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Abstract: Deflectometry, as a non-contact, fully optical metrology method, is difficult to
apply to refractive elements due to multi-surface entanglement and precise pose alignment.
Here, we present a computational self-calibration approach to measure parametric lenses using
dual-camera refractive deflectometry, achieved by an accurate, differentiable, and efficient ray
tracing framework for modeling the metrology setup, based on which damped least squares is
utilized to estimate unknown lens shape and pose parameters. We successfully demonstrate
both synthetic and experimental results on singlet lens surface curvature and asphere-freeform
metrology in a transmissive setting.
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1. Introduction

Refractive lens metrology plays an important role in lens manufacturing, quality control, and
reverse engineering. Various techniques have been proposed for general-purpose freeform
optical surface metrology. As a non-interferometric method, deflectometry maintains a strong
interest [1] for its simplicity, low-cost, and insensitivity for environments, from specular surface
measurement using computerized phase shifting screens [2–4] to 2D/3D tomography refractive
index reconstruction using background oriented Schlieren [5–8] and variants [9, 10]. However, it
is difficult to directly apply deflectometry to refractive elements, for the following reasons: (i)
Multi-surface interactions mean that deflection shifts are ambiguous and cannot be attributed
to a single surface; (ii) Lens alignment is sensitive and misalignment may dominate the actual
surface deviations from nominal setup; (iii) Basis representation is required for freeform
surfaces; (iv) Strong refraction leads to large deflections for large-curvature surfaces. There
are works demonstrated for multi-surface reconstruction [11,12], as well as efforts in iterative
optimization [13] and with self-calibration [14–17], pose estimation [18], model-based fitting [19],
dual-camera setups [20,21], adaptive null testing [22], and lens power metrology using refractive
deflectometry [23]. However, these techniques are aimed at different applications, and cannot
fully address all the issues in refractive deflectometry.

Given the metrology measurements (e.g., phase-shifted images, ray intersections, transmitted
wavefront maps), the task is to estimate a set of unknown parameters characterizing the
lens surfaces that fit the measurements reasonably well. This problem of refractive lens
testing can be generally rephrased as an inverse problem. Thus, an automated, transparent,
controllable data analysis process is desired, as a general-purpose computational solution.
Compared to the rapid development of new instruments, computational techniques remain
relatively unexplored, we believe current metrology techniques could be further improved
by advanced computational methods. Of these methods, gradient-based algorithms are of
particular interest for finding a solution to the problem. However, gradient evaluation is
sometimes infeasible using a finite-difference approximation which scales up with the number
of variables. Analytic derivations may not oftentimes be desirable because of the potentially
lengthy formulas [24]. Automatic differentiation, in which gradients are computed automatically,
has been proposed for solving problems efficiently in phase retrieval [25], lens design [26–30],

https://doi.org/10.1364/OA_License_v1


phase microscopy [31], ptychography [32, 33], head-mounted displays calibration [34], and
transparent object reconstruction [35]. By forward modeling the measurements using an automatic
differentiation engine, a computation graph is constructed, to which the gradients can be evaluated
up to numerical precision by repeatedly applying the chain rule [25, 36]. Given the gradients,
starting from a proper initial guess, unknown model parameters can be iteratively updated. This
approach is a general solution to inverse problems, including our problem of interest in this paper.

Direct application of automatic differentiation to our metrology problem is not practical
using existing frameworks such as PyTorch [37], because of a few missing blocks: (i) Accuracy.
Metrology requires accurate modeling of the measurement setup by ray tracing, from camera
to the target lens, and to display screen, with correct shape and pose parameterization. (ii)
Differentiability. The ray tracer needs to be differentiable, such that gradients can be evaluated by
back-propagating the acquired data to the unknown lens parameters. (iii) Efficiency. A memory-
and computationally efficient pipeline satisfying (i)(ii), for a specially crafted inverse solver to
take advantage of.

In this paper, we introduce differentiable refractive deflectometry, a new technique based on
automatic differentiation. To mitigate phase ambiguity, we employ a dual-camera refractive
deflectometry hardware setup, where screen intersections can be obtained by phase-shifting
the display screen (Section 2.1). We build and model the physical metrology setup described
by shape and pose parameters, by ray-tracing multiple refractive surfaces using Snell’s law.
Differentiability is provided using automatic differentiation, yet to ensure efficiency we propose a
differentiable root finder to compute ray-surface intersection (Section 2.2). Utilizing the gradient
information, inverse estimation and analysis can be performed, where damped least squares [38]
is employed to solve for lens parameters from measurement intersections in a self-calibrated
way (Section 2.3), and an uncertainty analysis provides a criterion for understanding solution
stability (Section 2.4). Both synthetic (Section 3.1) and experimental (Section 3.2) results
validate our approach. We believe the proposed framework provides a new, general, extensible,
and reproducible computational solution to automated data analysis for existing and future
deflectometry techniques. Source code and examples will be available at [39].

2. Method

2.1. Problem formulation

The metrology process involves both hardware image acquisition and software, as in Figure 1. The
setup is based on the phase measuring deflectometry [2], but reconfigured in a refractive mode
using a dual-camera setup to introduce view-variant phase measurements for mitigation of surface
ambiguity, because both refractive surfaces contribute to the measurable phase. Figure 1(a)
shows the schematic diagram. A programmable display screen (Apple MacBook Pro 13.3”,
pixel pitch 111.8 µm) shows a set of 90° phase-shifted sinusoidal patterns, with the target lens
placed in front of the screen. Two cameras of F-number f /16 (FLIR GS3-U3-50S5M, pixel
pitch 3.45 µm) are employed to take grayscale images as in Figure 1(b). Gamma-correction is
applied to ensure a linear relationship between screen and image pixel values. Grayscale images
of different phase-shifts (I0°, I90°, I180°, I270°) are obtained, using 90° phase-shifts. These images
encode refractive directional information regarding the testing lens, and hence are processed
using the standard four-step phase shifting method followed by phase unwrapping [40], to retrieve
observed screen locations p̂ = (px, py):

px,y = unwrap
(
arctan

(
I270° − I90°
I0° − I180°

) )
. (1)

This fringe analysis process repeats for x and y respectively to obtain px and py , and repeats
again separately for both cameras i = 1,2, obtaining intersection points p̂1 and p̂2, as inputs to
next step data analysis in Figure 1(d).
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Fig. 1. Dual-camera refractive deflectometry for lens metrology. (a) Hardware setup.
(b) Captured phase-shifted images, from which on-screen intersections p̂i (i = 1,2) are
obtained. (c) A ray tracer models the setup by ray tracing each parameterized refractive
surface, obtaining the modeled intersections pi(θ,φ, t). (d) Unknown θ and pose (φ, t)
are jointly optimized by minimizing the error between pi and p̂i .

The target lens is assumed to be parameterized by θ, with an unknown pose (φ, t). Possible θ
parameterizations are lens curvatures, or freeform coefficients, see Appendix A for details. A ray
tracer models the setup as in Figure 1(c), resulting in modeled intersections pi(θ,φ, t). Given pi

and p̂i , a numerical solver in Figure 1(d) jointly estimates θ,φ, t such that an error metric (also
known as the loss function) is minimized, yielding the metrology values θ∗. Here, we minimize
the least squared error:

θ∗,φ∗, t∗ = arg min
θ,φ,t

2∑
i=1

‖pi(θ,φ, t) − p̂i ‖
2
2 . (2)

We optimize Eq. (2) using damped least squares [38], as will be detailed in Section 2.3. The
following elaborates on computation for pi(·), the modeling.

2.2. Modeling metrology setup

Each object (camera, target lens, screen) is associated with a rigid transformation (R, t) in world
coordinate (screen’s frame), with a rotation matrix R ∈ R3×3 and a translation vector t ∈ R3.
Ray tracing is performed in local frames. For pose estimation, the target lens transformation
(R(φ), t) can be determined from the six degree-of-freedom parameters (φ, t) where φ ∈ R3 are
the rotation angles around (x, y, z) axes. Cameras are treated as perspective pinholes, with the
intrinsic and extrinsic parameters obtained from calibration [41].

Rays are generated for each image pixel by the following procedure:

1. Sampling from camera pinhole model;

2. Intersecting surfaces of the target lens via a root finder, refraction and deflection by Snell’s
law, and hence the outgoing rays are associated with lens parameters θ and pose (R(φ), t);



modeled image captured image absolute difference

Fig. 2. Assuming pinhole camera model and planar screen, our ray tracer reproduces
captured images in high fidelity.

3. Reaching towards a presumably planar display screen, obtaining the modeled intersections
pi(θ,φ, t) for both cameras.

Of these steps, a root finder to determine the ray-surface intersection is the most critical component
for aspheres and freeform surfaces, which do not have closed-form analytical solutions. The
intersection problem requires solving for intersection (x, y, z) and a ray marching distance t
for optical surface f (x, y, z; θ) = 0, given a ray (o,d) of origin o = (ox,oy,oz) and direction
d = (dx, dy, dz) of unit length. Mathematically:

find t > 0 subject to f (x, y, z; θ) = f (o + td; θ) = 0. (3)

Equation (3) can be solved using an iterative root finder, with the iterations directly unrolled for
gradients, so that ray marching distances t can be related through lens parameters θ via automatic
differentiation. However, this straightforward approach is not efficient and is memory consuming
because of storing the intermediate iteration variables and their derivatives for every ray in the
image. Fortunately, there is an analytic approach for the desired gradient to be computed outside
of automatic differentiation. Denote the solution to Eq. (3) as t∗, and exploit the implicit function
theorem for differentiation w.r.t. θ:

f (o + t∗(θ)d; θ) = 0 and
(
∇ f · d

) ∂t∗
∂θ
+
∂ f
∂θ
= 0. (4)

Rearranging above, yields an analytic formula for gradient:

∂t∗

∂θ
= −

1
∇ f · d

∂ f
∂θ
. (5)

In other words, we can first compute t∗ without automatic differentiation (and no intermediate
variables stored), and then amend its gradient back to automatic differentiation by Eq. (5). We
employ Newton’s method for obtaining t∗, initialized by a non-singular estimate t(0) = (z f −oz)/dz ,
with iteration stops when the residual is smaller than tolerance. The method converges in a few
iterations. When properly setup, with no target lens present, the modeled image matches the
real image reasonably well as in Figure 2, demonstrating the physical realism of the ray tracer.
Blurry edges are from diffraction, which is ignored in this paper, since we describe a ray optics
approach.

2.3. Optimization using damped least squares

In this sub-section, we slightly abuse the notation by letting θ B (θ,φ, t). Our target is to estimate
θ ∈ Rn in Eq. (2) for the following using damped least squares [38]:

θ∗ = arg min
θ

2∑
i=1

‖pi(θ) − p̂i ‖
2
2, (6)



where recall that function pi(·) : Rn 7→ Rm maps from the n unknown parameters to the m
modeled intersection points, and m � n. To obtain an iterative solution to Eq. (6), at current
estimate θ(k), we solve for a small change of ∆θ to obtain θ(k+1), such that:

θ(k+1) = θ(k) + ∆θ, where ∆θ = arg min
∆θ

2∑
i=1

‖pi(θ
(k+1)) − p̂i ‖

2
2 . (7)

The iteration stops when a stopping criterion is met. At each step k, each non-linear function
pi(·) is approximated using a first-order Taylor expansion:

pi(θ
(k+1)) = pi(θ

(k) + ∆θ) ≈ pi(θ
(k)) + Ji∆θ, where Jacobian Ji =

∂pi

∂θ
∈ Rm×n. (8)

With Eq. (8), the least squares problem in Eq. (7) can be solved using the damped normal equation
to ensure robustness, by adding a diagonal matrix D ∈ Rn×n scaled by an iteratively changing
damping factor ρ > 0: ( 2∑

i=1
JTi Ji + ρD

)
∆θ =

2∑
i=1

JTi
(
p̂i − pi(θ

(k))

)
. (9)

In practice, we found D being an identity matrix yields satisfactory results.
Features of automatic differentiation can be employed to efficiently solve the linear system

in Eq. (9). Notice that the Jacobian Ji is a tall matrix (since m � n), and it can be efficiently
evaluated in a column-wise fashion using the forward-mode, hence obtaining JTi Ji on the
left-hand-side, whereas the right-hand-side can be obtained by reverse-mode without explicitly
constructing JTi . These speed improvements in terms of efficiency would not be possible without
automatic differentiation.

Our framework and the solver are implemented in PyTorch [37], as the automatic differentiation
framework provides a straightforward way to accurately evaluate gradients. For a small set
of θ ∈ Rn when n < 20, the solver converges in a few seconds on a modern GPU, indicating
practical usage of the method for fast metrology applications. Further speed improvements are
possible using optimized high-performance code or on advanced computing platforms.

2.4. Uncertainty variance analysis

We can perform an uncertainty analysis on Eq. (6) to understand solution stability. Analyzing the
derivatives (ignoring constants):

∂loss =
2∑
i=1

(pi(θ) − p̂i) · Ji∂θ = v · ∂θ, where v =
2∑
i=1

JTi (pi(θ) − p̂i). (10)

With an independence assumption on θ ∈ Rn (when properly parameterized) and equal prior
probabilities, denoting diag(·) as a diagonal matrix formed by the corresponding vector, the
uncertainty variance of each element of variable θ, is hence calculated as:

σ2
loss = vTdiag(σ2

θ )v ⇒ σ2
θ =
σ2

loss
n|v|2

, (11)

where σ2
loss can be calculated from the optimal point, and |v|2 is the element-wise squared of the

vector v.
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Fig. 3. Lens curvature θ = (c1, c2) metrology using synthetic data. Intersection error
maps |pi − p̂i | are shown. Metrology data analysis is sensitive to minor misalignment,
and a self-calibration approach is preferable by jointly optimizing θ,φ, t.

3. Results

3.1. Synthetic results

Verification experiments are performed in simulation to verify the proposed self-calibration
method. Figure 3 simulates a convex-concave lens (Thorlabs LE1234) under metrology test for
curvature estimation, where the desired parameters θ = (c1, c2) are the two surface curvatures c1
and c2. The lens suffered from a minor misalignment perturbation φ = (−0.3°,0.5°,0°) and t =
t0+∆t where t0 is obtained from triangulation but t is deviated by∆t = (0.5 mm,0.5 mm,0.5 mm).
Synthetic images were corrupted by Gaussian noise. When assuming perfect alignment (φ = 0,
∆t = 0, i.e., only optimizing θ), the solver cannot be employed to predict the correct curvatures
because of misalignment systematic errors in the measurement, whereas a self-calibration
estimation (φ, t,θ) is successful in error reduction, and a more accurate curvature estimate as
in the table. This is illustrated in the final errors of the two methods, that the self-calibration
approach (optimizing θ,φ, t) produces a final error of more than a magnitude smaller compared
to the non self-calibrated approach optimizing θ only. This demonstrates the superiority of joint
shape and pose parameter estimation, which would not be viable without our accurate modeling
of the setup.

Similar conclusion also holds for freeform metrology, as in Figure 4 where an asphere-freeform
lens is simulated, suffered from the same misalignment (φ, t), where the task is to estimate the
cubic B-spline freeform surface coefficients θ, knowing the asphere profile. This one-surface
constraint is necessary to limit the solution space, in that two arbitrary freeform surfaces can easily
over-fit p̂i , while being rarely practical in reality. When optimizing only θ, the misalignment
affects metrology results. In contrast, a joint optimization of both θ and (φ, t) significantly
reduces the error, showing the benefit of a self-calibration approach.

3.2. Experimental results

Experimental results are supportive. Figure 5 shows experimental results on lens curvature
metrology for a convex-concave lens (Thorlabs LE1234). The lens was amounted and placed in
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Fig. 5. Experimental lens curvature metrology for LE1234.

front of the screen at a distance of approximately 5 cm. The target lens pose (φ, t0+∆t) is assumed
to be in perfect angular alignment φ = 0, but suffered from minor displacement errors (∆t , 0),
with the nominal origin t0 computed from dual-camera triangulation. Initialized from planar
surfaces (c1 = c2 = ∞), our optimized curvatures are close to the manufacturer design parameters
(Table 1), though the fitting error increases slightly at lens boundary. Two other Thorlabs lenses
were under the same test, but with both φ and ∆t optimized. Surface curvatures metrology
results are shown in Table 1, our metrology results were close to the nominal manufacturer’s



specifications, demonstrating the feasibility of our method to measure multi-surface curvatures.

Table 1. Experimental singlet lens curvature metrology results.

[mm] / lens name LA1986 LE1234 LF1822

focal length 125 100 -100

ours (c1, c2) (62.10, 828.39) (-82.41, -32.61) (34.68, 101.41)

truth (c1, c2) (64.38, ∞) (-82.23, -32.14) (33.65, 100.00)
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Fig. 6. Experimental asphere-freeform lens metrology. (a) Raw images with the
regions of interest (contoured by red lines) and optimization intersection errors. (b)
Reconstruction comparison against CMM metrology results as ground truth.

Freeform lens experimental metrology results are also encouraging. The target optics is an
asphere-freeform lens, whose two surfaces were discretely sampled and measured by a coordinate
measuring machine (CMM) machine as ground truth. This freeform lens was mounted and placed



approximately 5 cm in front of the screen for measurement (see Figure 1(b)). As in simulation, we
assume that an approximate surface profile of the asphere is given, and would like to solve for the
freeform surface, with the pose unknown. Results are shown in Figure 6. Our solver optimizes
the metrology data to a small residual intersection errors for both cameras, as in Figure 6(a).
Though wrongly initialized for the asphere surface, the solver optimizes back to the correct
orientation, and the reconstruction surfaces are visually similar to the ground truth in Figure 6(b),
but are spatially transformed due to different alignment in deflectometry experiment and CMM
data metrology, and double-surface entanglement as well in that the solution space is too huge to
over-fit the data. Yet, our method provides an initial method to qualitatively profile both surfaces,
when there is limited prior knowledge available. We have demonstrated the capability of the
proposed method for surface metrology, especially for surface curvature estimations.

4. Discussion and Conclusion

Given current results, several avenues for future improvements are apparent. The underlining
principle of this paper shares a high similarity with methods in profilometry, from which common
issues such as influence of phase coding and variation of light transmittance can be analyzed
and resolved [42]. On the hardware side, current image acquisition pipeline could be extended
to a multi-angle tomography setup, or encode/decode intersections instantaneously to improve
acquisition speed [43]. Doublets are also possible by incorporating ours into a data fusion
pipeline [44]. In software, thanks to automatic differentiation, attainable gradient information
allows for a family of solvers to be employed for accelerated convergence, compromising different
trade-off factors. We may also extend ray-surface interaction beyond pure refraction and take
optical aberrations into consideration [45, 46]. Suitable parameterization is also important for a
full characterization of optical elements. Lastly, uncertainty analysis deserves more attention,
as deflectometry itself requires a computationally heavy procedure which may introduce data
misinterpretation.

In conclusion, we have demonstrated differentiable refractive deflectometry for self-calibrated
lens metrology. Given the phase-shifting images, a fringe analysis provides measurement
intersection points for the method to proceed, where both the unknown lens parameters and
the pose are jointly optimized using a differentiable ray tracer. We believe the opened up new
computational possibilities for lens metrology data analysis and other relevant application areas.
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A. Lens parameterization

A.1. Surface parameterization

We parameterize each lens surface in the implicit form:

f (x, y, z; θ) = 0. (12)

We consider three specific types of parameterized lens surfaces to represent lens and freeform
surfaces, yet in theory alternative parameterization forms (see [47]) should also work. Surfaces
are defined in a Cartesian coordinate system (x, y, z), with z-axis being chosen as the optical axis
(if any).



A.1.1. Aspheres

Let ρ = x2 + y2 since aspheric surfaces are axially symmetric. The sag distance function s(ρ) of
aspheric surfaces and its derivative with respect to ρ are:

s(ρ) =
cρ

1 +
√

1 − αρ
+

n∑
i=2

a2iρ
i, (13)

s′(ρ) = c
1 +

√
1 − αρ − αρ/2√

1 − αρ
(
1 +

√
1 − αρ

) 2 +

n∑
i=2

a2iiρi−1, (14)

where c is the curvature, α = (1 + κ)c2 with κ being the conic coefficient, and a2i’s are higher-
order coefficients. Spherical surfaces are special cases of aspheric surfaces, with κ = 0 and
a2i = 0 (i = 2, · · · ,n). In implicit form:

f (x, y, z; θ) = s(ρ) − z, (15)
∇ f (x, y, z; θ) = (2s′(ρ)x,2s′(ρ)y,−1) , (16)

where differentiable parameters θ = (c, κ,a2i).

A.1.2. XY polynomials

XY polynomial surfaces extend lens surface representation beyond axial symmetry. The implicit
surface function f (x, y, z; θ) and its spatial derivatives are:

f (x, y, z; θ) =
J∑
j=0

j∑
i=0

ai, j xiy j−i + bz2 − z, (17)

∇ f (x, y, z; θ) = ©«
J∑
j=1

j∑
i=0

ai, jixi−1y j−i,

J∑
j=1

j∑
i=0

ai, j( j − i)xiy j−i−1,2bz − 1ª®¬ , (18)

where differentiable parameters θ = (b,ai, j).

A.1.3. B-splines

We employ B-splines [48] to represent high degree-of-freedom freeform surfaces. In general, the
sag distance function g(x, y) is represented as a spline of degree (in our case, it is three, i.e. the
cubic B-spline) on the rectangle area, with predefined number of knots and knot positions. With
that, spline functions Si, j(x, y) are fixed, and g(x, y) is determined by spline coefficients ci, j :

f (x, y, z; θ) =
n∑
i

m∑
j

ci, jSi, j(x, y) − z, (19)

∇ f (x, y, z; θ) =

(
n∑
i

m∑
j

ci, j∇xSi, j(x, y),
n∑
i

m∑
j

ci, j∇ySi, j(x, y),−1

)
, (20)

where differentiable parameters θ = (ci, j), and the spatial gradients of the spline functions ∇xSi, j
and ∇xSi, j are efficiently evaluated via modified de-Boor’s algorithm [48].

A.2. Lens type

In simulation and experiments, two types of lenses were considered:



• Singlet spherical lens, where the two surface curvatures are of interest, and θ = (c1, c2).

• Asphere-freeform lens, where one surface is asphere (parameterized by XY polynomial
coefficients θXY), while another is cubic B-spline freeform surface (parameterized by
θspline). In simulation θ = θspline and in experiment θ = (θXY,θspline).

We also assumed the following parameters are known: (i) lens diameter (ii) center thickness (iii)
material refractive index at 562 nm. Although these additional parameters could also be jointly
optimized using the proposed framework.
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