq. (3.3).

Zanette et al. [34]modified Eq. (3.11) by incorporating a dark field termD(r) that represents

a scattering contribution:

I(r) = |A(r)|2
[
Ī0 +D(r)∆I0

(
r− λz

2π
∇φ
)]

, (3.12)

where Ī0 is the mean value of I0(r), and∆I0(r) = I0(r)− Ī0. With Eq. (3.3), we know part

ofD(r) originates from the caustic term 1−λz∇2φ/(2π) that contains wavefront curvature

∇2φ, representing sample refraction under a distorted wavefront along z. Therefore, the

dark field term D(r) in Eq. (3.12) can be further refined to contain only scattering terms.

As such, Eq. (3.3) provides new insights for incorporating dark field term into the image

formation model.
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3.2.3 Lateral wavefront resolution and numerical conditioning analysis

Based on Eq. (3.2), we would like to gauge the maximal lateral wavefront resolution that a

wavefront sensor (e.g., the ones in Table 3.1) can achieve, and under what condition would

it be possible. In this section, we analyze what the roles of distance z and coding optics (as

in Figure 3.1) are for a wavefront sensor. For a given optical system (fixed relay lens and

pixel size), it turns out that distance z decides the theoretically achievable lateral wavefront

resolution, whereas specific coding optics decide the numerical conditioning of the wave-

front retrieval problem. In the remainder of this Chapter, without ambiguity, we refer to

wavefront resolution as lateral wavefront resolution, i.e., the spatial wavefront resolution.

Theoretical resolution bound by distance z

Recall the approximation conditions when deriving Eq. (3.3), in terms of OPD d(r):

∇d(r)� 1 and ∇2d(r)� 1

z
. (3.13)

Using Eq. (3.13) as constraints, one can derive a wavefront (or OPD) transfer functionD(ρ)

in terms of Fourier harmonics of frequency ρ. Let d(r) = D(ρ) cos(2πρ · r), and:

D(ρ)� 1

2π|ρ|
min

(
1,

1/z

2π|ρ|

)
=


1

2π|ρ| if |ρ| < 1
2πz
,

1
4π2z|ρ|2 otherwise.

(3.14)

Equation (3.14) fully characterizes the attainable wavefront resolution of classical wave-

front sensors based on Eq. (3.3). From Eq. (3.14), at low frequencies, the wavefront transfer

function is fixed regarding |ρ|, whereas at high frequencies the transfer function depends

on z. We now discuss how z affects Eq. (3.14). Let ρmax be the maximum frequency that

a diffraction-limited broadband optical system can achieve. Thus, ρmax depends on the Nu-

merical Aperture (NA) and the image sensor pixel size, and is not considered related to
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Figure 3.4: Wavefront transfer function for different optics-sensor distance z configura-
tions. Area of valid regions (shaded) for Eq. (3.3) to hold decreases with an increase of z.
This z-|ρ| resolution trade-off applies to all classical wavefront sensors based on Eq. (3.3),
especially for slope tracking sensors whose coding optics are usually mm away.

the coding optics employed by the wavefront sensor. As an example, for an image sen-

sors of pixel pitch ε = 5 µm, by Nyquist Theorem, ρmax = 100mm−1. It thus requires

z ≈ 0.628 µm such that 1/z > 2πρmax. This distance, however, is too small for practical

slope tracking sensors, but explains typical µm level defocusing distances in previous stud-

ies of curvature sensing [45]. Finally, notice a similar bound was derived in [30] assuming

non-overlapping speckles, which turns out to be a loose assumption that ∇2d(r) ≤ 1/z.

To visualize Eq. (3.14), we draw D(ρ) in Figure 3.4 for two different z configurations.

To obtain a tight bound from Eq. (3.14), let equality be attained at 10%, i.e., ∇2d(r) ≤

0.1/z, denoted by the shaded regions in Figure 3.4. In other words, for Fourier harmonic

OPD d(r) within the shaded regions, Eq. (3.3) holds. Small z (≈10 µm, as in curvature

sensing) achieves wavefront resolution at pixel sampling rate of 100mm−1, whereas larger

z (≈1mm, as for most slope tracking sensors) achieves approximately 1/5 pixel resolu-

tion in this case. Similar results have previously been obtained in experiments for speckle-

tracking wavefront sensors [30, 3]. As a short conclusion, Eq. (3.14) defines the maximum

theoretical resolution for classical deterministic phase retrieval wavefront sensors based on

Eq. (3.3).
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Numerical conditioning by coding optics

Previously we analyzed the theoretically achievable wavefront resolution for Eq. (3.3) to

hold at a fixed distance z. We now discuss how coding optics (hence reference image I0(r))

affects wavefront resolution in terms of numerical stability.

Recall we would like to solve φ(r) from Eq. (3.3) (or d(r) from Eq. (3.2) equivalently),

given I0(r) and I(r). Unfortunately, sample intensity |A(r)|2 and local wavefront curvature

∇2φ(r) are coupled (hence correlated), meaning we can only rely on estimating ∇φ(r)

for lateral recovery of φ(r). This property defines the basic principle for slope tracking

wavefront sensors. As a result, one may reduce Eq. (3.3) to Eq. (3.10) or (3.11), either

would provide the same analysis. For simplicity in terms of Eq. (3.11), by expanding the

nonlinear term up to higher order terms (H.O.T.):

I0(r)−
λz

2π
∇I0(r) · ∇φ(r) + H.O.T. ≈ I(r)/|A(r)|2. (3.15)

To solve∇φ(r), for non-singular samples thatA(r) 6= 0, we identify a purely coding optics

dependent diagonal linear systemwith diagonals as∇I0(r). Consider the condition number:

κ =
max |∇I0(r)|
min |∇I0(r)|

. (3.16)

In terms of numerical stability, κ can be used as a figure of merit for the performance of

the optics in Figure (3.1): the smaller κ, the better the optics chosen for slope tracking

wavefront sensing. As such, the “best” optics would produce uniform gradients and κ = 1.

However, this design is not practical due to limited dynamic range of image sensors (usually

of 8 to 10 bits). The other extreme is the classical Shack-Hartmann sensor, for which the

microlens array produces an array of bright with black background, and κ → ∞. In this

case, the effective wavefront resolution is limited to the number of microlenses, instead of

the number of pixels.
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3.2.4 Simulation

To verify the proposed formula Eq. (3.3), we simulate a curvature sensor propagating through

varies distance z, assuming no optics in Figure 3.1. In other words, I0(r) = 1 in Eq. (3.3).

In this way, we eliminate the influence of coding optics and evaluate only the physical cor-

rectness. In Figure 3.5, we simulate a Gaussian wavefront (peak-valley≈ 24λ) propagating

through different z using the angular spectrum method [76, 77] at wavelength λ = 550 nm,

pixel size ε = 5 µm, under a sampling rate of 0.5 µm < λ. With oversampling, numerical

propagation error is small compared to model errors of interest here. Given φ(r) and the

obtained I(r) at different z, we numerically evaluate the absolute fitting errors of different

formulas (TIE: Eq. (3.7); Flow: Eq. (3.10); Ours: Eq. (3.3)), with `1-norm of the error

maps shown in Figure 4(b). Image warpings are implemented using cubic spline interpo-

lation with piece-wise spline coefficients computed from I0(r). As revealed by Figure 3.5,

our formula maintains a low error throughout z range, whereas TIE fails for large z and

flow-tracking formula fails for small z. This superior performance is the consequence of

combining both TIE and flow-tracking as discussed previously. Notice all formulas start to

fail for very large z because of diffraction, as a consequence of violating ∇2d(r)� 1/z in

Eq. (3.13).

Similarly in Figure 3.6, we simulate a real-captured cheek cell wavefront (dataset from [78])

propagated through different distance z, and evaluate the absolute fitting errors of different

formulas. TIE and our formula produce almost the same error curves due to small wave-

front slopes, and displacement is smaller than one pixel, z |∇d(r)| < ε, justifying the linear

Taylor approximation from Eq. (3.3) to TIE. As in Figure 3.5, both TIE and our formula fit

well for small z ≤ 2mm. However, at large z, the assumption that ∇2d(r) � 1/z does

not hold anymore, and I(r) appears blurry. As a result, both TIE and our formula produce

large errors because the caustic term 1− z∇2d(r) is not small and amplifies the defocusing

error. From Figure 3.5 and Fig 3.6, we conclude our formula combines the advantage of

both approaches for short distance z when Eq. (3.13) holds.
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Figure 3.5: Errors of different formulas for a Gaussian wavefront propagating through z. As
a mixed approach, our formula Eq. (3.3) outperforms alternative formulations in terms of
`1-fitting errors. With a gradual violation of ray optics and near field assumption (increasing
z, and hence breaking of∇2d(r)� 1/z), all formulas start to fail.
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Figure 3.6: Errors of different formulas for a real-captured cheek cell wavefront propagating
through z. For small wavefront slopes, the advantage of our formula Eq. (3.3) is not obvi-
ous compared to TIE, but still maintain its advantage comparing to flow-tracking formula
Eq. (3.10). However, once the assumption ∇2d(r) � 1/z is violated, both TIE and our
formula amplify the defocusing error, showing I(r) as a blurry image.
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3.2.5 Discussion

The derived Eq. (3.3) in Section 3.2.1 fully characterizes deterministic image formation

in classical wavefront sensors such as Shack-Hartmann and curvature sensors. Using its

ray optics nature as constraints, achievable wavefront resolution follows Eq. (3.14) in Sec-

tion 3.2.3, revealing a z-|ρ| trade-off curve, offering a theoretical bound for future wavefront

sensor designs. For slope tracking sensors, due to mm level distance z, wavefront resolu-

tion is fundamentally limited as in Figure 3.4, and hence we suggest classical slope tracking

sensors be applicable to large-scale smooth aberrations, e.g., large-scale adaptive optics [2]

and autorefraction metrology [33]. If higher resolution is desired, possible workarounds

are scanning optics [79, 35] for ptychography, combining spatial light modulators for com-

putational sensing [80] beyond simple optics, or using numerical propagation based inver-

sion [81, 82].

We may further extend Eq. (3.3) to include minor effects, e.g., dark fields from indi-

rect scattering. This will yield straightforward extension to existing scattering models in

propagation-based wavefront sensing, for example the Fokker–Planck equation in paraxial

X-ray imaging [83, 84]. Another direction is to impose stronger assumptions on samples,

e.g., weak phase that φ� 1. We expect to achieve similar results of contrast [85] and mixed

transfer function [86].

We may also take into account the higher-order infinitesimals in Appendix A.2 ignored

when deriving Eq. (3.3). These higher orders are also related to the higher-order TIE for-

mulation in [44]. These small amounts render the diffraction effects, could be helpful to

forward modeling in freeform lens designs for caustic imaging [87, 68, 88] to reduce blur-

ring artifacts.
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3.3 Practice

Given the promising theoretical formulation Eq. (3.3), we prototype amasked sensor aiming

to measure wavefronts. In this section, We focus on pure phase measurements.

3.3.1 Hardware prototype

We implemented a speckle-tracking wavefront sensor (the CodedWavefront Sensor) [1] us-

ing a binary amplitude mask. The mask was placed z ≈ 1.5mm in front of a bare image

sensor (PointGrey GS3-U3-15S5M-C, pixel size ε = 6.45 µm). The binary mask is fabri-

cated using photolithography in a chrome layer deposited on a 4′′ Fused Silica wafer, with

a pixel pitch of 12.9 µm. Example measurements are shown in Figure 3.7.

6.6mm 6.6mm

mask reference I0(r) measurement I(r) wavefront slopes ∇φ(r)

Figure 3.7: Prototype Coded Wavefront Sensor. A mask is placed in close proximity to an
image sensor. Under collimated illumination, the mask produces a speckle pattern, which
moves locally when spatial wavefront distortions present.

3.3.2 Decoding algorithm

Since we focus on wavefront measurements, we hence restrict the variables to be only the

phase but not the radiance. Denoting the calibration (reference) image and the measurement

image as I0(r) and I(r), the measurement image I(r) is shifted relative to I0(r) by a point-

wise apparent motion proportional to the wavefront slope ∇φ(r), as in Eq. (3.11):

I(r) = I0 (r− (z/k)∇φ(r)) . (3.17)
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Eq. (3.17) highlights the underlying principle of our CodedWavefront Sensor: the distorted

wavefront results in apparent motion of the diffraction pattern, assuming no scintillation.

Note that the apparent motion is irrelevant to the wave number k if we consider the distorted

wavefront φ(r) = ko(r) with optical path o(r), which means the Coded Wavefront Sensor

allows for broadband illumination.

However, Eq. (3.17) is nonlinear. To retrieve φ(r) from I0(r) and I(r), one may it-

eratively solve a linearized version of Eq. (3.17). At each step, the linearized version of

Eq. (3.17) leads to the following formula, which is the basis for the so-called optical flow

methods in computer vision [75]:

z

k
∇φ(r) · ∇I0(r) + I(r)− I0(r) = 0, (3.18)

where · denotes inner product. Note that the linearization is iteratively updated during the

optimization, so that our model overall remains non-linear.

Denote image gradient fields as gx and gy along x and y directions, and gt as the differ-

ence between the two images, and finally define G =

[
diag(gx) diag(gy)

]
where diag(·)

denotes a diagonal matrix formed by the corresponding vector. With these definitions,

Eq. (3.18) is reduced to a least squares problem:

minimize
φk

‖GM∇φk + gt‖22 + β ‖∇φk‖22 . (3.19)

We solve this optimization problemwithNeumann boundary conditions. To avoid boundary

artifacts, we have introduced a spatial selection matrixM to include the boundary values of

φk as additional unknowns, to be determined by the optimization as that in [89].

This optimization problem bears a strong similarity to the classical Horn-Schunck opti-

cal flow problem [75]. However, in our case the flow vectors∇φk have a physical meaning

as the gradients of the phase function φk, so we seek to directly solve for φk, instead of

solving for the optical flow.
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We solve this joint optimization problem by introducing a slack variable w that physi-

cally represents the wavefront gradient∇φk, and apply ADMM [57], yielding Algorithm 2.

Here η is the dual variable, µ is a proximal parameter, FDCT and F−1
DCT respectively denote

forward and inverse Discrete Cosine Transforms (DCT). To suppress noise, median filtering

is applied to the gradient estimation before a final integration to get the output wavefront

solution φestimate, as suggested in [90].

Algorithm 2: ADMM linear solver for Eq. (3.19).
1 Initialize φ0, w0 and η0 from previous frame, set µ > 0
2 while not converge do
3 φk+1 ← µ

β+µ
F−1

DCT
(
FDCT

(
∇T(wk − ηk)

)
/FDCT(∇2)

)
4 wk+1 ← (µI+MTGTGM)−1

(
µ(∇φk+1 + ηk)−MTGTgt

)
5 ηk+1 ← ηk +∇φk+1 − wk+1

6 end
7 ŵ = median filter (wk − ηk)

8 return φestimate =
µ

β+µ
F−1

DCT
(
FDCT

(
∇Tŵ

)
/FDCT(∇2)

)

3.3.3 Simulation

We have conducted two simulations to investigate the sensitivity and accuracy of the Coded

Wavefront Sensor. In the simulations, the illumination is monochromatic (λ = 550 nm).

The overall aperture size equals 6.6mm×6.6mmwith sensor and mask pixel pitch 6.45 µm

and 12.9 µm, respectively. The scalar field of interest is sampled at 1.29 µm. Gaussian noise

is added and the image Signal-to-Noise Ratio (SNR) equals 40 dB. The wave propagation

is simulated using the angular spectrum method [76] with filtering [77] to suppress high

frequency artifacts.

The first numerical experiment evaluates the dynamic range of our sensor. A planar

wave (i.e. the reference), and sixteen different scales of spherical waves are simulated at the

mask plane, respectively, for five different distances z. The reference image, and sixteen

measurement images are consequently recorded at the sensor plane. Figure 3.8 shows the

wavefront reconstruction error (in terms of RootMean Square (RMS)) our sensor can attain,
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providing the fixed curvature wavefronts that progressively violate Eq. (3.17). With the

increase of wavefront range, the decrease of accuracy can be partially explained by the

approximations made to derive Eq. (3.3).
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Figure 3.8: Accuracy experiments. Top left shows the reconstruction error in RMS for dif-
ferent wavefront range (Peak-to-Valley) for different z. Specifically, results of three wave-
front range spherical waves are shown when z = 1mm. To visualize the difference between
the measurement and the reference, the logarithm of their subtraction are shown as inset.

Figure 3.9 shows the second numerical experiment, where we evaluate the performance

of our sensor by sensing typical atmospheric turbulence. The same turbulence is evaluated

at different scales. The synthetic atmospheric turbulence respects the Kolmogorov’s theory,

and is implemented using the sub-harmonic method [91]. The outer scale and inner scale

of the base turbulence are set to be 4m and 1mm respectively. The mask-to-sensor dis-

tance z = 1.5mm. The result indicates the possibility to apply our sensor for atmospheric

turbulence measurement.
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Figure 3.9: Synthetic atmospheric turbulence. Most left shows the reconstruction RMS
versus the turbulence RMS. Specifically, one scale of the turbulence is shown on the right.

3.3.4 Realistic wavefront sensing

Finally, we show visualization of two realistic wavefronts, the ones created by heat flow and

defocusing, using the Coded Wavefront Sensor. The heat flow is generated using a lighter,

and defocus is achieved by manually moving a convex lens back and forth. To increase the

field-of-view for better visualization, we employed a telescope system for wavefront magni-

fication, with a ratio of two. All the measurement images were captured and the wavefronts

were reconstructed on a GPU in real-time. Here, two frames are chosen to be shown in

Figure 3.10, with their reconstructed wavefronts in interference fringes , respectively.

(Heat Flow)

Collimated
Lens

Coded
Wavefront
Sensor

(Move)

Collimated
Lens

Coded
Wavefront
Sensor

Setup Measurement Wavefront

2mm

2mm

Figure 3.10: Wavefront visualization of the heat flow and the defocusing. The setup dia-
grams are simplified versions of the real situations.
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3.3.5 Discussion

The Coded Wavefront Sensor is related to a number of other imaging systems and designs.

Just like the Shack-Hartmann sensor can be interpreted as a combination of a lenslet-based

light field camera [51] and 2D spot tracking software, our sensor can be seen as a combina-

tion of a mask-based light field camera [52, 54] with a more sophisticated dense 2D motion

tracking method. The Coded Wavefront Sensor also bears similarity to BOS imaging [12],

but with the patterned “background” moved into the camera for a compact form factor.

The design of the Coded Wavefront Senor allows it to be used as a drop-in replacement

for any optical system currently using a Shack-Hartmann sensor, with an immediate gain in

spatial resolution. In addition, we believe it can also be incorporated into optical systems

configured for phase retrieval problems, including in microscopy. Since there is no need for

phase diversity and coherent illumination, such an adaptation should in fact be easier than

many existing phase retrieval setups. We will explore these applications in Chapter 5. A

similar commercial technique is the PHASICS wavefront sensor, which uses a sinusoidal

grating to encode the optical fields. Compared to PHASICS, in hardware, our technique

here does not require special gratings, and a random amplitude grating would be sufficient,

and no careful calibration and alignment is needed. In software, our algorithm resolves

phase directly, and no phase unwrapping is required.

Several other extensions in both applications and usage are also conceivable in the fu-

ture. The calibration or reference image does not always need to correspond to plane wave

illumination, but could be a pre-distorted wavefront. For example when characterizing

freeform lenses, a known ground-truth lens can be used to form the reference image, and

the Coded Wavefront Sensor can then be used to characterize the difference between the

reference lens and another lens.

For the accuracy of the CodedWavefront Sensors it is necessary that the mask produces

a locally distinctive diffraction pattern on the image sensor. To facilitate this process, the

mask could be custom-designed (instead of random) to produce a specific diffraction pattern
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such as wavelet noise [92]. It should also be possible to use grayscale masks or even random

phase gratings as an alternative to the binary masks employed in this work.

3.4 Conclusion

We derive a new image formation model Eq. (3.3) for general classical wavefront sensors

consist of a simple coding optics and an image sensor as in Figure 3.1. This new model

generalizes TIE to far distance regions beyond the finite difference approximation as shown

in Section 3.2.2, verified by simulations in Section 3.2.4. The validity of this model de-

pends on propagation distance z, which in turn defines achievable spatial wavefront reso-

lution as analyzed in Section 3.2.3. We believe this more general model could be useful in

propagation-based deterministic wavefront sensing applications, for those TIE is replace-

able by Eq. (3.3).

We also introduce a new type of wavefront sensor called the CodedWavefront Sensor, a

novel sensor design that is physically implemented by a single binary masked sensor to en-

code the incoming wavefront, and is numerically implemented by an efficient optimization

decoding algorithm, such that wavefront reconstruction with high spatio-temporal resolu-

tion is achieved within sub-wavelength accuracy. The theoretical principle behind Coded

Wavefront Sensors offers a new approach to the wavefront sensing problem, namely the

direct 2D tracking of diffraction patterns.
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Chapter 4

Application: Megapixel Adaptive Optics

In the previous chapter, we have demonstrated the basic principle of general wavefront sens-

ing, and practical usage of our proposed sensor. In this chapter, we showmegapixel adaptive

optics, one of the applications that leverages the advantage of the proposed technique.

Adaptive Optics (AO) has become a valuable tool for correcting minor optical aber-

rations in applications such as astronomy and microscopy. However, due to the limited

resolution of both the wavefront sensing and the wavefront correction hardware, it has so

far not been feasible to use AO for correcting large-scale waveform deformations that occur

naturally in regular photography and other imaging applications.

In this work, we demonstrate an adaptive optics system for regular cameras. We achieve

a significant improvement in focus for large wavefront distortions by improving upon a

recently developed high resolution coded wavefront sensor, and combining it with a spatial

phasemodulator to create amegapixel adaptive optics systemwith unprecedented capability

to sense and correct large distortions.

4.1 Introduction

Adaptive Optics (AO) systems are highly effective in correcting dynamic aberrations in

applications such as astronomy and microscopy [93, 94]. In these settings, the aberrations

are typically small (e.g., atmospheric distortions in the case of telescopes), albeit significant

in the case of otherwise diffraction limited optics.

Adaptive optics systems are comprised of two major components: a wavefront sensor,
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Figure 4.1: We propose a high resolution AO technique to correct for large distortions in
photography and vision applications. AO relies on the combination of a wavefront sen-
sor and a phase modulator to measure and optically correct for incoming phase distortions.
Based on a previously proposed high resolution wavefront sensor, our proposed AO pro-
totype achieves unprecedented AO sensing and correcting simultaneous high spatial reso-
lution for large phase distortions. An example for vision deblurring is shown on the right
where a defocus distortion is being well compensated.

Table 4.1: Performance characteristics of different wavefront sensing technologies.
Resolution Dynamic Range Frame Rate Pixel Usage Calibration Requires Coherent Light? Light Efficiency

Shack-Hartmann sensor [16] Low/High Large/Small High Low Easy No High
Curvature sensor [22] High Large High High Hard Yes High
Pyramid wavefront sensor [18] Medium Medium High Medium Medium No Low
Interferometry sensor High Small High High Medium Yes High
Multi-lateral shearing interferometer [43] Medium Medium High High Easy No Medium
Coded Wavefront Sensor [1] High Large Medium† High Easy No High‡
†Computationally bounded and inversely proportional to wavefront resolution.
‡Depends on the modulation mask. For phase mask modulation the light efficiency is almost 100%.

which measures the shape of the wavefront of light across the aperture of the optical sys-

tem, and a phase modulator, which corrects the distorted wavefront to make it planar. In

traditional AO systems, the wavefront sensor is usually a Shack-Hartmann [16] or pyramid

sensor [18], while the phase modulation is achieved by tilting mirrors [95, 96] or deforming

a reflective membrane with pistons [97]. Both the sensing and the modulation components

in these systems suffer from low spatial resolution (e.g., at most hundreds to thousands of

measurement points and actuators) as well as small range that limits the amplitude of the dis-

tortion. As a result, most AO systems can only correct for distortions corresponding to a few

low-order Zernike polynomials and low amplitudes. Multi-conjugate AO systems [98, 99]

are one possible solution to offer high resolution and large compensation amplitudes, but

at the cost of additional wavefront sensors and correctors that have to be carefully aligned

and calibrated to one another. This significantly increases the cost and overall system com-

plexity compared to the single sensor / single corrector systems that we consider in our
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work.

In photography and most computer vision applications, the situation is different: nor-

mal camera optics are usually not diffraction limited, and less sensitive to small distortions.

However, large distortions may occur regularly. Consider, for example, the case of a com-

puter vision system of a self-driving car operating under rainy conditions. The camera of

this vision system may have to re-focus through a dynamically changing water surface, as

rain flows across the cover surface of the optical system. Current AO systems cannot deal

with such large wavefront distortions.

Tomitigate this situation, we propose a newAO setup, which is built around an improved

version of the recently introduced coded wavefront sensor [1], and an Liquid Crystal on

Silicon (LCoS) spatial phase modulator (phase SLM). Both components have megapixel

resolution, which allows us to detect and correct for wavefront distortions with complex

shapes. Moreover, both the sensor and the modulator can also deal with distortions of

significantly larger amplitude, so that much more severe defocus effects can be corrected.

In particular, we can achieve Strehl ratios close to 1 even for large-scale deformation near

the optical axis, although the off-axis performance is reduced.

Specifically, our technical contributions are:

• An adaptive optics system design that is capable of sensing and correcting large wave-

front distortions with megapixel wavefront sensing and phase modulation.

• An improved version of the coded wavefront sensor [1] with better light efficiency

and improved algorithms.

Although this initial prototype system is limited in frame rate and light efficiency (see

Section 3.4 for a full discussion), we believe this work is a major step towards utilizing

adaptive optics in regular cameras for both photography and machine vision applications.
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4.2 Related work

The purpose of adaptive optics systems is to re-focus optical systems through (often time-

varying) distortions. In the followingwe provide a brief review of existingmeans tomeasure

and correct defocus.

4.2.1 Coded apertures and image deblurring

Coded apertures and image deblurring have been widely researched in the computational

photography community. Researchers have delved into coded apertures for defocus blur-

ring compensations in extended-depth-of-field applications [100, 101, 102, 103, 104], or

in motion blur removal [105, 106]. Approaches on pure software deconvolution have also

been proposed, for example non-blind deconvolution algorithms [107, 108, 109] given the

blurring kernel, or the more challenging blind deconvolution case where algorithms de-

sign specifically for motion blurring [110, 111, 112], or with utilization of natural pri-

ors [113, 114, 115, 116]. These techniques either rely on specific assumptions on the scene

and blurring kernels, or consume heavy computations, thus not applicable to general dis-

tortions for real time applications. Moreover, purely software-based solutions cannot deal

with large aberrations as we demonstrate in Section 4.5.

4.2.2 Coded wavefront sensors

Coded wavefront sensors replace the microlens array of the Shack-Hartmann designs with

a binary amplitude mask in close proximity to a bare image sensor [1], and are thus related

to mask-based light field cameras, as discussed above. In the Coded Wavefront Sensor, the

slope of the wavefront is tracked using numerical methods related to optical flow [1], and

as such they combine a full spatial resolution with the ability to measure large distortions.

Other works with similar ideas have been presented, for example using a diffuser for visible

light [30], or high frequency phase objects for X-ray [27, 28]. In this work, we improve
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the coded wavefront sensor both by introducing a phase mask instead of an amplitude mask

(thereby improving light sensitivity by a factor of 2), and by improving the software algo-

rithms for tracking the slope of the wavefront. This has been introduced in Chapter 3.

4.2.3 Adaptive optics

Adaptive optics (AO) techniques were originally developed for military and astronomical

telescopes to sharpen stellar observations by measuring and compensating atmospheric tur-

bulence. Since then, AO has found its other applications in ophthalmology [117, 118, 119],

microscopy [120, 121], and optical coherent tomography [122, 123]. Classical AO systems

employ a Shack-Hartmann wavefront sensor to observe the wavefront of a single point-

shaped source, also known as the guide star. Any measured atmospheric distortion equally

affects the full field of view of the main camera that observes the object of interest. How-

ever, this distortion can be corrected using a deformable mirror. In open loop systems, only

the view of the main camera is corrected, while in closed loop systems the wavefront sensor

also images the guide star through the deformable mirror, so that in each time step only a

smaller differential deformation needs to be measured.

Due to the low resolution nature of deformable mirrors, spatial light modulators have

been utilized to improve correction resolution, e.g., [124, 125, 126, 127]. However, existing

AO systems have not been able to demonstrate the combination of high spatial resolution

and the ability to measure and correct for large distortions, which is required in many pho-

tography and computer vision applications.

The need for a guide star is a potential impediment for the use of AO approaches in

regular imaging. Possible solutions include a laser-generated dot, or special application-

specific setups. For example, in the above-mentioned example of a car vision system, the

camera could be behind the windshield, and the guide star could be integrated in the hood

of the car to compensate for distortions caused by raindrops on the wind shield.

To our knowledge, this work is the first AO system that uses a phase-only SLM and
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a correspondingly high resolution wavefront sensor, to optically sharpen heavily blurred

vision images.

4.3 Megapixel adaptive optics

Our AO system makes innovations on both the hardware and the software aspects. Fig-

ure 4.2(a) shows a diagram of the hardware setup. A Coded Wavefront Sensor observes an

infrared guide star through the same optical system and distortions through which a regular

machine vision camera observes a visible light scene. Dichroic mirrors are used to separate

the IR and visible light paths while maximizing light efficiency. A phase-only SLM is used

to correct for distortions. We utilize a closed loop design, i.e., the SLM is in the optical

path of both the camera and the wavefront sensor.

In the following, we first discuss the software aspects of our system, before returning to

the hardware prototype in Section 4.4.

4.3.1 Closed loop adaptive optics

The software part of the system is the closed control loop for the adaptive optics system,

which consists of a wavefront sensing component and an update pattern for the phase SLM.

Figure 4.2(b) depicts a control block diagram for the closed loop system. At time step k,

we denote the distorted wavefront from the guide star as φ̂k. This wavefront is partially

corrected by the correction phase uk−1 computed for the phase SLM in the previous time

step, resulting in a raw sensor image ik being observed by the wavefront sensor. From this

image, the Coded Wavefront Sensor measures an estimate of the residual distortion:

φk = φ̂k − Duk−1, (4.1)

where D is a geometric alignment transformation that needs to be calibrated. If SLM and

wavefront sensor are perfectly aligned, then D is the identity. In the first iteration, the SLM
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Figure 4.2: (a) Hardware overview. A shortpass dichroic mirror reflects the infrared (IR)
light from the guide star, while transmitting the visible light from the object, merging the
two into a single beam that undergoes a distortion before entering the AO system. Inside
the AO system, a linear polarizer ensures the SLM operates in phase modulation mode.
After being modulated by a phase-only SLM, the joint light cone is split back into IR and
visible components, with the visible light being directed to the camera, while the IR light is
directed to the wavefront sensor. The dichroic mirrors have the same cutoff wavelength so
that the visible and IR light paths do not interfere with each other. Relay lenses ensure the
SLM and the Coded Wavefront Sensor are in conjugate. For easy visualization only the IR
light is drawn for the broadband white lamp. (b) At kth AO iteration, the GPU workstation
takes in the captured image ik from the wavefront sensor, computes the reconstructed phase
yk, and renders the SLM with a new correction phase uk.

is initialized with a flat phase, i.e., u0 = 0.

One goal in closed loop AO is to stabilize the loop, i.e., to design a control strategy to

update uk such that ‖φk‖2 → 0 with k → ∞. For sufficiently fast-response AO systems,

or slowly time-varying distortion wavefronts, stabilization can be achieved using a digital
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integrator as a controller:

uk = uk−1 + αD−1φk, (4.2)

where α is a loop gain parameter. Ideally for α = 1 the loop converges in one iteration and

uk = D−1φ̂k.

4.3.2 Wavefront solver

We now review the Coded Wavefront Sensor and its associated numerical solver for com-

puting the observed wavefront φk from a captured image ik, at the kth AO iteration.

Sensing model

Figure 4.3 depicts the working principle, which is briefly reviewed in the following. The

Coded Wavefront Sensor consists of a bare image sensor with a diffraction mask placed

in closed proximity. The original Coded Wavefront Sensor [1], used a binary amplitude

mask, which absorbs 50% of the incident light, while we utilize a binary phase mask, where

the absorption is negligible. Irrespective of the type of mask used, an incident plane wave

creates a characteristic diffraction pattern on the image sensor, which is measured and saved

as image i0(r), r = (x, y)T in a calibration phase.

Calibration k th Measurement

i0(x) ik (x) Solver ϕk

Figure 4.3: Principle of the Coded Wavefront Sensor.

Wang et al. [1] were able to show that, if a distorted wavefront φk is incident on the

same configuration, it results in an image ik that is a locally warped version of i0 according
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to the following relationship:

ik(r) ≈ i0

(
r− λz

2π
∇φk

)
, (4.3)

where z is the spacing between the mask and the image sensor, and λ is the wavelength of

light. That is, the local shift of the pattern is proportional to the gradient of the wavefront.

Intuitively, since the pattern has a high spatial frequency content, the 2D distortion can be

tracked with optical flow-style methods, and the shape of the wavefrontφk can be recovered

from the pair of images i0, ik.

We note that, although Eq. (4.3) contains the wavelength λ, this principle actually does

not assume coherent light and works well for broadband illumination.

Optimization

To simplify the notation, we will in the following absorb the constant λz/2π into the φk

variable. The process of recovering φk can be expressed as a least-squares optimization

problem with an additional smoothness regularizer:

minimize
φk

‖ik(r)− i0 (r−∇φk)‖22 + β ‖∇φk‖22 , (4.4)

where β > 0 is a weighting factor.

To solve this problem, we take inspiration from the optical flow literature [75, 128], and

linearize i0 (r−∇φk) around r in Eq. (4.3). This yields the following approximation:

∇i0(r) · ∇φk + ik(r)− i0(r) ≈ 0, (4.5)

where · denotes the inner product. This discretized version optimization has been formu-

lated as Eq. (3.19) in Chapter 3, and solved using Algorithm 2.

The superiority of our ADMM solver over the usual conjugate gradient method is illus-
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trated in Figure 4.4, where a 10λ Gaussian wavefront is simulated. The conjugate gradient

method is initialized with a rough wavefront estimationφ0, which is the Poisson integration

from a one-step flow estimation∇φk in Eq. (3.19). Our ADMM solver converges efficiently

with low error, whereas the conjugate gradient method requires a large number of iterations.

In real experiments, the ADMM solver only runs for 10 iterations, which provides a good

compromise between accuracy and speed.
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Figure 4.4: Our ADMM solver efficiently converges to the minimum with a good visual
plausibility, whereas conjugate gradient method takes much more iterations even when the
energy decreasing is barely perceptible.
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Nonlinear warping scheme

This linear solver can be improved by including non-linear warping [128]. We first use a

linear approximation according to Eq. (4.5) to obtain a preliminary wavefront estimation,

then warp the reference image i0(r) towards the gradients of the preliminary estimation,

and then re-linearize the system to obtain an improved estimate in the next round.

Algorithm 3 shows this non-linear variant of Algorithm 2. This scheme contains a

coarse-to-fine strategy and an in-level nonlinear warping at each pyramid level. The pyra-

mid level s increases from 0 to a given pyramid level number, namely from the smallest

down-sampled image size to the original size. At each warping step j, the pyramid level

image is0(r) is warped to a new image is0(r−∇φj) according to current wavefront estimation

φj , then the linearized problem Eq. (3.19) is solved with the new gradient estimations gsx,

gsy and gst . The unknown wavefront φk is iteratively updated in this way until convergence.

The improvement of the warping strategy is illustrated in Figure 4.5, where a turbulence

phase screen is simulated using the sub-harmonic method [91]. Algorithms 3 and 2 (with

and without warping, respectively) are compared for different pyramid levels. The warping

strategy greatly improves large wavefront sensing to a fine accuracy.

Algorithm 3: A warping scheme for Algorithm 2.
1 Initialize φ0 with zeros
2 for pyramid level s do
3 is0(r)← i0(r) ↓ // ↓: Down-sampling
4 isk(r)← ik(r) ↓
5 while ‖∆φj‖22 > ε do // In-level warping, φj ← φs

6 Compute gsx, gsy, gst from is0(r−∇φj) and isk(r)
7 ∆φj ← Reconstruct Wavefront(gsx, gsy, gst) // Algorithm 2
8 φj+1 ← φj +∆φj

9 end // φs ← φj

10 if s is not the final level then
11 φs+1 ← φs ↑ // ↑: Up-sampling
12 end
13 end
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Figure 4.5: For large phase distortions, the proposed warping scheme wavefront solver en-
ables an improved estimation accuracy. Simulated wavelength λ = 550 nm.

4.4 Prototype

In the following, we describe our prototype in terms of both hardware components and

software implementation details.

4.4.1 Hardware

Mask fabrication and assembly

In our experiments, the Coded Wavefront Sensor is built around a monochromatic 2/3′′

Charge-Coupled Device (CCD) camera (PointGrey GS3-U3-15S5M-C), with a sensor res-

olution of 1384 × 1032 and a pixel pitch of 6.45 µm. This camera was operated without a

lens, and the IR filter was removed. Instead, the mask was mounted onto the sensor at a

distance of approximately 1.5mm from the light sensitive surface.

The binary phase mask itself is a random, binary height field fabricated on a 0.5mm

thick 4′′ fused silica wafer via photolithography followed by Reactive Ion Etching). Each

mask pixel is 12.9 µm× 12.9 µm, and the etching depth is chosen such that the correspond-

ing phase delay of the pixels is either 0 or π. The dimension of the mask is adjusted to

20mm × 17mm to match the cover glass on the sensor. A profile of the fabricated binary

phase mask is measured on Zygo NewView 7300 in Figure 4.6.
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2D view 3D view
Figure 4.6: 2D and 3D profile of the central area on the fabricated binary phase mask taken
with Zygo NewView 7300.

Optical setup

Figure 4.7 shows the experimental setup. Our prototype employs largely off-the-shelf opti-

cal and mechanical components from Thorlabs, with a few customized 3D-printed compo-

nents. We use a HOLOEYE PLUTO phase-only SLM (PLUTO-2-VIS-014), with a pixel

pitch of 8.0 µm and a maximum 3π phase retardation for wavelength λ = 532.8 nm, and

the refresh rate is 60Hz (same as V-Sync). The frame rate of the wavefront sensor is set to

be its maximum of 45Hz, with streaming mode enabled. To match sizes between SLM and

the wavefront sensor, a relay lens system scales down the SLM plane by a factor of 4/3 onto

the wavefront sensor plane. Due to the limited wavefront sensor size, not all SLM pixels

are covered (see also Figure 4.10), so a 3D-printed square aperture is designed to prevent

extra light from impinging onto the unobservable areas of the SLM. Black flocked paper is

used for blocking stray light. All lenses are achromatic doublets.

To prevent the guide star from being seen by the vision camera, the two dichroic mir-

rors have been selected to operate at the same cutoff wavelength of 650 nm. However in

practice, it is still needed to have a longpass filter in front of the broadband white light to

further suppress the visible spectrum from the lamp. Figure 4.8 illustrates the effect. The

USB output of the PointGrey sensor and the HDMI input for the phase-only SLM, are both

connected to a host workstation running Ubuntu 16.04.3 LTS, with a NVIDIA GTX Titan

X (Pascal) graphics card, 2.70 GHz Intel Xeon E5-2680 processors (×32) and 64 GB RAM.
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(a)

(b)

(c)

(d)

(e)

Figure 4.7: Our high resolution AO prototype setup. (a) shows the setup overview. Closeup
(b) and (c) respectively shows how we obtain collimated, polarized infrared light, and how
iris (d) is attached close to the SLM. Some distortion candidates are in (e). Note the phase-
only SLM and wavefront sensor are mirror dual to each other.

Light Off

1/125 s

Light Off

1/4 s

Light On

1/15 s
650 nm Longpass 700 nm Longpass

Figure 4.8: Adding a longpass filter in front of the guide star to suppress it from being
visible to the vision camera.

4.4.2 Software

All control code and processing algorithms are implemented using C++ and CUDA. To

avoid unnecessary CPU-GPU data transfer, the output phase image is rendered directly to

the SLM through CUDA-OpenGL interoperability. All textures are operated with replicate
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boundary conditions. To synchronize the camera and SLM so the camera shutter will not

start to integrate when the SLM is updating, we use the workstation output V-sync signal

(60Hz) as a hardware trigger. For maximum speed, all unknown sizes are set to be power

of two (e.g., 1024, 512, · · · ) to make use of the radix-2 Fast Fourier Transforms (FFT) al-

gorithm.

Interpolation

Interpolations are needed when doing warps. Empirically for best performance, we use cu-

bic spline interpolation for in-level warping, and bilinear interpolation (with anti-aliasing

pre-filtering) for pyramid-level warping. To avoid expensive linear system solvers for cubic

coefficient calculations each time, all image warping operations are performed on the refer-

ence image i0(r). For optimum performance, before running the GPU solver Algorithm 3

online, the reference image i0(r) is first decomposed in-place with its cubic coefficients,

thus the subsequent online warping operations become trivially fast convolutions.

Denoising

To reduce wavefront sensing noise and the unavoidable phase wrapping artifacts produced

by the phase-only SLM, bilateral filtering is applied to both the reconstructed wavefront φk

before updating uk, and the accumulated phase image uk before final rendering onto the

SLM. Figure 4.9 shows an experimentally obtained performance comparison between an

original and a denoised version, where the latter one produces smoother phase profile with

more continuous wrapping rings, and stably converges to a much smaller residual in terms

of wavefront RMS.

Calibration

AO systems are designed to detect and correct for very small wavefront distortions, and

as such they are extremely sensitive to misalignment and mis-calibration. For a successful
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Figure 4.9: Bilateral filtering of detected wavefrontφk and the accumulated SLM phase uk.
Smoother phase reduces undesired higher-order SLM diffraction and hence stabilizing the
closed loop. Bilateral filter spatial and intensity window sizes are both 15× 15. Phases are
visualized by 2π wrapping.
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AO system, one has to perform careful calibration to ensure the wavefront sensor and the

corrector are in good alignment. To measure the wanted inverse alignment transform D−1

in Eq. (4.2), a microlens array phase image is shown on the SLM, and is then measured

by the Coded Wavefront Sensor. By comparing the original and detected center points,

assuming a 2D homography, D−1 can be fitted by an over-determined system. Figure 4.10

depicts this calibration pipeline, as an improved variant to that in [129]. To reduce noise and

system uncertainty, one thousand repeatedly captured measurement images are averaged as

one single measurement image for the wavefront solver. Before starting the AO correction,

under collimated illumination, a reference image i0(r) is captured by showing a “black”

screen (zero phase) on the SLM.

Phase on SLM Phase on wavefront sensor

Original centers points Detected center points

D

D−1

Figure 4.10: Calibration of inverse misalignment transform D−1. To obtain D−1, a 2D
perspective matrix is calculated by fitting from the detected center points (CodedWavefront
Sensor) to the original ones (phase-only SLM). Detected center points are generated by
circular Hough transforms.
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Table 4.2: Software performance of our algorithm (1024× 1024 unknowns).

Forward/Inverse DCTs 21.24ms Bilateral Filters 2.75ms
Convolutions 2.61ms Elementwise 6.19ms
CPU-GPU Data Transfer 2.88ms Warping 0.12ms
Others 5.01ms Overall 40.80ms

Algorithm parameters

For pyramid up-sampling and down-sampling, a factor of 2 along each coordinate direction

is used. In practice for the linear solver β = 5, µ = 100 or µ = 10 depends on the

specific pyramid level, with an ADMM iteration of 10. For the nonlinear warping scheme

two pyramid levels and two in-level warping operations are used. The AO loop gain is set

as α = 1. The bilateral filter window size is 15× 15.

Performance

To avoid tearing artifacts on the phase SLM, the phase-only SLM is set to be V-Sync double

buffered. Our controller writes and renders directly to the back buffer, which swaps itself

with the front one at V-Sync rate. The wavefront sensor is externally triggered by V-Sync as

well, and the wavefront solver runs freely. The SLM, however, suffers from a relatively slow

response time and in practice one can see the phase lagging in themeasurementsmade by the

wavefront sensor. In other words, phase measurement in our prototype is much faster than

the phase correction. To avoid wrong iterations, our total frame rate has to drop down and

meet with SLM’s update speed, and hence the overall AO performance is limited. Despite

hardware latency, Table 4.2 shows the overall benchmark performance for software solely.

4.5 Results

In the following, we present experiments with both simulated as well as real-world distor-

tions. In addition to visual presentation of results, we also use the Strehl ratio as a quan-

titative metric. The Strehl ratio is commonly used to evaluate AO systems, and is defined
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as the ratio of the peak brightness of the actual Point Spread Function (PSF) of the system

to the peak brightness of the ideal PSF. The value is therefore between 0 and 1, with 1 be-

ing the best. In diffraction limited systems, the ideal PSF is usually the diffraction limited

Airy disk. However, since our main camera is not diffraction limited, we instead use the

measured PSF of the camera without optical distortions as the reference “ideal” PSF.

4.5.1 Simulation

To have a performance comparison among our proposed high resolution AO system and oth-

ers, we present here a numerical simulation where large phase distortions are introduced,

hence only the Shack-Hartmann and curvature sensors are simulated and compared. For a

fair comparison, the free parameters of each wavefront sensor are tuned to best match the

incoming phase distortion. For example, we maximize the lenslet number of the Shack-

Hartmann wavefront sensor while keeping the maximum target phase distortion slope re-

solvable. Note that no such parameter tuning is necessary for our own system. All simulated

AO systems are equipped with the same high resolution phase-only SLM, the only differ-

ence is the wavefront sensors in use.

Figure 4.11 shows a comparison for two different wavefronts, a smooth wavefront (cu-

bic phase) and a turbulent wavefront. The Shack-Hartmann AO system corrects well for

smooth wavefronts, but is slow in convergence because it mainly corrects for low frequency

terms due to its low spatial wavefront resolution nature, and requires a large number of it-

erations for final convergence. The Curvature AO system, is not capable of correcting for

offset wavefronts, is noise-sensitive and hence not able to maintain stable performance. Our

proposed high-resolution AO system outperforms the other two existing AO opponents in

terms of both correction (by Strehl ratio) and speed (by number of AO iterations). We also

show experiments with lower resolution wavefront correction. As can be expected, the low-

resolution actuators are not capable of correcting for highly detailed aberrations, resulting

in a large residual error. This demonstrated that both the sensor and the actuator should have



64

a high spatial resolution in order to apply AO to regular photography and machine vision

applications.
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(b) Synthetic results for strong air turbulence (high resolution SLM)
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(c) Synthetic results for cubic wavefront distortion (low resolution deformable mirrors)
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(d) Synthetic results for strong air turbulence (low resolution deformable mirrors)

Figure 4.11: Synthetic comparison of large wavefront distortions corrected by AO systems
with different wavefront sensors and correctors.
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4.5.2 Real experiments

Experimental results are presented, with a nominal wavelength of 532.8 nm being used to

quantify wavefront errors.

Point spread function evaluation

To test the performance of our prototype AO system and evaluate the Strehl ratio, a point

light source is placed at the object plane. Artificial wrapped phase images are generated on

the SLM as initial phase distortions for the AO system to correct with. Figure 4.12 shows

the evolution of the AO system, quantified bywavefront RMS and image quality Strehl ratio.

Our AO system performs fast convergence to the null state.
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Figure 4.12: PSF experiment with test phase generated on the SLM. Our high resolution AO
system is capable to correct distortion and converges in a few iterations. For more visual
demonstrations please refer to the Video.

Static deblurring

In order to demonstrate the deblurring capability of our AO system, we introduce phase

distortions in the optical path, as shown in Figure 4.7. The arbitrary irregular phase distor-

tions were generated by warping transparent polycarbonate plates when being heated up.
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After cooling down to room temperature, local phase distortions are accumulated owing to

the thermally introduced curvatures (see Figure 4.7 (e)). This allows us to repeat measure-

ments with and without AO correction. Results are shown in Figure 4.13 where the target

objects show significant improvement in focus when the AO system is switched on.
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Figure 4.13: Static deblurring for large distortions.

Comparison with software deblurring

We also compare our AO deblurring results with software-only deconvolution algorithms

(blind and non-blind) for real data. For blind deconvolution (Figure 4.14, top), the meth-

ods are directly applied to the blurred, uncorrected image seen by the camera. For non-

blind deconvolution (Figure 4.14, bottom), we assume that a wavefront sensor is available

to measure the distortion, but that no actuator is available to correct it. From the measured

distortion, and calibrated propagation distances and aperture sizes, it is possible to analyt-

ically derive the PSF for the non-blind deconvolution. Due to the prototype nature of our

setup, instead of calibrating propagation distance and aperture size, we sampled this param-

eter space to produce a family of PSFs, and show results for the PSF that produces the best

deconvolved result. The results show that being able to measure the PSF with a wavefront
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Figure 4.14: Comparison of our AO approach with software-only methods.

sensor does result in sharper reconstructions that fully blind deconvolution. However, the

blur is so strong that even the non-blind deconvolution problem is severely ill-posed. As a

result, AO as a hardware solution outperforms both blind and non-blind decovolution by a

large margin.

4.6 Discussion and conclusion

In this work, we have demonstrated an adaptive optics system that can sense and correct

optical distortions with megapixel spatial resolution and a large magnitude. This system is

based on the combination of an improved custom Coded Wavefront Sensor and a readily

available phase SLM. With this combination we have for the first time demonstrated the

ability to correct for large-scale distortions relevant to machine vision and photography

applications using adaptive optics. However, our prototype system does suffer from several

limitations, which would be interesting to address in the future.

One limitation of our prototype is that the Field of View (FOV) over which our system is

able to compensate is limited. This is known as anisoplanatism in astronomy AO research.

The wavefront we sense is only correct for points near the optical axis, and as such the AO

performance will degrade with distance from the optical axis. Figure 4.15 demonstrates this

effect, as two different phase distortions are imposed in front of the system. If the distortion

has a simple structure, for example by introducing a spherical lens or defocusing the main

lens, the measured on-axis distortion is a good approximation for a relatively wide FOV.
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Figure 4.15: Anisoplanatism. (a) A limitation of AO systems like ours is that they only
estimate the distorted waveform for one viewing direction. Depending on the complexity of
the distortion, this measurementmay not accurately represent off-axis distortions, which can
therefore not be compensated exactly. In this experiment, center region (the wing) is well-
compensated whereas surrounding regions (the head) suffer from incomplete compensation.
(b) Strehl ratios decay with increased FOV, and the deblurring performance decreases. The
Strehl ratios for the uncorrected wavefronts were so small that they could not be measured
accurately with the method from Section 4.5.

However, for a more complex distortion such as warped glass, the wavefront shape and thus

the PSF is different for different points on the image plane. While the AO system generally

still improves the PSF, it is then not capable of achieving perfect focus. One remedy is multi-

conjugate AO [132], where multiple optically conjugated wavefront sensor-corrector pairs

are separately grouped and then recombined to correct for volumetric phase distortions. This

approach, however, has higher computational cost, and we leave a study of its feasibility in

our setting to future work.

Other limitations of the prototype are related to the specific phase SLM that we use. The

first limitation is the size – at only 8.6mm × 8.6mm, which limits the total aperture size
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of the system, and leads to a long and bulky prototype. We chose the Holoeye phase SLM

in part for its large range of phase modulation – up to 3π. However, this large range comes

at the expense of reduced phase stability and switching speed; the frame rate of the SLM

is the limiting factor for the frame rate of our prototype. However, other phase SLMs with

quite different performance tradeoffs are commercially available, and we intend to explore

these options in the future.

For the future, we believe it will be exciting to bring adaptive optics systems to photog-

raphy and machine vision. These are applications where cameras are typically not being

operated in a diffraction limited setting, but where optical distortions can be much more

severe than in traditional applications of AO. Our work shows that AO is promising in these

scenarios, and believe that it presents a major step towards a more widespread adaptation

of AO.
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Chapter 5

Application: Intensity and Phase Microscopy

In this chapter, we show the second application of the proposed wavefront sensor, a simul-

taneous intensity & phase microscopy.

Phase imaging techniques are an invaluable tool in microscopy for quickly examining

thin transparent specimens. Existing methods are limited to either simple and inexpensive

methods that produce only qualitative phase information (e.g., phase contrast microscopy,

Differential Interference Contrast (DIC)), or alternative significantly more elaborate and

expensive quantitative methods. Here we demonstrate a sensor-side coded, single-shot,

low-cost, easy to implement microscopy static setup for quantitative imaging of phase and

bright field amplitude using collimated white light illumination.

5.1 Introduction

Due to negligible absorption in the visible spectrum, most living cells exhibit low contrast

under bright field microscopy, which prevents detailed examination. In comparison, phase

imaging detects minute changes in phase when light propagates through through the cell

morphology, and has become the prevalent approach for fine cell structure distinction with-

out employing higher radiation powers.

Two classical methods for phase imaging are phase-contrast microscopy [133] and DIC

microscopy [134]. These methods utilize additional simple imaging modules (e.g., annulus

rings or Nomarski prisms) to convert the phase shifts into brightness changes. However, the

conversion is not linear and the recorded image on the detector only indicates qualitative
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pseudo phase information, and is often substantially different from the real phase shift.

Several quantitative phase imaging techniques have been proposed [135]. One notable

technique is the defocused-based phase imaging [136, 72, 73, 137, 15] based on TIE [21],

where two or more intensity images are recorded at several closely spaced planes (usually

10 µm to 100 µm apart). From these images the phase shifts are numerically reconstructed,

for example by sequentially solving two Poisson equations [21]. However obtaining the

defocused images, may require additional mechanical translations or specifically-designed

wavefront-separation components. Digital holographic microscopy [138, 139] records mul-

tiple interferograms under different reference beams (via phase shifts or frequency shifts),

then post-processing via Fourier analysis [140] interprets the interferograms to recover the

sample intensity and phase, and suffers from the challenging ill-posed 2D phase unwrap-

ping problem for fringe pattern analysis due to the periodic nature of interference. Variants

of this technique include off-axis digital holography [141], τ interferometers [142, 143],

Lloyd’s mirror [144], and many others. Digital holography requires additional optical com-

ponents to realize the different reference beams. One variant is spatial light interference mi-

croscopy [145], which minimizes optical path light coherent sensitivity. Other interference-

based methods include diffraction phase microscopy [146], similar to Mach–Zehnder inter-

ferometry, but overlays the reference and phase-shift beams in the same optical path, by

preserving the 1st and 0th order diffraction from a grating using a customized aperture at

the Fourier plane. Dynamic interference microscopy [147] employs a micro-polarizer ar-

ray and phase-shifts are encoded into polarization intensity changes. Apart from above

deterministic phase methods (i.e., closed-form formulas for phase-shifts), undetermined or

iterative phase solving methods are emerging that rely on phase-retrieval algorithms, for ex-

ample coded aperture phase imaging [81, 148], which employs a random aperture for phase

encoding and an inverse problem is solved via a customized phase retrieval algorithm, or

the structured light illumination techniques [11] that captures diffraction holograms under

different background illuminations for subsequent numerical phase-retrieval. Ptychogra-
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phy [149, 150] and Fourier ptychographic microscopy [10, 151] show the great potential

for super-resolution intensity and phase measurement beyond diffraction-limit via multiple

angle illumination and a joint phase-retrieval algorithm. Last, the near-field speckle pattern

X-ray imaging [152, 153, 154] that utilizes the phase-steppingmethod is able to obtain phase

and scattering field measurements via numerical deconvolution [155, 28]. More recently

programmable wavefront sensing techniques have been proposed using programmable spa-

tial light modulators for wavefront encoding [80, 82], and for megapixel adaptive optics [2]

combined with a coded wavefront sensor [1].

These approaches measure the actual optical path length differences in the specimen and

convert them into thickness, enabling quantitative visualization of sample optical density via

the measured phase shift, and some even offer super-resolution or even dark field image re-

constructions. However, these approaches require specialized, expensive and complicated

setups, coherent illumination, or a long acquisition time prohibited for real time applica-

tions. And the flexibility is loss to quickly obtain normal irradiance image and phase image

on an ordinary commercially available microscopy.

In this work we demonstrate quantitative phase and intensity imaging based on improve-

ments of our previous work on high-resolution wavefront sensing based on speckle-pattern

tracking [1]. Our method only requires minor modifications to a conventional microscope

and works under white light illumination. We will further explore the formula Eq. (3.3) in

Chapter 3 for simultaneous intensity and phase imaging using the proposed sensor. Using

this model combined with modern numerical optimization frameworks, customized algo-

rithms are proposed for simultaneous recovery of amplitude and phase. Superiority of the

proposed over classical speckle-pattern tracking algorithm is verified using both synthetic

and laboratory data.
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Figure 5.1: Quantitative phase imaging with a coded wavefront sensor. (a)Optical setup for
our prototype quantitative phase microscope. Intensity sensor and sample are at conjugate
planes, white light incoherent collimated light is configured for sample illumination. (b)
Principle of the coded wavefront sensor. A normal intensity sensor is overlaid by a binary
phase mask whose Zygo interference map is shown as inset image. (c) The diffraction pat-
tern moves in proportion to local wavefront slopes, as indicated by the red and blue dots.
Raw captured images reveal a diffraction pattern movement caused by distortion phase. In-
set images are magnified close-ups for regions of interest. Given the image pair, intensity
and phase images can be altogether numerically reconstructed for unstained thin transpar-
ent cells. The sample contains HeLa cells taken under a ×20 Mitutoyo plan apochromat
objective, 0.42 NA.

5.2 Masked sensor for intensity and phase microscopy

5.2.1 Sensor principle

The setup for the proposed quantitative phase imaging microscope requires two modifica-

tions to a conventional digital research microscope: 1) replacing the camera with a high

resolution coded wavefront sensor [1], and 2) modifying the trans-illumination module for

collimated but temporally incoherent light, i.e., broadband spectrum illumination. Fig-

ure 5.1(a) shows the optical setup, as well as the coded wavefront sensor, which consists

of a random phase mask and a normal intensity sensor. The phase mask is placed close to

the sensor at a distance of z ≈ 1.5mm. See Methods for z distance calibration details.
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Under collimated illumination (and thus spatially coherent), the observed reference im-

age I0(r) is a diffraction pattern of the high frequency mask, as shown in Figure 5.1(b).

When a sample is introduced into the optical path, the wavefront is distorted, and the diffrac-

tion pattern changes accordingly. Crucially, the wavefront impinging on the sensor is en-

coded into the movement of the speckle pattern in a measurement image I(r). We have

previously shown [1] that the wavefront slopes ∇φ is optically encoded in image displace-

ments, also known as the “optical flow” in computer vision, written as:

I(r) = I0

(
r− λz

2π
∇φ
)
, (5.1)

where z is the distance between mask and sensor, λ is wavelength, and ∇ is the gradi-

ent operator. When dispersion is negligible, this coded wavefront sensor works well under

temporally incoherent broadband illumination, and hence the retrieved wavefront can be

directly mapped to optical path differences (OPD, defined as OPD = λz
2π
φ), in the sense that

the refractive index n is constant with respect to different wavelengths (weak dispersion

assumption) and hence OPD = (n− 1)× d is only a variable of sample thickness d. As in

other white light wavefront sensing techniques such as Shack-Hartmann, a nominal wave-

length (e.g., 532.8 nm) is needed for conversion between OPD and wavefront/phase. The

reference image I0(r) only needs to be captured once prior to any sample measurements,

thus this method enables snapshot phase measurement at video rates.

5.2.2 Simultaneous intensity and phase reconstruction

While the observed measurement image I(r) is modulated with the speckle pattern, this

pattern can be computationally removed to recover an intensity image free from speckle. To

this end, we re-visit the underlining principle of Wang et al. [1]. Given that the biological

sample is weak in absorption, resulting in a relatively flat intensity profile, simultaneous

amplitude and phase estimation can be achieved by modifying the original data term with
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additional considerations on sample amplitude and diffraction. We generalize Eq. (5.1) and

previous speckle-pattern tracking models [27, 35, 1, 30], via our analysis, as:

I

(
r+

λz

2π
∇φ
)

= |A(r)|2
(
1− λz

2π
∇2φ

)
︸ ︷︷ ︸

|Ã|2

I0(r), (5.2)

whereA(r) is the unknown sample amplitude that we would also like to recover. See Chap-

ter 3 for a short derivation from ray optics, and the relationship between TIE and Eq. (5.2).

Given a reference image I0(r) and measurement image I(r), we simultaneously recover in-

tensity |A(r)|2 and phase φ(r) from Eq. (5.2). This is a numerically difficult task, that can

be made more robust by incorporating prior information on the phase and on the intensity,

respectively denoted as Γphase(φ) and Γintensity(|Ã|2). The phase and intensity reconstruction

process can then be phrased as an optimization problem:

minimize
Ã, φ

∥∥∥∥I (r+ λz

2π
∇φ
)
− |Ã|2I0(r)

∥∥∥∥2
2

+ Γphase(φ) + Γintensity(|Ã|2), (5.3)

where Γphase(φ) and Γintensity(|Ã|2) represent terms for gradient and Hessian sparsity and

smoothness, for phase and irradiance respectively (see Section 5.2.3 for details). We op-

timize each unknown term in an alternating fashion (see Section 5.2.3 for details). This

process converges quickly in a few (≈ 3) alternating steps. After obtaining Ã and φ, pure

sample amplitude can afterwards be computed by subtracting intensity changes from re-

focusing (i.e., caustics) due to local wavefront curvature, which, however is a small effect

(λz∇2φ� 2π):

A = Ã

√
1 +

λz

2π
∇2φ. (5.4)

Thanks to modern optimization schemes, the algorithm can be efficiently parallel imple-

mented, enabling GPU acceleration. Our method improves prior speckle-pattern tracking

techniques both by accounting for local wavefront curvature (the caustic effect) and am-

plitude in the model which is crucial for absorption-refraction tangled scenarios in typical
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microscopy imaging, and by jointly estimating A and φ directly from the raw speckle data.

Previous approaches, on the other hand, either fail to consider amplitude [27, 1, 30] and

the local curvature term, or apply sequential calculations for estimating A, ∇φ, and φ in

separate stages [27, 29, 35, 30], which limits the total reconstruction performance.

For normalized grayscale images valued between 0 and 255, typical tradeoff parameters

are α = 0.1, β = 0.1, γ = 100, and τ = 5. A post-processing on final phase image is

necessary in order to remove unwanted tilting artifacts. The ultimate goal of quantitative

phase imaging is to find relative phase changes over time within a sample, so it is necessary

to isolate the object relative to the background and prevent influence of the variations in the

thickness of the coverslip or alignment of the sample relative to the microscope. To achieve

this, a least-squares fitted affine plane to the recovered phase is subtracted from the phase

estimation to remove undesired tilting artifacts. The whole algorithm was implemented in

C++ and CUDA 10.0, and was run on a Ubuntu 18.04 workstation, equipped with Intel(R)

Xeon(R) CPU E5-2680 @2.70GHz (2× 16 cores), 62.9GB memory, and a NVIDIA GPU

TITAN X (Pascal). Due to the iterative nature of the solver, we can trade off processing

time vs. reconstruction quality. For an 1000× 1000 pixel size raw image, with proper pre-

caching of constant data (e.g., the reference image), the solver requires in ≈ 97ms for 3

alternating iterations, and a full run of 10 alternating iterations takes ≈ 317ms.

5.2.3 Computation

Compared to the general wavefront sensing situations where the target phase is smooth,

microscopy phase images contain more detail and many sharp edges. To better formulate

and regularize accordingly, we incorporate additional gradient and Hessian priors into the

original problem [1] to regularize Eq. (5.2). Introducing tradeoff parameters α, β, γ and τ ,



77

the phase and intensity regularization terms can be written as:

Γphase(φ) = α‖∇φ‖1 + β
(
‖∇φ‖22 + ‖∇2φ‖22

)
,

Γintensity(|Ã|2) = γ
(
‖∇|Ã|2‖1 + ‖∇2|Ã|2‖1

)
+ τ

(
‖∇|Ã|2‖22 + ‖∇2|Ã|2‖22

)
.

(5.5)

Γphase(φ) and Γintensity(|Ã|2) contain only convolution operators or proxiable functions [59],

and hence Eq. (5.3) can be efficiently solved using primal-dual splitting methods such as a

customized ADMM [57] solver.

We now discuss how to discretize and solve Eq. (5.3) in a numerical manner, which

involves solving an optimization problem in terms of linear algebra. In the following vectors

and matrices are denoted as bold small and capital letters, respectively. Absorbing λz/(2π)

into phase and discretize Eq. (5.3) yields (|Ã|2 → a and φ→ φ):

minimize
a,φ

‖i (r+∇φ)− a� i0(r)‖22 + α ‖∇φ‖1 + β ‖Kφ‖22︸ ︷︷ ︸
Γphase(φ)

+ γ ‖Ka‖1 + τ ‖Ka‖22︸ ︷︷ ︸
Γintensity(a)

,

(5.6)

where � denotes Hadamard product, K =

∇
∇2

 is a concatenated matrix of gradient

and Laplacian operators, a and φ are the intensity (including the caustic effect) and phase

information that we would like to recover. Equation (5.6) is a non-convex problem and is

highly ill-posed. To see this, let total pixel numbers be N , note we have 2N unknowns

(intensity and phase) to estimate whereas only given N equations from Eq. (5.2). The two

regularizers, phase prior Γphase(φ) and intensity prior Γintensity(a) are hence introduced here

to help reducing the ill-posed, but the estimation will still be hard.

To tackle this problem, we devise an alternating algorithm to alternatively solve for

intensity and phase, i.e., solve for one when given the other is fixed. Algorithm 4 shows

this procedure. In practice we found just a few alternating iterations (< 5) are sufficient for

a satisfactory convergence. We now discuss each updating step in more details.
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Algorithm 4: Alternating intensity and phase estimation for Eq. (5.6).
1 Initialize a0 = 1 and φ0 = 0
2 while not converge do

// Intensity update: solve a given φ

3 aK+1 = argmin
a

∥∥i(r+∇φK)− a� i0(r)
∥∥2
2
+ Γintensity(a)

// Phase update: solve φ given a
4 φK+1 = argmin

φ

∥∥i(r+∇φ)− aK+1 � i0(r)
∥∥2
2
+ Γphase(φ)

5 end

Intensity update

We recognize the intensity update step as a variant of the classical ROF denoising prob-

lem [156]:

minimize
a

∥∥a� i0(r)− i(r+∇φK)
∥∥2
2
+ γ ‖∇a‖1 + τ ‖Ka‖22 . (5.7)

Equation (5.7) is convex but non-differentiable. By introducing a slack variable b = ∇a that

represents image gradient, via de-coupling diagonalization (though not strictly equivalent,

in practice we found in this formation it is easier to formulate the solver and to converge),

denoting iKwarp = i(r+∇φK)/i0(r), the original objective function in Eq. (5.7) can be split

and approximated as:

minimize
a, b

∥∥a− iKwarp
∥∥2
2
+ τnew ‖Ka‖22︸ ︷︷ ︸

f(a)

+ γnew ‖b‖1︸ ︷︷ ︸
g(b)

,

subject to b = ∇a,

(5.8)

where τnew = τ/(iKwarp)
2 and γnew = γ/(iKwarp)

2 where over-line denotes the mean. Apply

the ADMM method[57] to Eq. (5.8), we yield Algorithm 5, where proxg/µ(u) denotes the

proximal operator[59] of function g with parameter µ, given the input vector u. And η is

the dual variable. Now we briefly discuss each updating step.

a-update This step implements a straightforward Poisson solver, and we solve it in the
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Algorithm 5: ADMM for solving Eq. (5.8).
1 Initialize a0, b0 and η0, set µ > 0
2 while not converge do
3 a-update: ak+1 ← argmin

a
f(a) + µ

∥∥∇a− bk + ηk
∥∥2
2

4 b-update: bk+1 ← proxg/µ(∇ak+1 + ηk)

5 η-update: ηk+1 ← ηk +∇ak+1 − bk+1

6 end

spectral domain assuming symmetric boundary conditions. Exploiting the DCT, denoted

as FDCT, then:

ak+1 = argmin
a

∥∥a− iKwarp
∥∥2
2
+ τnew ‖Ka‖22 + µ

∥∥∇a− bk + ζk
∥∥2
2

=
(
I+ τnewKTK+ µ∇2

)−1 (
iKwarp + µ∇T(bk − ζk)

)
= F−1

DCT

(
iKwarp + µFDCT

(
∇T(bk − ζk)

)
1 + (µ+ τnew)FDCT(∇2) + τnewFDCT(∇4)

)
. (5.9)

Exploiting the FFT algorithms for all the DCT operations, the a-update can be efficiently

done in parallel.

b-update This step is an element-wise estimation and the solution is readily obtained by

the so-called shrinkage operator that is embarrassingly parallel, where sign(·) denotes the

element-wise signum function:

bk+1 = proxg/µ(∇ak+1 + ηk)

= argmin
b

γnew ‖b‖1 + µ
∥∥b− (∇ak+1 + ηk)

∥∥2
2

= sign
(
∇ak+1 + ηk

)
·max

(∣∣∇ak+1 + ηk
∣∣− γnew

2µ
, 0
)
. (5.10)

After obtaining aK , a median filter (window of 3 × 3) is imposed to further suppress

speckle noise. In practice we found themedian filtering is significant for better performance.
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Phase update

For phase update, people usually do the digital image correlation method [157], which how-

ever in computer vision is known as a variant of the famous Lucas–Kanade method [158] for

optical flow computation. Here we modify and improve our previously proposed wavefront

solver to fit the assumption for normal microscopy samples. Consequently the wavefront

solver presented here is a variant of Wang et al. [1] Recall the following optimization prob-

lem to update phase:

minimize
φ

∥∥i (r+∇φ)− aK+1 � i0(r)
∥∥2
2
+ α ‖∇φ‖1 + β ‖Kφ‖22 , (5.11)

where α > 0 and β > 0 are weighting parameters. Note the data fitting term (`2-norm) is

non-convex and one of the data prior term (`1-norm) is convex but non-smooth and non-

differentiable. Since the phase shifts are usually small, we linearize i(r+∇φ) around r. It

yields:

minimize
φ

∥∥∇i · ∇φ+ i(r)− aK+1 � i0(r)
∥∥2
2
+ α ‖∇φ‖1 + β ‖Kφ‖22 . (5.12)

To handle the boundary condition (which may introduce reconstruction artifacts in con-

ventional phase-from-slope techniques), we add a selection matrix M to include the un-

known boundary values as additional variables to be optimized. [89] In linear algebra, de-

note gt = i(r)− aK+1 � i0(r), Eq. (5.12) reads as:

minimize
φ

‖∇i ·M∇φ+ gt‖22 + α ‖∇φ‖1 + β ‖Kφ‖22 . (5.13)
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Equation (5.13) is convex but non-differentiable. By introducing a slack variable w = ∇φ

that represents phase gradient, the original objective function in Eq. (5.13) can be split as:

minimize
φ,w

β ‖Kφ‖22︸ ︷︷ ︸
f(φ)

+ ‖∇i ·Mw+ gt‖22 + α ‖w‖1︸ ︷︷ ︸
g(w)

,

subject to w = ∇φ.

(5.14)

Apply the ADMM method [57] to Eq. (5.14), we yield Algorithm 6.

Algorithm 6: ADMM for solving Eq. (5.14).
1 Initialize φ0, w0 and η0, set µ > 0
2 while not converge do
3 φ-update: φk+1 ← argmin

φ
f(φ) + µ

∥∥∇φ− wk + ηk
∥∥2
2

4 w-update: wk+1 ← proxg/µ(∇φk+1 + ηk)

5 η-update: ηk+1 ← ηk +∇φk+1 − wk+1

6 end

φ-update This step is a Poisson solver, and we solve it in the spectrum domain assuming

symmetric boundary conditions:

φk+1 = argmin
φ

β ‖Kφ‖22 + µ
∥∥∇φ− wk + ζk

∥∥2
2

=
(
βKTK+ µ∇2

)−1
µ∇T(wk − ζk)

= F−1
DCT

(
µFDCT

(
∇T(wk − ζk)

)
βFDCT(∇4) + (β + µ)FDCT(∇2)

)
. (5.15)

w-update This involves evaluation of wk+1 = proxg/µ(u) with u = ∇φk+1 + ηk, i.e.,

the proximal operator [59] of g(w) with parameter µ, which is defined as:

proxg/µ(u) = argmin
w

g(w) + µ ‖w− u‖22

= argmin
w

‖∇i ·Mw+ gt‖22 + µ ‖w− u‖22 + α ‖w‖1 . (5.16)

Equation (5.16) is separable in R2 as many Least Absolute Shrinkage and Selection Oper-
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ator (LASSO) problems, which can be solved in the dual form in the formations of linear

systems, which are 2-by-2 small matrices that have closed-form solutions for inversion.

Conclusively, for w-update we have closed-form solutions, which are all element-wise op-

erations and hence thew-update step is easy parallelization as well. By far, all the operations

in Algorithm 6 can be parallelized, and hence the total computation can be efficiently run

on distributed computing machines. e.g., on a commercially affordable GPU.

After obtaining φK , we approximate the warped measurement image as i(r+∇φK) ≈

i(r) +∇i · ∇φK , and run next intensity update estimation in Algorithm 6. For even larger

wavefronts, pyramid schemes can be adopted, as in Wang et al. [2] The spirit behind is a

similar manner of the nonlinear warping scheme in optical flow [128].

5.3 Results

5.3.1 Characterization of a microlens array

To demonstrate the accuracy of our quantitative phase imaging microscope, a square grid

microlens array (MLA150-7AR-M, Thorlabs) was imaged, for which each lenslet is of

150 µm apart and 6.7mm back focal length. We compare our method to both Zygo mea-

surements and a classical baseline speckle-pattern tracking algorithm [35] in Figure 5.2.

The measured optical path differences are converted to physical thickness using a refrac-

tive index of 1.46 at 532.8 nm (fused silica). Figure 5.2(c) shows cross-sectional thickness

profiles for one of the microlenses. Our reconstructed height matches Zygo measured data,

which is also indicated by the RMS error computed for each cross-section microlens phase

profile, whereas the baseline algorithm is 0.20 µm. This laboratory result validates that, for

visible light optical microscopy phase imaging, our proposed numerical algorithm outper-

forms classical speckle-tracking algorithms, which suffer from phase reconstruction error

because of their sequential nature. Our previous algorithm curl-free optical flow [1] is over-

all in good agreement with both the Zygo measurements and our proposed method, however
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there exists high-frequency noise.
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Figure 5.2: Accuracy validation measurement using a microlens array. Image was taken
under a ×20 Mitutoyo plan apochromat objective, 0.42 NA. (a) Raw data. (b) In compari-
son with the manufacturer’s specification, both curl-free optical flow [1] and our proposed
algorithm estimate the height with high accuracy. By comparison, classical slope track-
ing [27, 30] overestimates, and the baseline method [35] underestimates the phase shifts.
(c) For cross-section comparison all heights have been normalized to start from 0 µm.

5.3.2 Influence of irradiance-varying samples

Figure 5.3 demonstrates the advantage of Eq. (5.2) over Eq. (5.1) on an air-dried human

blood cell smear. Phase-only reconstruction results are shown to compare differentmethods.

In such an irradiance-varying situation, previous pure flow-tracking algorithms [27, 30, 1]

are vulnerable to the amplitude changes. Classical baseline methods for speckle-pattern

tracking [35] based on local window intensity estimation and windowed correlation, how-

ever, tend to underestimate the phase shifts, as also shown previously in the validation ex-

periment Figure 5.2.
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Figure 5.3: Phase reconstruction comparison for an air-dried human red blood cell smear
using different methods. Image was taken under a ×100 Mitutoyo plan apochromat objec-
tive, 0.70 NA. (a) Raw data. (b) Reconstruction phase shifts from different methods. (c)
Cross-section profile of a single cell, phases are normalized to start from height 0 µm. The
two pure-tracking methods based on Eq. (5.1), i.e., slopes tracking [27, 30] and curl-free
optical flow [1], are vulnerable to amplitude changes and fail to reconstruct the bowl-like
indentations because their model neglects sample amplitude. Though based on Eq. (5.2),
traditional baseline method [35] underestimates the phase shifts (as well in Figure 5.2),
whereas our reconstruction height maps match the metrology statistics [159].
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5.3.3 Imaging of transparent cells

We also show the capability of imaging unstained thin transparent cells using the proposed

quantitative phase microscopy. From one single raw speckle data, simultaneous amplitude

and phase images are numerically reconstructed as shown in Figure 5.4 for different cells.

The phase images are shown as the measured OPD, and the actual height of the samples

can be calculated when true refractive indexes are known. Noticeably, the torus structures

of the red blood cells have been plausibly reconstructed. For the human cheek cell sample,

the phase map indicates its biological structure with height informational details (compared

to bright field imaging). For the HeLa cells sample, the humongous phase changes of the

dying cells reveal the bio-activity, providing informative contrast details beyond original

bright field microscopy or even qualitative phase microscopy methods e.g., phase-contrast

or DIC. For the MCF-7 cells, note how our method enables fine phase reconstruction at the

boundaries while preserving the original bright field image. Since the quantitative phase

information is obtained, all other phase microscopy such as phase-contrast and DIC can be

numerically simulated.

5.3.4 Digital refocusing

Finally, we demonstrate the digital refocusing capability of the proposed technique. Since

the full complex field is acquired, similar to digital holography, we are able to perform digi-

tal refocusing on the recovered intensity and wavefront. However unlike digital holography,

our approach employs broadband illumination (multiple wavelengths), and the concept of

phase is ill-defined. Hence, we define a nominal wavelength λ = 532.8 nm, and convert

the obtained wavefront (OPD-based [µm]) into phase (unitless [rad]). Two examples are

shown in Figure 5.5. In Figure 5.5(a), the previously obtained microlens is digitally propa-

gated through different defocus distance∆f . The best focus distance matches the back focal

length provided by manufacturer. Cross-section phase profiles also demonstrate evolution

of the propagating wavefront, from converging to almost flat, and finally to diverging. In
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Figure 5.4: Experimental results with unstained thin transparent cells with the proposed
quantitative phase imaging pipeline. Images were taken under ×20 (0.42 NA) and ×100
(0.70 NA) Mitutoyo plan apochromat objectives. Phase images are shown in terms of OPD,
where optically thick structures reveal informative details regarding the samples. Inset
close-up images (normalized for better visualization) show local areas of interest, note in the
recovered amplitude images the speckle patterns have been fully removed. Cell live/dead
viability can be quickly examined via phase measurements.

Figure 5.5(b), digital refocusing of blood cells to the correct focus plane sharpens the edges

of the originally blurry intensity image, and the bowl-like indentation is more obvious and

plausible for the central cell, as shown in the cross-section.
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Figure 5.5: Post-capture refocusing by digitally propagating defocus distance ∆f with the
acquired complex field. (a) Digital refocusing of a microlens scalar field in Figure 5.2 is
made possible once its intensity and wavefront are obtained via our approach. For different
∆f , the defocusing evolution of a diffraction-limited spot can be emulated. (b) Digital
refocusing can also be performed to remove the original ringing artifacts due to defocusing.
Refocusing blood cells in Figure 5.4 sharpens the intensity images, and provides a more
plausible phase profile for originally out-of-focus samples.

5.4 Analysis and calibration

5.4.1 Wavefront resolution analysis

Derivation for Eq. (5.2) (see in Chapter 3) requires small curvature assumption that

λz

2π
|∇2φ(r)| = |∇2OPD| � 1/z. (5.17)
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This condition determines the wavefront resolution of our technique: the incoming wave-

front local curvaturemust be small enough, indicated by upper bound 1/z. This upper bound

could be interpret in terms of Fourier harmonics, to derive the phase transfer function for

our sensor. Let OPD = H cosωx, then:

|∇2OPD| � 1/z ⇒ Hω2| cosω| ≤ Hω2 � 1/z ⇒ H � Hupper_bound =
1

zω2
.

(5.18)

However, this theoretical upper bound 1/z is not tight, and the actual performance needs to

be measured experimentally. Results are shown in Figure 5.6, where we measured groups

of gradually increasing curvature phase maps, using setup in Figure 5.7(a). We notice our

sensor starts to fail at wavefront curvature of 75m−1, whereas the upper bound indicates

1/z ≈ 700m−1. It agrees with the general rule of thumb that� indicates an order of mag-

nitude relationship. Given this number, we are able to compute the phase transfer function

Hmeasured(ω), i.e., the practical wavefront resolution.

However, the actual resolution also depends on the microscopy objective, since current

image sensor technology makes it easy to choose sensor resolutions that exceed the op-

tical resolution of the microscope, especially in high magnification microscopy. Most of

our experiments were conduct with a 100× objective (0.70 NA), at nominal wavelength

λ = 532.8 nm, corresponding to Rayleigh resolution of 100 × 0.61λ/NA = 46.4 µm (i.e.,

ωobjective = 0.07 rad/µm), which is 7.2 times larger than our prototype sensor pixel size

6.45 µm (i.e., ωpixel = 0.49 rad/µm). Given the measured limit ωlimit = 0.14 rad/µm in

Figure 5.6, we have ωobjective < ωlimit < ωpixel, hence the wavefront resolution is limited

by ωobjective, i.e., the full system is limited by the optical performance of the microscope

objective. Note that ωobjective could be improved by using objectives with higher NA, and

ωlimit could also be improved by adjusting the distance z between mask and sensor, to which

the theoretical upper bound is inversely proportional. This provides a rich design space for

performance optimized systems based on our approach.
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Figure 5.6: Wavefront resolution analysis and the phase transfer function. Our recovered
wavefront curvatures are plotted for groups of gradually increasing constant phase curvature
∇2OPD. For ∇2OPD > 75m−1, our sensor begins to fail for recovery. Based on this
measured failure starting curvature, we are able to compute the valid area (valued from 0
to 1) for phase transfer function based on the recovery error (larger the error, smaller the
value). According to Eq. (5.18), our measured tight bound Hmeasured and the upper bound
Hupper_bound are shown. However our prototype resolution is limited by the optical resolution
of the microscope objective ωobjective = 0.07 rad/µm instead of the measured limit ωlimit =
0.14 rad/µm.

5.4.2 Calibration

According to Eq. (5.2), to correctly map from the numerically reconstructed surface to the

original wavefront, an accurate calibration of the distance z is important and necessary. The

exact distance is calibrated and characterized in another separate experiment as described

in Figure 5.7. This is accomplished by comparison between our numerical reconstruction

wavefronts and the ground truth wavefronts. Figure 5.7(a) shows the optical setup, where a

plasma broadband white light source (HPLS245, Thorlabs) is used for illumination. A pre-

calibrated reflective phase-only spatial light modulator (SLM) (PLUTO-2-VIS-016, Holo-

eye) is configured to interpret grayscale images as 2π phase wrapping, for generating ground

truth wavefronts. Some examples are shown in Figure 5.7(b). A linear polarizer ensures the

SLM operates in the pure phase modulation mode. The relay lenses (two f = 125mm ce-

mented achromatic doublets, AC254-125-A, Thorlabs) conjugate the SLM to the wavefront

sensor plane at×1magnification ratio. By comparing the algorithm output wavefronts with

the ground truth in Figure 5.7(b), and with the known sensor pixel size 6.45 µm and SLM

pixel size 8 µm, for each slope the calibrated distances are computed as in Figure 5.7(c),
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where their mean is z = 1.43mm.
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Figure 5.7: Calibration of wavefront sensor scaling factor. (a) Optical setup for wavefront
sensor calibration. The sensor plane and the SLMplane are in conjugate. (b) Input grayscale
phase images to the SLM and reconstructed wavefront surfaces (after image resizing). (c)
Estimated mask-to-sensor distances from (b) over different ground-truth slopes, and the
mean.

5.5 Discussion and conclusion

5.5.1 Discussion

All data required to determine the phase shift are gathered in a single snapshot utilizing a

coded wavefront sensor, so there is no need for scanning, which however is one potential

future research direction to obtain scattering images [160, 161, 35]. Specific grating (mask)

designs or multi-layer designs [162, 163] are potential directions. The fast simultaneous

amplitude and phase acquiring advances current tomography techniques [164, 165] beyond

X-ray. Short exposure times freezemotion, allowing a capture for fast movements. From the

reconstructed phase, different types of phase imaging techniques can be emulated, such as

phase contrast and DIC images, are also obtained simultaneously along with the recovered

optical thickness.

The proposed technique can be further extended to higher magnifications, immersion

objectives, higher numerical apertures, to measure thin and transparent specimens under in-

coherent illumination. The avoidance of laser illumination offer a non-destructive means of

observing and quantifying biological behavior and cellular dynamics over time, at a harm-

less lighting level.
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5.5.2 Conclusion

We have demonstrated the proposed quantitative phase imaging pipeline for simultaneous

amplitude and phase reconstruction via minor modifications on an ordinary optical mi-

croscopy. Our new theoretical model establishes the connection between speckle-pattern

tracking and TIE-based determined phase retrieval. Powered by an efficient joint optimiza-

tion numerical scheme, we show computational potentials for better performance using the

same raw speckle image. Through imaging different transparent cells, amplitude and phase

reconstruction results are present. We believe using the coded wavefront sensor, without

additional hardware, the potential to transform an ordinary bright field microscopy to multi-

functional microscopy for simultaneous quantitative phase and amplitude imaging opens up

new research directions and inspiring applications.
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Chapter 6

Differentiable Lens Design

Unlike previous chapters where sensing is the major emphasis, this chapter focuses on de-

sign & manipulation, i.e., custom wavefront engineering via lens designs. In this chapter,

we introduce the notion of differentiable lens, a ray tracing lens design engine based on

automatic differentiation.

We introduce DiffLens, a gradient-assistant ray tracing engine using automatic differ-

entiation, for complex lens group or freeform optimization, end-to-end designs, and cal-

ibration applications. The engine builds on a memory-efficient differentiable ray-surface

intersection solver, with refraction and dispersion modeled. The engine can produce spot

diagrams or render photo-realism images for real designs such as asphere lens or Double

Gauss, despite being able to infer derivatives with respect to design parameters. Starting

from an initial design, the gradient information can be employed for asphere surface opti-

mization, sensitivity analysis, and freeform caustic engineering, demonstrated by multiple

design examples. The engine can also be combined with a neural network for end-to-end

optimization by back-propagating optics and network parameters, validated by a wavefront

coding joint-design. Beyond design problems, we show a reverse usage of the engine as a

back-engineering solver to estimate misalignment of a lens setup. Given the variety of ap-

plications, we believe the potentials of such an engine to open up a new solution approach

to lens design and relevant problems.
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6.1 Introduction

Lens design aims to produce an optimal lens group for specific applications, and is an old

topic in applied optics. This process is challenging and computationally intensive, because

(i) ray tracing and relevant techniques are required to forward model how optical elements

jointly affect the passed through light, and (ii) specific algorithms are needed to inversely es-

timate the design parameters for optimal performance. Long before computers were preva-

lent, most designs were done by hand [166]. Starting in the 1950s, the notion of automatic

or computer-aided designs was proposed [167, 168, 169, 170, 171] with the help of dig-

ital computers. With the continual evolution of modern computing machines, automatic

lens design software, such as ZEMAX [172] and Code V [173], is nowadays a norm in

the optical society. These classical design implementations are based on a computational

pipeline that formulates the design problem as minimizing a merit function that is usually

the sum of a set of weighted aberrations squared, which are nonlinear functions of the vari-

able parameters. The optimization is performed using damped least squares [170, 174], i.e.,

the Levenberg-Marquardt algorithm [175], where the aberration functions are linearized to

first Taylor series, resulting in a linear system solved by diagonal regularization. The lin-

earization requires gradient estimation to compute the Jacobian matrices, and are normally

obtained by finite difference approximation.

This computational pipeline is however to be improved, to meet the new demand of

domain-specific applications. For example, in freeform optics optimization [176], when

the number of variables is too many to efficiently formulate such a linear system, domain-

specific new design methodologies were proposed, such as ray mapping tailoring [177, 178]

and variants [179, 180]. In hardware-software co-designs [181, 182], imaging optics and

post-processing algorithm are jointly optimized, requiring the design model to be numeri-

cally compatible with custom optimization schemes such as back-propagation [183]. Also,

a design engine could be employed in reverse in the concept of computational metrol-

ogy [184], requiring the merit function to be regularized for robustness, as demonstrated
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in self-calibration deflectometry [185, 186]. Such features are not supported or compu-

tationally configurable in current design software. To partially tackle these challenges,

gradient-based techniques were proposed [187] using automatic differentiation [188], which

is the basic technique in machine learning for network training. This approach enables

all the parameters in a physical system to be differentiable, and hence could be optimized

by derivative-based methods such as gradient descent. The additional amount of infor-

mation about derivatives, is much greater than methods that only consider the forward

model solely, providing a searching direction in the parameter space. Combined with a

deep neural network, such a differentiable ray tracer could be employed for generating lens

designs [189, 190]. Similar trends also appear in other domains for solving inverse prob-

lems, such as ptychography [191, 192, 193], phase microscopy [194], and virtual reality

headset calibration [195].

These prior works [187, 189], though based on automatic differentiation, are application-

oriented, and some of the lens design problems are left unexplored, that require solver effi-

ciency, configurable constraints, freeform and asphere surface parameterization, and photo-

realistic product inspection. Sensitivity analysis is yet to be explored. Also, only spherical

lens designs were considered. Our work here aims to provide an initial attempt to solve these

issues, demonstrated by a broad number of applications, beyond the classical lens design

regime.

In this work, we formulate lens design as a general optimization problem as usual, but

additionally model the system with gradient information by automatic differentiation, and

hence achieve a differentiable ray-tracing engine. Custom techniques are introduced to en-

able validity and efficiency for gradient computation and inference. Based on the obtained

derivatives, advanced algorithms could be developed for specific design applications. Fur-

ther, we bridge between lens design and real-world simulation by importing the differen-

tiable engine into a graphics renderer, such that photo-realistic images can be synthesized for

product inspection. Based on the proposed differentiable ray tracer, several applications are
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demonstrated, ranging from classical usage such as design optimization and local sensitivity

analysis, to advanced applications such as caustic engineering and real setup misalignment

estimation. We believe the potentials and possible application domains shown by such a

differentiable engine.

6.2 Differentiable lens design engine

We build a geometrical ray tracing engine to model lens designs. Instead of using paraxial

ray tracing, we rely on first principles of ray optics and Snell’s law for strictness, aiming to

reproduce reality as faithful as possible. This forward modeling is combined with automatic

differentiation to enable gradient computations.

6.2.1 Lens design with automatic differentiation

Optical lens design is the process of optimizing possible design parameters to fulfill a per-

formance expectation. Given a lens prescription, ray tracing over the optical surfaces mod-

els the design performance, producing outputs such as spot diagrams. The output of this

forward process, however, is not sufficient in the optimization stage, whose purpose is the

reverse: changing parameters of the lens prescription to achieve an optimal performance.

Gradient information is helpful for optimization. A lens design engine can benefit from

not only ray tracing outputs (e.g., spot diagrams), but also gradients of those outputs. Gra-

dients can be approximated using finite difference, but this approach becomes inefficient

when the number of variables are large, despite being inaccurate. Automatic differentia-

tion [188] overcomes these issues, and thus is the basis technique in machine learning for

training networks, where derivatives are evaluated at machine precision. In terms of lens

design, this spirit is depicted in Figure 6.1. Consider the optical performance of a plano-

convex lens when its curvature θ changes. Our goal is to implement a lens design engine

that is able to produce spot intersections p(θ) and irradiance I(θ), along with their gradi-

ents ∂p/∂θ and ∂I/∂θ, using automatic differentiation. Custom techniques are introduced



96

4 3 2 1 0 1 2 3 4
x [mm]

4

3

2

1

0

1

2

3

4

y 
[m

m
]

4 3 2 1 0 1 2 3 4
x [mm]

4

3

2

1

0

1

2

3

4

y 
[m

m
]

Lens by θ p(θ) ∂p/∂θ I(θ) ∂I/∂θ

Figure 6.1: A lens parameterized by its first surface curvature θ is under investigation. Using
automatic differentiation, our goal is to obtain p(θ) and ∂p/∂θ, or I(θ) and ∂I/∂θ.

to ensure differentiability and computational efficiency, as will be revealed in this section.

6.2.2 Lens system

We follow the standard lens design pipeline [196, 197] to model the lens systems. We focus

on the sequential mode, where starting from one end of the lens system, rays are sequentially

traced through a sequence of parameterized optical surfaces (including the image plane, i.e.,

the sensor plane), intersecting only once for each surface, while traveling towards the other

end of the lens system. This is demonstrated in Figure 6.2 with a double-Gauss lens [198].

In the sequential mode, the exact visibility ordering of the surfaces is known a priori, and

thus no need for finding the closest surface intersection when performing ray tracing.
← (object plane, usually at∞)

(image plane)→

optical surfaces
sensor

type distance radii diameter material
O 20 0 100 AIR
S 5.0 78.360 76.0 1.79668/45.5
S 9.8837 469.477 76.0 AIR
S 0.1938 50.297 64.0 1.77279/49.4
S 9.1085 74.376 62.0 AIR
S 2.9457 138.143 60.0 1.6727/32.2
S 2.3256 34.326 51.0 AIR
A 16.0698 0 49.6 OCCULDER
S 13.0 -34.407 48.8 1.74/28.3
S 1.938 -2906.977 57.0 1.77279/49.4
S 12.403 -59.047 60.0 AIR
S 0.3876 -150.890 66.8 1.78797/47.5
S 8.333 -57.890 67.8 AIR
S 0.1938 284.630 66.0 1.78797/47.5
S 5.0388 -253.217 66.0 AIR
I 74.1 0 86.53 AIR

Figure 6.2: Lens system schematic and its prescription file.

Depending on needs, rays can be traced through the lens system in two different modes,

forward mode or backward mode. In forward mode, rays are traced starting from the object

plane towards the image plane. This is the preferable way in lens design for aberration
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analysis, e.g., generation of spot diagrams. In backward mode, rays are traced in reverse,

starting from the image plane towards the object plane. This is a sampling efficient way

for sensor image rendering, and thus is the preferable way in computer graphics to render

realistic images. We will be using these two modes interchangeably depending on specific

needs.

The above two ray tracing procedures are unitedly described as in Algorithm 7: The

lens system can be formulated as a “black-box” operator A(·) that is a function of all lens

parameters θ. The lens system A transforms input ray {oin,din} into output ray {oout,dout}

at wavelength λ:

A({oin,din}, λ;θ) = {oout,dout}. (6.1)

Ray propagation through a lens system involves two major steps, finding the ray-surface

intersection point, and refraction of the ray at material interfaces with chromatic effects,

as will be discussed in Subsection 6.2.3. Only valid rays are traced in continuity, whereas

invalid rays happen when the intersections are outside of the lens geometry or when total

internal reflection takes place.

Algorithm 7: Ray tracing through a lens system A.
1 Initialize and sample a ray {o(0),d(0)} ← {oin,din} and wavelength λ
2 for optical surface fi (∀i = 1, · · · , N ) do
3 Find intersection point o(i)
4 Compute refraction direction d(i)

5 if valid then
6 update ray as {o(i),d(i)}
7 end
8 end
9 Return {oout,dout} ← {o(N),d(N)}

Though in this work we focus on the sequential mode where optical surfaces are fixed

in a known order, non-sequential mode should also be possible with proper extensions and

modifications on the current ray tracing engine.
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6.2.3 Ray tracing engine

Parameterized optical surfaces

We expect the optical surfaces to be model-based and can be fully represented by a small

number of differentiable parameters, denoted as θ with a slight abuse of notation. Optical

surfaces are described in implicit form:

f(x, y, z;θ) = 0. (6.2)

Example surface functions are aspheric surfaces, XY polynomials, and B-splines. Refer to

Appendix B for their implicit forms f(x, y, z;θ) and derivatives∇f(x, y, z;θ).

Memory-efficient differentiable ray-surface intersection

To perform ray tracing from surface to surface, it is necessary to calculate ray-surface inter-

section, where the problem is to compute a intersection point (x, y, z) and a ray marching

distance t for optical surface f(x, y, z;θ) = 0, given a ray {o,d} of origin o = (ox, oy, oz)

and direction d = (dx, dy, dz) of unit length. Figure 6.3 illustrates this problem. We would

like to find t > 0 such that:

f(x, y, z;θ) = f(o+ td;θ) = 0. (6.3)

It can be solved using iterative root finders (e.g., Newton’s method), unrolling the iterations

to construct the computation graph for gradient evaluations, so that the calculated t can be

related through the lens parameters θ. However, this straightforward approach is memory

consuming because of storing the intermediate iteration variables. We propose to avoid this

issue by taking advantage of the fact that solution to Eq. (7.2) is independent on initialization

of t, and hence t can be first solved without automatic differentiation (no need for storing
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intermediate states), then followed by one-step update with automatic differentiation:

t← t− f(o+ td)
∇f · d

. (6.4)

Figure 6.4 shows a comparison against the naïve approach, demonstrating the memory-

efficiency advantage of the proposed approach. We employ Newton’s method for obtaining

t, initialized by a non-singular estimate t(0) = (zf − oz)/dz, with iteration stops when the

residual is smaller than tolerance. Convergence of t(k) and f(o + t(k)d;θ) is within a few

iterations of k, as in Figure 6.3.

z

x, y

f(x, y, z;θ) = 0o
d

z = zf

t
surface
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Figure 6.3: Ray-surface intersection is solved as a root-finding problem by Newton’s
method. The marching distance t is quickly solved within a few iterations, up to machine
precision (single floating point here), at nm scale.
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Figure 6.4: Memory consumption comparison between two gradient computation methods.
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Refraction and dispersion

At material interfaces, transmitted direction dt is determined from surface normal direction

n = ∇f/ ‖∇f‖ and incident direction di, by Snell’s law [199]:

dt = n
√

1− (1− cos2 ψi)η2 + η(di − n cosψi), (6.5)

where cosψi = di · n and η = ni/nt is the ratio of refraction indices of the two materials.

Refractive index follows Cauchy’s equation n(λ) = A + B/λ2, with A and B determined

from refractive index n(λD) at λD = 589.3 nm and Abbe number V :

A = n(λD)−
B

λ2D
and B =

n(λD)− 1

V (λ−2
F − λ

−2
C )

, (6.6)

where λF = 486.1 nm and λC = 656.3 nm.

6.2.4 Image rendering from intersections

Once tracing is done, a synthetic image can be generated given the intersection points (spot

diagrams), given a proper integrator I(·). This process (termed rendering) is handled dif-

ferently in the two tracing modes.

Reconstruction filter in the forward mode

In the forward tracing mode, performance analysis is conducted to understand the optical

property of the current design, where rays are purposely generated according to analysis-

specific criteria. This process may involve gradient computations, and differentiability is

desired in that the generated image pixel values are differentiable to intersection point move-

ments. To ensure differentiability, I(·) has to be differentiable. This is demonstrated in

Figure 6.5. Though more advanced reconstruction filters could be employed, empirically

we found linear filter function yields sufficiently satisfactory results in terms of gradient
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Figure 6.5: Differentiable reconstruction filter I(·) is crucial for image rendering in the
forward tracing mode.

Monte Carlo integrator in the backward mode

In the backward tracing mode, rays are being traced outwards from the sensor plane, and

the major goal is to render a physically correct image for the current design given a specific

scene. Consider static rendering, at each pixel location x, with Eq. (6.1), the rendered image

I(x) is a continuous integral of ray origin shift δx ∈ [−0.5, 0.5]2, sample ray direction ω,

and wavelength λ:

I(x) =
∫∫∫

I
(
A({x+ δx,ω}, λ;θ)

)
dδx dω dλ, (6.7)

where I(·) is now the integration of the rendering equation [200], and is evaluated by render-

ers using aMonte Carlo integrator for discrete sampling the continuous integral in Eq. (6.7).

Thus, our versatile ray tracing engine can be combined with an external graphics renderer

to produce photo-realistic images for design production inspection. Figure 6.6 shows an

example rendering to compare a plano-convex lens (Thorlabs, AL-2550) against a dou-

blet achromatic lens (Thorlabs, AC254-050), in that chromatic aberration is apparent. This

would be helpful for end-users to render photo-realistic images to visually examine design

quality.
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Thorlabs, AL2550 Thorlabs, AC254-050

Figure 6.6: Our engine can be imported into a graphics renderer to generate photo-realistic
images. A plano-convex lens (AL2550) shows drastic chromatic aberration compared to an
achromatic lens (AC254-050).

6.2.5 Implementation

The differentiable engine is implemented based on PyTorch [201], with the external graph-

ics renderer based onMitsuba2 [202]. To perform ray tracing for a lens system, the entrance

pupil has to be determined first, which is the area over the very front lens element where rays

from a given viewing angle will finally reach the sensor plane. This is easily determined

for paraxial angles, but not for larger angles. Figure 6.7 demonstrates this vignette effect of

a double-Gauss design [203], with the calculated entrance pupils shown at different views.

Our engine determines the entrance pupil by ray tracing a dense grid (1025× 1025) at spe-

cific viewing angles. Entrance pupils are determined if the sampled rays propagate through

all the optical elements successfully. Exit pupils can be determined in a similar manner as

described in [204]. Our engine produces highly identical results to modern lens design soft-

ware. A sanity check with Zemax [172], using a single wavelength of λ = 587.56 nm at four

field of views, as shown in Figure 6.8. The spot diagrams and the RMS errors are almost

identical to the Zemax results despite a slight variation due to different aperture sampling

strategy.

Our engine produces highly identical results to modern lens design software. To verify

this, a double-Gauss design [203] is under sanity check with Zemax [172], using single

wavelength λ = 587.56 nm at four field of views, as shown in Figure 6.8. The spot diagrams
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Figure 6.7: Entrance pupil calculation. By tracing a dense grid at the very first optical
surface, whose aperture is the dark circle, overlaid on which we can obtain the entrance
pupil area (bright region) for subsequent ray spatial sampling, at different viewing angles.
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Figure 6.8: Spot diagrams and RMS spot errors that produced by our engine highly resemble
those by Zemax.

and the RMS errors are almost identical to the Zemax results despite a slight variation due

to different aperture sampling strategy.

6.3 Optimization

To perform design optimization, given an error metric function g(·) (e.g., spot RMS error),

the engine finds a set of optimal parameters θ∗ that minimizes ε(θ):

θ∗ = argmin
θ

ε(θ), ε(θ) =
∑
i,j

g(A({oi,di}, λj;θ)). (6.8)
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Scalar-value error function ε(·) is not necessarily linear and can only be evaluated numer-

ically. When the number of variables is small (for example θ ∈ Rn, n < 20), damped

least squares [170] are employed to efficiently optimize Eq. (6.8). When n is large, popular

gradient descent methods such as Adam [205] is employed, revealing potentials to be en-

hanced by machine learning techniques. This optimization flexibility is a feature that differs

our engine from existing software.

6.3.1 Unconstrained optimization methods

Gradient descent and variants

Since gradient information is available from automatic differentiation, Eq. (6.8) can be eas-

ily optimized using gradient descent methods such as Adam [205], with the learning rate

αk being strategically tuned for each iteration k:

θk+1 ← θk +∆θk, ∆θk = −αk
∂ε

∂θ

∣∣∣∣
θ=θk

. (6.9)

Damped least squares

When g(·) = ‖ · ‖2 and the total number of variables is small, we employ the well-known

damped least squares [170, 174] for optimizing Eq. (6.8), re-writing which to simply nota-

tions:

θ∗ = argmin
θ

ε(θ), ε(θ) =
∑
i

‖Ai(θ)‖2. (6.10)

At each iteration k, the damped least squares method solves for a least squares sub-problem

with respect to a small variable change ∆θ, which is Tikhonov regularized to enhance so-

lution stability, with an iterative changing damping factor ρk:

θk+1 ← θk +∆θk, ∆θk = argmin
∆θ

∑
i

‖Ai(θ
k +∆θ)‖2 + ρk‖∆θ‖2. (6.11)
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By approximating Ai(θ
k +∆θ) using first-order Taylor expansion:

Ai(θ
k +∆θ) ≈ Ai(θ

k) + Ji∆θ, (6.12)

where Ji is the Jacobian matrix atAi(θ
k), Eq. (6.11) is solved by the normal equation, with

I denoting the identity matrix:

(∑
i

JTi Ji + ρkI

)
∆θk = −

∑
i

JTi Ai(θ
k). (6.13)

One nice feature of using automatic differentiation is that the right hand side can be effi-

ciently evaluated using back-propagation (the backwardmode), with the left hand side being

obtained using the forward mode.

6.3.2 Constraint handling

When there are constraints in the design, e.g., positive air-spacing, minimum glass thickness

or back focal length, maximum air-spacing overall size, Eq. (6.8) needs to be constrained,

which can be re-phrased as two vectors bl and bh, i.e., a bounding box constraint:

θ∗ = argmin
θ

ε(θ), s.t. bl ≤ θ ≤ bh. (6.14)

This linear constraint turns the original unconstrained problem into a constrained one, pre-

venting ∂ε/∂θ to be evaluated at boundaries. Consequently, the unconstrained optimization

methods in the previous subsection are revised by simply projecting the variable to a fea-

sible solution space after obtaining ∆θ∗ from Eq. (6.9) or Eq. (6.13), at each iteration k

applying an element-wise maximum-minimum operation to θk +∆θk:

θk+1 ← project[bl,bh](θ
k +∆θk) = max(bl,min(θk +∆θk,bh)). (6.15)
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6.4 Classical applications

The proposed ray tracing engine can manage classical design problems, as will be demon-

strated in this section. Spot RMS error at different viewing angles is chosen as the error

function g(·) in Eq. (6.8) for design optimization.

6.4.1 Design optimization

Spherical aberration minimization

The first example is to optimize the aspherical coefficients of an asphere lens to minimize

the axial spherical aberration. In Figure 6.9, parameters of a well-designed asphere lens

(Thorlabs, ACL5040U) are optimized in the hope of further reducing the axial RMS spot.

Compared to the initial design, our differentiable engine ends up with a nearly six times

smaller RMS spot.

Table 6.1: Differentiable parameters of the aspherical surface.

radius of curvature [mm] conic 4th asphere coefficient
Original (initial) 20.9230 -0.6405 2.0e-6
Optimized 20.9403 -0.6262 1.6405e-6
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Figure 6.9: Spherical aberration minimization.
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Photographic camera design optimization

The engine can also optimize complicated lens group for design optimization. Figure 6.10

shows the second example to re-parameterize curvatures and aspheric coefficients of a

Nikon patent design to minimize the total RMS spot error at different field of views (0°,

10°, 20°, 32.45°), at three wavelengths (656.27 nm, 587.56 nm, 486.13 nm). The design

is initialized by removing all aspheric coefficients, showing large aberrations. After opti-

mization, our optimized design shows a comparable mean RMS error of the original design.

This example demonstrates the capability of our engine to perform multi-lens and aspehre

optimization.
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Figure 6.10: Nikon lens group total aberration minimization. Starting from an all-spherical
design, with the differentiable parameters θ being all surface curvatures and aspheric coef-
ficients of two surfaces, our optimized version achieves similar performance as the original
design.

6.4.2 Tolerance analysis

In tolerancing a lens system, or known as sensitivity analysis, a presuming small, linear

parameter perturbation∆θ is enforced, and the total effect of the perturbation,∆ε, is calcu-

lated through the nominal system θ0 to determine the potential effects. This is mathemati-
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cally paraphrased by relating ∆ε to ∆θ through the derivatives:

∆ε =
∂ε

∂θ
·∆θ, or in the vector form ∆εεε =

∂εεε

∂θ
∆θ. (6.16)

In forward analysis,∆θ is given to compute∆εεε, whereas in inverse analysis,∆εεε is given to

compute∆θ, assuming proper prior probabilities or regularization on∆θ. Despite alterna-

tive methods such as finite difference, analytical gradients [206], or the wavefront differen-

tial method [207], our differentiable engine can automatically evaluate ∂εεε/∂θ intrinsically,

without additional implementation efforts.

In Figure 6.11, a Cooke triplet is under sensitivity analysis, with all optical element posi-

tional misalignment parameters θ being toleranced. The proposed automatic differentiation

engine can obtain the Jacobian matrix ∂εεε/∂θ known as the sensitivity matrix for further

analysis.
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Figure 6.11: Tolerancing a nominal lens system. The sensitivity matrix is readily obtained
as the Jacobian matrix.
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6.5 Advanced applications

Thanks to differentiability and the versatile optimizer, our engine can be combined with

advanced post-processing computational algorithms for complex designs or setup reverse-

engineering, and beyond the usual application range of lens design software. Such domain-

specific applications are deemed not easily configurable with existing design software, as

three examples shown in Figure 6.12.

loss

(a) Caustic engineering (b) End-to-end wavefront coding (c) Misalignment estimation

Figure 6.12: Overview of advanced applications. (a) Caustic engineering aims to design
a freeform surface to produce a target irradiance pattern at certain distance (Figure 6.13).
(b) End-to-end wavefront coding jointly optimizes phase plate design and deconvolution
algorithm (here, a neural network) for extended-depth-of-field applications (Figure 6.14).
(c) Real setup misalignment can be estimated by using the proposed differentiable engine
in reverse as a black-box solver (Figure 6.15).

6.5.1 Caustic engineering

Caustic engineering aims to produce a target image by pixel-wisely changing the directions

of a directional light source, by optimizing a freeform optical surface [87, 68]. Here, we

demonstrate caustic engineering as one of the applications of our proposed differentiable

optical design engine. We employ the forward mode to render caustic images. To enable a

satisfactory reconstruction, the desired freeform surface is assumed to be smooth and hence

is represented by B-splines with a large degree of freedom approximately equal to the pixel

number of the target image. The error metric was the standard Mean Square Error (MSE),

and we optimize the B-spline coefficients θ that characterize the freeform surface:

min
θ
‖I(θ)− Itarget‖2. (6.17)
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Equation (6.17) is optimized using Adam [205] because construction of Jacobian is compu-

tationally prohibitive due to the large number of variables in Eq. (6.17). Figure 6.13 shows

the results along with intermediate optimization states, where the optimized freeform sur-

face is shown in height maps. The reconstruction image is contrast-preserving, and the

optimized freeform surface is smooth. Although in this particular example, the contrast

in our result is not high compared to alternative specific solvers, e.g., using optimal trans-

portation [87] or iterative warping [68], our result shows freeform designs would be more

approachable when a plug-and-play differentiable ray tracer is available.
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Figure 6.13: Caustic engineering. We optimize a freeform surface to refract collimated
light into a target irradiance distribution at two focal lengths, at wavelength 532.8 nm with
a refractive index of 1.5. Our engine produces a smooth freeform surface, and optimizes
the caustic structures efficiently as shown in the intermediate states.

6.5.2 End-to-end wavefront coding

In wavefront coding, a pupil plane phasemodulator is introduced to deliberately distort input

lights for PSF engineering, e.g., cubic phase plate [100] that produces depth-invariant PSFs

for extended-depth-of-field, and coded aperture [101] and lattice-focal [102] that produce

depth-sensitive PSFs for depth retrieval. This process is a joint optical-algorithmic problem
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in that the final image is the output from a sequential appliance of the encoding optics and

the decoding algorithm. Prior end-to-end approach relies on paraxial approximation [182],

ignoring the spatially variant nature of PSFs. Here, our engine provides an initial solution

to break this limitation, in that the optical system is faithfully reproduced by ray tracing.

We parameterize the phase plate using only third-order XY polynomials, and end-to-end

jointly optimize the polynomial coefficients θXY and U-Net [208] parameters θnet for ex-

tended depth of field applications, as in Figure 6.14. Specifically, we aims to minimize a

total loss L(θXY,θnet) that consists of an MSE loss Lmse, a total-variation loss LTV, and a

channel feature loss Lvgg16 on pre-trained VGG16 [209]:

min
θXY,θnet

L(θXY,θnet) = Lmse + LTV + Lvgg16. (6.18)

Initialized from a null zero phase, the optimized phase in Figure 6.14(a) exhibits a similar

structure as in [100], verified by the central PSFs in Figure 6.14(b). Given the blurry raw

input images, the post-processed images in Figure 6.14(c) reveal sharp features. This exam-

ple shows the potential of using our differentiable engine for end-to-end joint optimization

in computational imaging applications.

6.5.3 Misalignment estimation

Finally, we show real experimental results to leverage potentials of the proposed differen-

tiable pipeline, by using it in reverse to estimate misalignment of an experimental setup.

In Figure 6.15(a), a pinpoint light source, consists of an Light-Emitting Diode (LED) (cen-

tral wavelength 622 nm) and an iris of radius 0.4mm, is placed far in front of a misaligned

plano-convex lens. The lens was able to rotate freely, but the exact angular values were

unknown, and the imperfect mounting leads to slight yet noticeable tilting. The setup is

imaged by a monochromatic Complementary Metal Oxide Semiconductor (CMOS) sensor

(FLIR, GS3-U3-51S5M-C, pixel size of 3.45 µm). Without knowing the exact position and
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Figure 6.14: Our differentiable engine can perform end-to-endwavefront coding, i.e., jointly
optimize phase optics profile and deconvolution algorithm for extended depth of field ap-
plications, here by simulation. (a) Setup geometry and optimized phase optics. (b) Central
PSFs at different distances. (c) Raw and post-processed images by the neural network.

angle parameters θ, e.g., light source position, sensor to lens distancing, lens yaw/pitch an-

gles, it is very challenging to reproduce experimental measurements by manual parameter

tuning a simulation setup. In Figure 6.15, we show the success of our differentiable engine

to estimate such misalignment parameters, by minimizing the MSE error between the sim-

ulation image I(θ) and the target real captured image Ireal. We employ the forward mode

to render I(θ). To escape local stationary points and to regularize gradient computation,
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we enforce centroid alignment between the two images, by denoting C(·) as an operator for

calculating image centroid:

min
θ
‖I(θ)− Ireal‖2 + µ‖C(I(θ))− C(Ireal)‖2, (6.19)

where µ is a tradeoff parameter to balance betweenMSE and alignment errors. Empirically,

Eq. (6.19) is optimized by Adam and damped least squares in alternation. The optimiza-

tion usually takes < 0.5min to finish for a megapixel image resolution on a GPU (Nvidia,

GeForce RTX 2080 Ti).

Two lenses of different focal lengths (Thorlabs, LA1131, focal length of 50mm; LA1986,

focal length of 125mm) were under investigation, as shown in Figure 6.15(b) and Fig-

ure 6.15(c). In Figure 6.15(b), the lenswas focused but tilted, and the goal is to re-parameterize

the simulation to fit real measurements. In Figure 6.15(c), the lens was slightly de-focused,

introducing a blurry bright disk on the sensor plane. With an increase of angular misalign-

ment, the image smears and elongates in the horizontal direction. Initialized from a coarse

setup estimation, the final optimized images match real images visually well. This exam-

ple proves the validity of our forward rendering operator, and demonstrates the possibility

of using a differentiable ray tracing engine for setup calibration. The simplicity of using

the proposed engine for misalignment estimation allows future self-calibrated applications

to be possible for existing solution pipelines. From a broader perspective, we demonstrate

the possibility of using a differentiable ray tracer as a general inverse solver for metrology

problems.

6.6 Discussion and conclusion

6.6.1 Discussion

In principle, ray optics limits the application range of our differentiable engine in that

the wave nature of light is ignored. Resolution demanding imaging applications towards
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Figure 6.15: Our differentiable engine can be employed as a general-purpose solver to back-
engineer real setup misalignment parameters so that simulation and reality match, demon-
strated by the high similarity between optimized images and the target (real) ones. (a) Ex-
perimental setup includes an LED light source, a lens, and an image sensor. (b) LA1131
was in focus but tilted. (c) LA1986 was out of focus and tilted at the same time. Opti-
mized images share high visual similarity to the real target ones, revealing the success of
our approach.

diffraction-limited performance such as telescope or microscope designs are hence not pos-

sible at this point. In methodology, we rely on gradient descent and damped least squares

as the optimization techniques, and thus a number of iteration steps are required for conver-

gence. Due to its local optimization nature, the solver suffers from the local minima prob-

lem and the initialization sensitivity issue. In software, our differentiable tracing engine

relies mostly on reverse-mode automatic differentiation, which is known to be memory-

consuming especially for large amount of Monte Carlo samples. More memory-efficient
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frameworks may be explored. We expect accelerated performance after careful code opti-

mization.

The current ray tracing engine could be further enhanced. From design perspective,

more surface representations could be implemented, e.g., Laguerre, Hermite, and Zernike

polynomials. New tracing methods are possible, for example paraxial tracing [166] and

Gaussian beam tracing [210]. Also, new features could be implemented, e.g., diffraction and

gratings, Fresnel equation and polarization ray tracing, coatings, stray light and ghost anal-

ysis, and non-sequential tracing. From application perspective, further applications could

be explored, e.g., lens metrology [211], realistic lens rendering [212], and wavefront sensor

designs [1, 4]. Hardware-software end-to-end optimization for domain-specific applica-

tions [181, 182, 213, 214], or semi-supervised training for automatic lens design [189, 190]

are also target topics. We believe our framework serves as an initial starting point towards

these applications, from a lens design perspective.

6.6.2 Conclusion

To conclude, we have proposed a differentiable ray tracing engine for lens design. Board

applications are demonstrated, ranging from classical design optimization and sensitivity

analysis, to computationally intensive freeform design, and to challenging experimental

misalignment estimation. We envision the potential of such a differentiable ray tracing

engine, as it opens up an exciting aspect to bring first-order gradient insights into lens design

and relevant problems.
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Chapter 7

Differentiable Refractive Deflectometry for Lens Metrology

In this chapter, instead of wavefront design as in Chapter 6, we reverse the purpose and

employ the previously proposed differentiable ray tracing engine on a dual-camera deflec-

tometry setup for refractive lens metrology.

Deflectometry, as a non-contact, fully optical metrology method, is challenging to be

applied for parameterized refractive elements due to multi-surface entanglement and pre-

cise pose alignment. Here, we present a computational self-calibration approach to measure

parametric lenses using dual-camera refractive deflectometry. Given the intersection mea-

surements, a differentiable ray tracer models the setup using automatic differentiation, with

the unknown lens parameters and its pose optimized by damped least squares. Our ap-

proach is able to correctly estimate lens parameters, demonstrated by singlet curvatures and

asphere-freeform lens metrology.

7.1 Introduction

Refractive lensmetrology plays an important role in lensmanufacturing, quality control, and

reverse engineering. Various techniques have been proposed for general-purpose freeform

optical surface metrology. As a non-interferometry method, deflectometry maintains a

strong interest [215] for its simplicity, low-cost, and insensitivity for environments, from

specular surface measurement using computerized phase shifting screens [216, 217, 218] to

2D/3D tomography refractive index reconstruction using background oriented Schlieren [12,

13, 219, 3] and variants [14, 1]. However, it is difficult to directly apply phase shifted de-
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flectometry to refractive elements, for the following reasons: (i)Multi-surface entanglement

that deflection shifts are ambiguous and undetermined for all surfaces; (ii) Sensitive to test-

ing lens alignment that may dominate the actual surface deviation error from nominal de-

sign; (iii) Basis representation for freeform surfaces; (iv) High dynamic range. To partially

address these issues, there are works demonstrated for multi-surface reconstruction [211,

220], as well as efforts in iterative optimization [221] and with self-calibration [185, 186,

222, 223], pose estimation [224], model-based fitting [225], dual-camera setups [226, 227],

and adaptive null testing [228].

This problem of refractive lens testing can be generally rephrased as an inverse problem:

Given the metrology measurements (e.g., phase-shifted images, ray intersections, transmit-

ted wavefront maps), estimate a set of unknown parameters characterizing the lens surfaces

that fit the measurements reasonably well. Thus, an automated, transparent, controllable

data analysis process is desired, as a general-purpose computational solution. Compared to

the rapid development of new instruments, computational techniques remain relatively un-

explored in the software domain. We believe current metrology techniques could be further

improved by advanced computational methods. Inspired by machine learning techniques,

gradient-based optimization built on differentiable physical models has found recent success

in inverse graphics [229, 202], transparent object reconstruction [230], deep learning auto-

matic lens design by differentiable ray tracing [189, 190], and phase microscopy [194]. By

forwardmodeling themeasurements using an automatic differentiation engine [188], a com-

putation graph is constructed, through which the gradients are numerically evaluated. Start-

ing from a proper initial guess, unknown model parameters can be iteratively estimated and

updated. This approach can be regarded as a general solution to inverse problems, including

refractive deflectometry data analysis, our problem of interest. In this chapter, we introduce

differentiable refractive deflectometry, a new computational technique based on automatic

differentiation. Our approach is able to perform self-calibrated parameter estimation for

multi-surface optical elements. Numerically, we reproduce the physical metrology setup
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using a custom-built renderer by realistic ray-tracing all the refractive surfaces by Snell’s

law. This physically-accurate ray tracer functions similar to a neuron network, enabling un-

known lens parameters and the misalignment pose to be differentiable and their gradients

available, enabling optimization by damped least squares [170], a well-appreciated method

in lens design. To this goal, we propose techniques to improve ray-surface intersection root

finder other than a naïve approach. We believe the proposed framework provides a new

and general computational solution to automated data analysis for existing deflectometry

techniques.

7.2 Method

The lens metrology process involves hardware image acquisition and software data analysis,

as in Figure 7.1. The setup is based on the phase measuring deflectometry [216], but recon-

figured in a refractive mode. Figure 7.1(a) shows the schematic diagram. A programmable

display screen (Apple MacBook Pro 13.3", pixel pitch 111.8 µm) shows 90° phase-shifted

sinusoidal patterns, with the testing lens placed in front of the screen. Two cameras of F-

number f/16 (FLIR GS3-U3-50S5M, pixel pitch 3.45 µm) are employed to take grayscale

images as in Figure 7.1(b). Gamma-correction is applied to ensure a linear relationship be-

tween screen and image pixel values. These images are pre-processed using the standard

four-step phase shifting method followed by phase unwrapping [231], to retrieve 2D inter-

sections p̂i on screen, respectively for both cameras i = 1, 2. Testing lens is assumed to

be parameterized by θ, with an unknown pose (φ, t). Possible θ parameterizations are lens

curvatures, or freeform coefficients. A differentiable ray tracer numerically reproduces the

model setup in Figure 7.1(c), resulting in modeled intersections pi(θ,φ, t). Given pi and

p̂i, a numerical solver in Figure 7.1(d) jointly estimates θ,φ, t such that an error metric

(also known as the loss function) is minimized, yielding the metrology values θ∗. Here, we
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Figure 7.1: Dual-camera refractive deflectometry for lens metrology. (a) Hardware setup.
(b) Captured phase-shifted images, from which on-screen intersections p̂i (i = 1, 2) are
obtained. (c) A differentiable ray tracer models the setup by ray tracing each parameterized
refractive surface, obtaining the modeled intersections pi(θ,φ, t). (d)Unknown θ and pose
(φ, t) are jointly optimized by minimizing the error between pi and p̂i.

minimize the least squared error:

θ∗,φ∗, t∗ = argmin
θ,φ,t

2∑
i=1

‖pi(θ,φ, t)− p̂i‖22. (7.1)

We optimize Eq. (7.1) using damped least squares [170], which involves multiple gradient

evaluations that are efficiently handled by automatic differentiation. Refer to Section 6.2.3

for details. The following elaborates on computation for pi(·), the modeling.

Each object (camera, testing lens) is associated with a rigid transformation (R, t) in

world coordinate (screen’s frame), with a rotation matrix R ∈ R3×3 and a translation vec-

tor t ∈ R3. Ray tracing is performed in local frames. For pose estimation, the testing

lens transformation (R(φ), t) can be determined from the six degree-of-freedom parame-

ters (φ, t) where φ ∈ R3 are the rotation angles around (x, y, z) axes.

Cameras are treated as perspective pinholes, with the intrinsic/extrinsic parameters ob-

tained from calibration [232]. Rays are sampled for each image pixel: (i) Starting from
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modeled image captured image absolute difference

Figure 7.2: Assuming pinhole camera model and planar screen, our ray tracer reproduces
real captured images in high fidelity.

camera origins; (ii) Intersecting surfaces of the testing lens via a differentiable root finder,

refraction and deflection by Snell’s law, and hence the outgoing rays are associated with

lens parameters θ and pose (R(φ), t); (iii) Reaching towards a presumably planar display

screen, obtaining the modeled intersections pi(θ,φ, t) for both cameras. Of these steps, the

root finder is the most important to perform ray tracing for asphere or freeform surfaces,

in which case there are no closed-form solutions for intersection computation. The inter-

section problem requires solving for intersection (x, y, z) and a ray marching distance t for

optical surface f(x, y, z;θ) = 0, given a ray (o,d) of origin o = (ox, oy, oz) and direction

d = (dx, dy, dz) of unit length. Mathematically:

find t > 0 s.t. f(x, y, z;θ) = f(o+ td;θ) = 0. (7.2)

Equation (7.2) can be solved using an iterative root finder, with the iterations directly un-

rolled for gradients, so that ray marching distances t can be related through lens parameters

θ via automatic differentiation. However, this straightforward approach is not efficient and

is memory consuming because of storing the intermediate iteration variables. Fortunately,

there is an analytic approach for the desired gradient to be computed outside of automatic

differentiation. Denote the solution to Eq. (7.2) as t∗, and exploit the implicit function the-

orem for differentiation w.r.t. θ:

f(o+ t∗(θ)d;θ) = 0 and
(
∇f · d

)∂t∗
∂θ

+
∂f

∂θ
= 0. (7.3)
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Rearranging above, yields an analytic formula for gradient:

∂t∗

∂θ
= − 1

∇f · d
∂f

∂θ
. (7.4)

In other words, we can first compute t∗ without automatic differentiation (and no interme-

diate variables stored), and then amend its gradient back to automatic differentiation by

Eq. (7.4). We employ Newton’s method for obtaining t∗, initialized by a non-singular esti-

mate t(0) = (zf − oz)/dz, with iteration stops when the residual is smaller than tolerance.

Themethod converges in a few iterations. When properly setup, with no testing lens present,

the modeled image matches the real image reasonably well as in Figure 7.2, demonstrating

the physical realism of the ray tracer. Blurry edges are from diffraction, which is ignored

in this Chapter, since ray optics is the first principle. Our ray tracer is implemented in Py-

Torch [201], as the automatic differentiation framework provides a straightforward way to

accurately evaluate gradients. For a small set of θ ∈ Rn when n < 20, the solver converges

in a few seconds on a modern GPU.

Our numerical framework also supports for uncertainty analysis [233], by having the

Jacobian matrices Ji readily obtainable from automatic differentiation. This uncertainty

analysis provides us a gauge for robustness data interpretation. We can perform an un-

certainty analysis on Eq. (7.1) to understand solution stability. Analyzing the derivatives

(ignoring constants):

∂loss =
2∑

i=1

(pi(θ)− p̂i) · Ji∂θ = v · ∂θ, where v =
2∑

i=1

JTi (pi(θ)− p̂i). (7.5)

With an independence assumption on θ ∈ Rn (when properly parameterized) and equal

prior probabilities, denoting diag(·) as a diagonal matrix formed by the corresponding vec-

tor, the uncertainty variance of each element of variable θ, is hence calculated as:

σ2
loss = vTdiag(σ2

θ)v ⇒ σ2
θ =

σ2
loss

n|v|2
, (7.6)
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where σ2
loss can be calculated from the optimal point, and |v|2 is the element-wise squared

of the vector v.

7.3 Results

7.3.1 Simulation results

Simulation verification are performed to verify the proposed self-calibration method. Fig-

ure 7.3 simulates a lens (Thorlabs LE1234) under metrology test for curvature estimation,

suffered from a minor misalignment perturbation φ = (−0.3°, 0.5°, 0°) and t = t0 + ∆t

where t0 is obtained from triangulation but t is deviated by∆t = (0.5mm, 0.5mm, 0.5mm).

Synthetic images are corrupted by Gaussian noise. When assuming perfect alignment (φ =

0,∆t = 0), the solver fails to predict the correct curvatures, whereas a self-calibration esti-

mation is successful in error reduction. Similar conclusion also holds for freeform metrol-

ogy, as in Figure 7.4 where an asphere-freeform lens is simulated, suffered from the same

misalignment (φ, t), where the task is to estimate the cubic B-spline freeform surface coeffi-

cients θ, knowing the asphere profile. This one-surface limitation is necessary to constraint

the solution space, in that two arbitrary freeform surfaces can over-fit p̂i, while being rarely

practical in reality. When optimizing only θ, the misalignment affects metrology results. In

contrast, a joint optimization of both θ and (φ, t) significantly reduces the error, showing

the benefit of a self-calibration approach.

7.3.2 Experimental results

Experimental results are supportive. Figure 7.5 shows experimental results on lens curva-

ture metrology for a convex-concave lens (Thorlabs LE1234). The lens was amounted and

placed in front of the screen at a distance of approximately 5 cm. The testing lens pose

(φ, t0 +∆t) is assumed to be in perfect angular alignment φ = 0, but suffered from minor

displacement errors (∆t 6= 0), with the nominal origin t0 computed from dual-camera tri-



123
initialization optimizing θ only optimizing θ,φ, t loss

ca
m
er
a
1

6.8mm

0RMS: 4.049mm

1.0mm

0RMS: 0.361mm

1.0mm

0RMS: 0.033mm

0 10 20
10−4

10−3

10−2

10−1

100

iteration

θ only
θ,φ, t

truth

ca
m
er
a
2

9.3mm

0

RMS: 4.442mm

1.0mm

0

RMS: 0.460mm

1.0mm

0

RMS: 0.034mm

c1 ∞ −76.5009mm −82.1351mm −82.23mm
c2 ∞ −31.1070mm −32.1382mm −32.14mm

Figure 7.3: Lens curvature θ = (c1, c2) metrology using synthetic data. Intersection error
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a self-calibration approach is preferable by jointly optimizing θ,φ, t.
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Table 7.1: Experimental singlet lens curvature metrology results.

[mm] / lens name LA1986 LE1234 LF1822
ours (c1, c2) (62.10, 828.39) (-82.41, -32.61) (34.68, 101.41)
truth (c1, c2) (64.38,∞) (-82.23, -32.14) (33.65, 100.00)

angulation. Initialized from planar surfaces (c1 = c2 = ∞), our optimized curvatures are

close to the manufacturer design parameters (Table 7.1), though the fitting error increases

slightly at lens boundary. Two other Thorlabs lenses were under the same test, but with

both φ and ∆t optimized. Surface curvatures metrology results are shown in Table 7.1,

demonstrating the feasibility of our method to measure multi-surface curvatures. Freeform

lens experimental metrology results are also encouraging. The testing optics is an asphere-

freeform lens, whose two surfaces were discretely sampled and measured by a Coordinate

Measuring Machine (CMM) machine as ground truth. This freeform lens was mounted

and placed approximately 5 cm in front of the screen for measurement (see Figure 7.1(b)).

Same as in simulation, our assumption is to have the approximate surface profile of the as-

phere, and would like to solve for the freeform surface, with the pose unknown. Results are

shown in Figure 7.6. Our solver optimizes the metrology data to a small residual intersec-

tion errors for both cameras, as in Figure 7.6(a). Though wrongly initialized for the asphere

surface, the solver optimizes back to the correct orientation, and the reconstruction surfaces

are visually similar to the ground truth in Figure 7.6(b), but are spatially transformed due

to different alignment in deflectometry experiment and CMM data metrology, and double-

surface entanglement as well in that the solution space is too huge to over-fit the data. Yet,

our method provides an initial method to qualitatively profile both surfaces, when there is

limited prior knowledge available. We have demonstrated the capability of the proposed

method for surface metrology, especially for surface curvature estimations.
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Figure 7.5: Experimental lens curvature metrology for LE1234.

7.4 Discussion and conclusion

Given current results, future investigations are possible for improvements. In hardware,

current image acquisition pipeline could be extended to a multi-angle tomography setup,

or encode/decode intersections instantaneously to improve acquisition speed [234]. Dou-

blets are also possible by incorporating our technique into existing data fusion model [235].

In software, thanks to automatic differentiation, attainable gradient information allows for a

family of solvers to be employed for accelerated convergence, compromising different trade-

off factors. Suitable parameterization is also important for a full characterization of optical

elements. Lastly, uncertainty analysis deserves more attentions, as deflectometry itself re-

quires a computationally heavy procedure which may introduce data misinterpretation. In

conclusion, we have demonstrated differentiable refractive deflectometry for self-calibrated

lens metrology. Given the phase-shifting images, a fringe analysis provides measurement

intersection points for the method to proceed, where both the unknown lens parameters and

the pose are jointly optimized using a differentiable ray tracer. We believe the opened up

new computational possibilities for lens metrology data analysis and other relevant appli-

cation areas.
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Chapter 8

Concluding Remarks

8.1 Summary

Starting with a background introduction in Chapter 2, this dissertation formulates a unified

theoretical framework for classical wavefront sensors. Based on which, aiming to maxi-

mize the throughput of existing hardware, a new wavefront sensor is proposed in Chapter 3.

The wavefront sensor itself is physically implemented by a single binary masked sensor to

encode the incoming wavefront, and numerically implemented by an efficient parallelized

optimization decoding algorithm on GPU, such that high resolution wavefront acquisition

can be achieved in real time. Two specific applications, megapixel adaptive optics in Chap-

ter 4, and single-shot intensity & phase microscopy in Chapter 5, have been demonstrated

to show the practical usage of the proposed wavefront sensor.

Inspired by the recent success of learning-based technology, we further propose a dif-

ferentiable optical ray tracing framework as a general optimization solution to the hardest

problems in optics. Specifically, we aim for two applicational situations, lens design in

Chapter 6, and metrology in Chapter 7, to show the potentials of this new technique.

8.2 Future work

We may further explore the application range of the proposed wavefront sensor. In hard-

ware, the mask could be further optimized to enable better wavefront frequency acquisition,

according to the design rule revealed in this dissertation. In software, the solver could be

improved from a deterministic iterative algorithm to a data-driven one, by turning the solver
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into a unrolled network trained for optimal convergence performance, or customize and train

a deep network as a “black box” solution to the phase retrieval problem behind the scene.

Another direction would be to further explore and develop on the idea of a differentiable

ray tracing engine. Currently only geometric optics is considered, whereas wave optics phe-

nomenon is missing, preventing diffractive elements or aperture diffraction to be modeled

accurately. These features could be implemented for the proposed differentiable engine to

be truly evolving towards a general-purpose optical design engineering software, beyond

lens design.
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APPENDICES

A Formulas and Derivations

A.1 Diffraction formulas

Rayleigh-Sommerfeld diffraction formula

Let r = (x, y). Consider in free space a monochromatic scalar field u0(r) of wavelength λ

propagates through a short distance z and becomes uz(r). These two fields are related

through the Rayleigh-Sommerfeld diffraction formula [21, 76]:

Spatial domain: uz(r) = exp

[
jkz
(
1 +
∇2

k2

)1/2
]
u0(r), (A.1)

Frequency domain: Uz(ρ) = exp
[
jkz
(
1− λ2|ρ|2

)1/2]
U0(ρ), (A.2)

where ρ is the Fourier dual of r, and U0(ρ) and Uz(ρ) are Fourier transforms of u0(r) and

uz(r), respectively. Denote F as Fourier transform, then U0(ρ) = F{u0(r)} and Uz(ρ) =

F{uz(r)}. Wave number is k = 2π/λ, and ∇2 is the Laplacian operator over (x, y). We

follow the convention that | · | denotes the `2-norm of a vector, e.g., |ρ| = (ρ2
x + ρ2

y)
1/2.



152

Fresnel diffraction formula

The Fresnel diffraction formula can be derived by 1st-order Taylor expansion of the matrix

exponential in Eq. (A.1) or the scalar version in Eq. (A.2), that [21]:

(
1 +
∇2

k2

)1/2

≈ 1 +
∇2

2k2
or (1− λ2|ρ|2)1/2 ≈ 1− λ2|ρ|2

2
, (A.3)

under the condition that λ2|ρ|2 � 1, or equivalently:

1

k2
∣∣∇2u0(r)

∣∣� |u0(r)|. (A.4)

This leads to the Fresnel diffraction formula, with the constant phase exp(jkz) ignored:

Spatial domain: uz(r) = exp
(
j
z

2k
∇2
)
u0(r), (A.5)

Frequency domain: Uz(ρ) = exp
(
−jπλz|ρ|2

)
U0(ρ). (A.6)

Near-field diffraction formula

The Fresnel diffraction formula can be further simplified under the condition of “near-field”,

i.e. the propagation distance z is small enough so that by another 1st-order Taylor expansion

of the matrix exponential in Eq. (A.5), the following approximation holds:

exp
(
j
z

2k
∇2
)
≈ 1 + j

z

2k
∇2 or exp(−jπλz|ρ|2) ≈ 1− jπλz|ρ|2, (A.7)

under the condition that πλz|ρ|2 � 1, or equivalently:

z

2k

∣∣∇2u0(r)
∣∣� |u0(r)|. (A.8)
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To be compatible with Eq. (A.4), it also requires 1/k2 ≤ z/(2k), or:

z ≥ λ/π. (A.9)

This leads to the near-field diffraction formula:

Spatial domain: uz(r) =
(
1 + j

z

2k
∇2
)
u0(r), (A.10)

Frequency domain: Uz(ρ) =
(
1− jπλz|ρ|2

)
U0(ρ). (A.11)

A.2 Wave optics derivations

In the following, small letters denote scalar fields in spatial domain, and capital or calli-

graphic letters denote scalar fields in Fourier domain, with subscript 0 and z denote the

original and diffracted fields, respectively.

We will be using Eq. (A.1) and Eq. (A.2) for total field diffraction (potentially of high

frequency), whereas using Eq. (A.10) and Eq. (A.11) for analyzing sample-related diffrac-

tion (potentially of low frequency).

Diffraction from optics to sensor

The initial field u0(r) is a multiplication of general (amplitude or phase) complex transfer

function p0(r) of the optics and a general sample scalar field f0(r) = A(r) exp[jφ(r)]:

u0(r) = p0(r)︸ ︷︷ ︸
optics

· f0(r)︸ ︷︷ ︸
sample

. (A.12)
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For diffraction field uz(r) at distance z, using Eq. (A.1) via expanding the propagation in

the Fourier domain, we have [1]:

uz(r) , exp

[
jkz
(
1 +
∇2

k2

)1/2
]
u0(r)

F
=

∫
exp(j2πr · ρ) exp

[
jkz
(
1− λ2|ρ|2

)1/2]× ∫ P0(ρ
′)F0(ρ− ρ′) dρ′ dρ

(A.14)
≈ exp(−jkz)

∫
exp(j2πr · ρ′) exp

[
jkz
(
1− λ2|ρ′|2

)1/2] ×∫
exp [j2π (r− λzρ′) · ρ′′] exp

[
jkz
(
1− λ2|ρ′′|2

)1/2]
F0(ρ

′′) dρ′′P0(ρ
′) dρ′

= exp(−jkz)
∫

exp(j2πr · ρ′)Pz(ρ
′)×

(∫
exp [j2π (r− λzρ′) · ρ′′]Fz(ρ

′′) dρ′′
)

dρ′

F−1

= exp(−jkz)
∫

exp(j2πr · ρ′)Pz(ρ
′)fz(r− λzρ′) dρ′, (A.13)

where the third equality of Eq. (A.13) results from the introduction of variable ρ′′ = ρ−ρ′,

and · denotes inner product. The approximation comes from (for λ = 500 nm and pixel size

ε = 6.45 µm, at Nyquist frequency λ2|ρ|2 ∼ 0.0015� 1) [21]:

(
1− λ2|ρ|2

)1/2 ≈ (1− λ2|ρ′|2
)1/2

+
(
1− λ2|ρ′′|2

)1/2 − λ2ρ′ · ρ′′ − 1. (A.14)

To simplify notation, we neglect constant phase, and substitute ρ′ with ρ in Eq. (A.13):

uz(r) =
∫

exp(j2πr · ρ)Pz(ρ)fz(r− λzρ) dρ. (A.15)

Notice that Eq. (A.15) is a general formula and is applicable to any field that can be decom-

posed as u0(r) = p0(r)f0(r). We now focus on deriving sample diffraction field fz(r−λzρ).
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Sample diffraction

Let g0(r) = exp[jφ(r)], f0(r) = A(r)g0(r) and Eq. (A.15) is applicable to expressing fz(r):

fz(r)
(A.15)
=

∫
exp(j2πr · ρ)Az(ρ)gz(r− λzρ) dρ, (A.16)

where Az(ρ) is the Fourier transform of Az(r), which is the diffraction field of A(r). As-

suming near-field for A(r) and g0(r) respectively, by Eq. (A.10) we have:

Az(r)
(A.10)
≈ A(r) + j

z

2k
∇2A(r) ≈ A(r), (A.17)

gz(r)
(A.10)
≈ exp[jφ(r)]

(
1− z

2k
∇2φ(r)− j

z

2k
∇φ(r) · ∇φ(r)

)
. (A.18)

Since we assume near-field for computing gz(r), the conditions are, following Eq. (A.8):

z

2k
|∇φ(r)|2 � 1 ⇒ |∇φ(r)| �

(
4π

λz

)1/2 (A.9)
≤ 2π

λ
, (A.19)

z

2k

∣∣∇2φ(r)
∣∣ (A.8)
� 1 ⇒ |∇2φ(r)| � 4π

λz
∼ 2π

λz
. (A.20)

Notice we have obtained the two identical constraints when deriving Eq. (3.3) in ray optics,

justifying the conditions in Chapter 3. For sufficiently small λz|ρ| compared to pixel size

ε, we have valid 1st-order approximation for φ(r − λzρ), and 0th-order approximation for

higher orders:

φ(r− λzρ) ≈ φ(r)− λzρ · ∇φ(r),

∇φ(r− λzρ) ≈ ∇φ(r),

∇2φ(r− λzρ) ≈ ∇2φ(r).

(A.21)



156

By Eq. (A.21), we may obtain gz(r− λzρ) from Eq. (A.18), and hence fz(r) in Eq. (A.16)

derives as:

fz(r)
(A.18)
≈

(A.21)

(
1− z

2k
∇2φ(r)− j

z

2k
∇φ(r) · ∇φ(r)

)
exp[jφ(r)]×∫

exp
[
j2π
(
r− z

k
∇φ(r)

)
· ρ
]
Az(ρ) dρ

F−1

≈
(A.17)

(
1− z

2k
∇2φ(r)− j

z

2k
∇φ(r) · ∇φ(r)

)
A
(
r− z

k
∇φ(r)

)
exp[jφ(r)]. (A.22)

We further assume smooth sample amplitude A(r) with a small spectrum with respect

to sensor sampling frequency 1/ε. As a result, A(r − λzρ) ≈ A(r). Thus, and given

Eq. (A.22), we may obtain fz(r− λzρ) as:

fz(r−λzρ)
(A.22)
≈

(A.21)

(
1− z

2k
∇2φ(r)− j

z

2k
∇φ(r) · ∇φ(r)

)
A
(
r− z

k
∇φ(r)

)
exp[−jλzρ·∇φ(r)],

(A.23)

where we neglect the constant phase exp[jφ(r)] in the expression.

We should point out another way of deriving fz(r−λzρ) is to assume near-field directly

on f0(r), instead of imposing separately on its amplitude and phase as shown previously.

Thus, its condition of validity is considered more restrictive. As such, fz(r− λzρ) derives

as:

fz(r−λzρ) ≈
(
1− z

2k
∇2φ(r)− j

z

2k
∇φ(r) · ∇φ(r)

)
A(r) exp[−jλzρ ·∇φ(r)]. (A.24)

Notice the small difference in the amplitude term, i.e., A(r) versus A
(
r− (z/k)∇φ(r)

)
in

Eq. (A.23).
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Final result

With Eq. (A.23), Eq. (A.15) simplifies to:

uz(r)
(A.23)
≈
F−1

A
(
r− z

k
∇φ(r)

)(
1− z

2k
∇2φ(r)− j

z

2k
∇φ(r) · ∇φ(r)

)
pz

(
r− λz

2π
∇φ(r)

)
.

(A.25)

Before deriving the final formula, simply notice reference image I0(r) is taken under colli-

mated illumination A(r) = 1 and φ(r) = 0, and is the diffraction pattern of the wavefront

sensor optics:

I0(r) = |pz(r)|2 . (A.26)

Finally, the intensity image is, by preserving only small amount (for δ � 1, (1+ δ)2+ δ2 ≈

1 + 2δ):

I(r) , |uz(r)|2

(A.25)
=

(A.26)

∣∣∣A(r− z

k
∇φ(r)

)∣∣∣2 I0(r− λz

2π
∇φ(r)

)[(
1− z

2k
∇2φ(r)

)2
+
( z
2k
∇φ(r) · ∇φ(r)

)2]
≈
∣∣∣A(r− z

k
∇φ(r)

)∣∣∣2 I0(r− λz

2π
∇φ(r)

)(
1− z

k
∇2φ(r)

)
. (A.27)

Rearranging, with k = 2π/λ, yields:

I

(
r+

λz

2π
∇φ
)

= |A(r)|2
(
1− λz

2π
∇2φ

)
I0(r). (A.28)

Notice the equivalence between Eq. (A.28) and Eq. (3.3).
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B Parameterized Optical Surfaces

Weconsider three specific types of parameterized lens surfaces to represent lens and freeform

surfaces, yet in theory alternative parameterization forms (see [236]) should also work. Sur-

faces are defined in a Cartesian coordinate system (x, y, z), with z-axis being chosen as the

optical axis (if any).

Recall that we have formulated optical surfaces as parameterized surfaces of parameters

θ in implicit form f(x, y, z;θ) = 0 along with its spatial derivatives∇f(x, y, z;θ). Surface

normals are normalized spatial derivatives, i.e. n = ∇f/ ‖∇f‖.

B.1 Aspheres

Let ρ = x2 + y2 since aspheric surfaces are axially symmetric. The sag distance function

g(ρ) of aspheric surfaces and its derivative with respect to ρ are:

g(ρ) =
cρ

1 +
√
1− αρ

+
n∑

i=2

a2iρ
i, (B.1)

g′(ρ) = c
1 +
√
1− αρ− αρ/2

√
1− αρ

(
1 +
√
1− αρ

)2 +
n∑

i=2

a2iiρ
i−1, (B.2)

where c is the curvature, α = (1 + κ)c2 with κ being the conic coefficient, and a2i’s are

higher-order coefficients. In implicit form:

f(x, y, z;θ) = g(ρ)− z, (B.3)

∇f(x, y, z;θ) = (2g′(ρ)x, 2g′(ρ)y,−1), (B.4)

where differentiable parameters θ = (c, κ, a2i).
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Spherical surfaces are special cases of aspheric surfaces when κ = 0 and a2i = 0 (i =

2, · · · , n). For spherical surfaces, there is a closed-form solution to the ray-surface inter-

section problem in Section 6.2.3, without the need for Newton’s iterative method.

B.2 XY polynomials

XY polynomial surfaces extend lens surface representation beyond axial symmetry. The

implicit surface function f(x, y, z;θ) and its spatial derivatives are:

f(x, y, z;θ) =
J∑

j=0

j∑
i=0

ai,jx
iyj−i + bz2 − z, (B.5)

∇f(x, y, z;θ) =

(
J∑

j=1

j∑
i=0

ai,jix
i−1yj−i,

J∑
j=1

j∑
i=0

ai,j(j − i)xiyj−i−1, 2bz − 1

)
, (B.6)

where differentiable parameters θ = (b, ai,j).

B.3 B-splines

We employ B-splines [237] to represent high degree-of-freedom freeform surfaces. In gen-

eral, the sag distance function g(x, y) is represented as a spline of degree (in our case, it is

three, i.e. the cubic B-spline) on the rectangle area, with predefined number of knots and

knot positions. With that, spline functions Si,j(x, y) are fixed, and g(x, y) is determined by

spline coefficients ci,j:

f(x, y, z;θ) =
n∑
i

m∑
j

ci,jSi,j(x, y)− z, (B.7)

∇f(x, y, z;θ) =

(
n∑
i

m∑
j

ci,j∇xSi,j(x, y),
n∑
i

m∑
j

ci,j∇ySi,j(x, y), −1

)
, (B.8)

where differentiable parameters θ = (ci,j), and the spatial gradients of the spline functions

∇xSi,j and ∇xSi,j are efficiently evaluated via modified de-Boor’s algorithm [237].
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