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Abstract: We implement a ray tracing engine using automatic differentiation, which
enables accurate derivatives to be evaluated via back-propagation. Exploiting the gradients,
multi-variable designs (e.g. freeforms) can be optimized by gradient descent. © 2021 The
Author(s)

1. Lens design optimization by back-propagation

In this work, we consider non diffraction-limited lens system design with sequential ray tracing. In this situation,
geometric optics is the basic principle where sampled rays pass through a known sequence of parameterized optical
surfaces before reaching to the image sensor. For such a parameterized design to evolve in a feasible parameter
search space in the hope of reducing a given merit function, custom techniques (e.g., damped least squares [1])
are required to perform this optimization. Such process usually involves multiple gradient evaluations, that are
obtained via finite difference approximation in most ray tracing engines.

Here, we propose to use back-propagation [2, 3] together with gradient descent as an alternative approach for
general design optimization. Back-propagation, or known as the reverse-mode in automatic differentiation [4], is a
widely used algorithm for computing gradients in training neural networks. Conceptually speaking, this technique
constructs a computational graph where variables are connected according to computations. In back-propagation,
the previously constructed computational graph will be looped reversely starting from a final node, and the target
gradients are computed in an efficient yet numerically accurate way, without using approximations or repetitive
primal evaluations (i.e., the forward ray tracing in our case) as the case in finite difference, and hence enabling a
more efficient and accurate gradient evaluation for later usage.

Inspired by this computation spirit, we investigate using back-propagation for design optimization, especially
for freeform designs where a large amount of parameters are being optimized, leveraging the advantages of back-
propagation. To this purpose, we implement a ray tracing engine on top of automatic differentiation. A lens system
is parameterized by a vector variable θθθ , which is a collection of total parameters for multiple optical surfaces,
examples are surface curvatures, air spacing, freeform coefficients, and etc. By sampling rays originated from
different angles, spot diagram p(θθθ), i.e., intersections on the image sensor, are obtained as a function of θθθ .

To optimize or tolerancing a design, additional analysis needs to be performed, for example in spot diagram
analysis a root-mean-square (RMS) spot error is obtained by taking pi as inputs at field of view i, and outputs an
error metric ε(θθθ) ∈ R, given a deterministic error function f (·). This is known as the merit function:

ε(θθθ) = ∑
i

f (pi(θθθ)), and its derivatives by the chain rule:
∂ε

∂θθθ
= ∑

i

∂pi

∂θθθ

∂ f
∂pi

. (1)

Using automatic differentiation, for a given parameter value θθθ , both ε(θθθ) and ∂ε/∂θθθ in Eq. (1) can be obtained
numerically, offering an intrinsic way for us to employ this information for purpose-specific applications, such as
design optimization or local sensitivity analysis via the Jacobian matrices.

In design optimization, the goal is to find a set of optimal parameters θθθ ∗ that minimizes ε(θθθ) in Eq. (1). Once
∂ε/∂θθθ is available, gradient descent can be employed for this purpose, given a learning rate α , and hence doing
back-propagation to update the design parameters:

θθθ
∗ = argmin

θθθ

ε(θθθ), iteratively solved by θθθ
(k+1)← θθθ

(k)−α
∂ε

∂θθθ

∣∣∣∣
θθθ=θθθ (k)

. (2)

Alternatives of Eq. (2) may be utilized instead of simple gradient descent. We employed the Adam optimizer [5].

2. Example design

We consider the problem of optimizing a plano-convex singlet (entrance pupil diameter 20 mm, front surface
curvature 0.0464 mm−1) using the proposed ray tracing engine, by making its back surface as a cubic B-spline



freeform surface (51×51 coefficients), with the knot positions being a fixed grid distribution. Our task is to opti-
mize the freeform surface to reduce the total aberration at a skew angle of 5°±2°. Here, the B-spline coefficients
are the variables θθθ , and ε(θθθ) is a summation of all the RMS spot errors at 5×5 viewing angles ranging from 3°
to 7°, at a wavelength of λ = 587.6nm. Figure 1 illustrates the initial and optimized setups with ray tracing, as
well as the spot diagrams at different field of views. As seen, the optimized lens with the freeform surface suffer
from smaller aberrations. Figure 2 visualizes the optimized freeform surface, showing a bi-conic shape wavefront,
demonstrating the success of our optimization to minimize skew angle aberrations.
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Initial: Mean RMS error 257.29 µm Optimized: Mean RMS error 80.28 µm

Fig. 1: Design optimization by gradient descending θθθ . Spot diagram units are in µm.
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Fig. 2: Optimized freeform surface (units are in mm), and ε(θθθ) with respect to iteration k.
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