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Abstract. Existing Particle Imaging Velocimetry techniques require the
use of high-speed cameras to reconstruct time-resolved fluid flows. These
cameras provide high-resolution images at high frame rates, which gen-
erates bandwidth and memory issues. By capturing only changes in the
brightness with a very low latency and at low data rate, event-based
cameras have the ability to tackle such issues. In this paper, we present
a new framework that retrieves dense 3D measurements of the fluid ve-
locity field using a pair of event-based cameras. First, we track particles
inside the two event sequences in order to estimate their 2D velocity in
the two sequences of images. A stereo-matching step is then performed to
retrieve their 3D positions. These intermediate outputs are incorporated
into an optimization framework that also includes physically plausible
regularizers, in order to retrieve the 3D velocity field. Extensive experi-
ments on both simulated and real data demonstrate the efficacy of our
approach.

Keywords: Fluid imaging, Event-based camera, Particle imaging ve-
locimetry, Stereo-PTV, Optimization

1 Introduction

Fluid imaging is a topic of interest for several scientific and engineering areas
like fluid dynamic, combustion, biology, computer vision and graphics. The cap-
ture of the 3D fluid flow is a common requirement to characterize the fluid
and its motion regardless the application domain. Despite the large number of
contributions to this field, retrieving a 3D dense measurement of the velocity
vector over the fluid remains a challenging task. Different techniques have been
proposed to capture and measure the fluid motion. The most commonly used
approach involves introducing tracers such as dye, smoke, or particles into the
studied fluid. Then by tracking the advected motion of the tracers, the fluid
flows are retrieved. Particle Tracking Velocimetry (PTV) and Particle Imaging
Velocimetry (PIV) are the two most popular techniques among the tracer-based
approaches [1,52,13]. The PTV methods follow a Lagrangian formalism, where
each particle is tracked individually. On the other hand, the PIV techniques re-
trieve the velocity in an Eulerian fashion by tracking the particles as a group,
like a texture patch.
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In basic PIV approaches [46], a thin slice of the fluid is illuminated by a
laser sheet. From an in-plane tracking of the illuminated particles, a dense
measurement of two components of the motion field can be retrieved inside
the illuminated slice of the volume. However, turbulent or unsteady flows can-
not be fully characterized with such planar measurements. To solve this issue,
several variants of PIV have been proposed to extend the velocity retrieval to
the third spatial dimension (a detailed discussion about such techniques is pro-
vided in the next section). Overall, these techniques can be regrouped into two
families: multiple-cameras based approaches like tomographic PIV (tomo-PIV)
[18,61] and single-camera based techniques such as light-field (or plenoptic) PIV
[19,66,42] or structured-light PIV [70,69,2]. Among these, tomo-PIV is consid-
ered the established reference technology for the velocity 3D measurement, since
it provides high spatial and temporal resolutions. However, it requires to have a
precise calibration and synchronization of the used cameras. Moreover, for the
tomo-PIV setups, the depth-of-field is a real limitation on the size of the volume
of interest. On top of that, setup needed to reach a high temporal resolution can
be very costly. Finally, due to space limitation on the hardware setup, only a few
cameras (4-6) can be used, which limits the reconstruction quality. Although the
proposed single-camera based techniques overcame the main shortcomings of the
tomo-PIV (calibration, synchronization and the space limitation), they still have
some limitations. The plenoptic PIV systems have significantly lower spatial res-
olution. Moreover, the current light-field cameras have low frame rates, which
reduces the temporal resolution of the retrieved flow field. Furthermore, the main
limitation of the structured-light PIV methods, like the RainbowPIV [70], is also
the limited spatial resolution along the axial dimension.

To deal with many common flows, the cameras used in PIV systems should
have a sufficiently high frame rate. However, the high speed cameras are rel-
atively expensive, which particularly impacts the cost of multi-camera setups
like tomo-PIV. The large bandwidth and storage requirements of such solutions
pose additional difficulties. In order to address these issues, this paper intro-
duces a new stereo-PIV technique based on two event cameras. Thanks to some
outstanding properties like a very low latency (1 µs) and a low power consump-
tion [30,49,8,64], event cameras are well suited for fast motions detection and
tracking. After capturing two sequences of event images using two different cam-
eras, we propose a new framework that retrieves the velocity field of the fluid
with a high time resolution. Indeed, the events based cameras can react very fast
to motions given their very low latency. Thus, no motion blur can be observed
with such cameras. In addition, we have a complete control over the time interval
over which the events are aggregated.

The main technical contributions of this work are:

1. To the best of our knowledge, we propose the first event-camera based stereo-
PIV setup for measuring time-resolved fluid flows.

2. We formulate a pertinent data term that links the event images to the 3D
fluid velocity vector field.
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3. We propose an optimization framework to retrieve the fluid velocity field
from the event images. This framework include physically-based priors to
solve the ill-posed inverse problem.

4. We demonstrate the accuracy of our approach on both simulated and real
fluid flows.

2 Related work

Fluid imaging is an active and challenging research topic for several domains
such as fluid dynamics, combustion, biology, computer vision and graphics. To
capture a fluid and its flow, several techniques have been applied in order
to retrieve some of the fluid characteristics like the temperature, the density,
the species concentration (scalar fields), the velocity or the vorticity (vector
fields) [67]. In computer vision and graphics, an initial effort was focused on
retrieving some physical properties of the fluid, from which a good visualization
can be obtained. Thus, the captured properties vary from one fluid to another.
As examples, light emission, refractive index, scattering density, and dye con-
centration have been reconstructed to visualize flames [33,26], air plumes [34,4],
liquid surfaces [32,68,44], smoke [27,25] and fluid mixtures [24,23]. More recently,
the interest has shifted to the estimation of velocity field, in order to improve the
scalar density reconstruction [68,16,17,72], or as the final output [4,23,70,69,37].

Fluid velocity estimation techniques are mostly tracer-based approaches.
Tracers like particles or dye are introduced into the fluid. Then, the velocity
field of the fluid is recovered by tracking those tracers. However, tracer-free
methods have been also investigated. Examples of such methods, Background
Oriented Schlieren (BOS) [56,4,51] and Schlieren PIV [35,10], use the variations
of the refractive index of the fluid as a ”tracer” of the fluid motion.

Among the tracer-based methods, Particle Imaging Velocimetry (PIV) is
the most commonly used [1,52]. During the last three decades, several tech-
niques have been proposed to extend the standard PIV [46], where only two
components of the velocity are measured in a thin slice of the volume (2D-
2C). Stereoscopic PIV (Stereo-PIV) [50] records the region of interest using two
synchronized cameras, which allows to retreive the out-of-plane velocity com-
ponent (2D-3C). The 3D scanning PIV (SPIV) technique [12,31], performs a
standard PIV reconstruction on a large set of parallel light-sheet planes that
samples the volume. A fast scanning laser is used to illuminate those planes at
a high scanning rate. This approach however still retrieves only two-dimensions
of the velocity (3D-2C). Moreover, at each time only one depth layer is scanned.
More sophisticated techniques that can resolve 3D volumes include holographic
PIV [43,29], defocusing digital PIV [47,48,71], synthetic aperture PIV [6], tomo-
graphic PIV (tomo-PIV) [18,61], structured-light PIV [70,69,2], and plenoptic
(light-field) PIV [19,66,42]. These approaches can be multi-view based, like the
widely used tomo-PIV. In this case, the hardware setup induces some difficul-
ties like the calibration and synchronization of the cameras, as well as a limited
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space. Moreover, the reconstructed volume is usually small, since it should be
included in the field of view of all cameras. On the other hand, mono-camera
PIV approaches encode the depth information using color/intensity or using
light-field camera. In the case of Rainbow PIV [70], the lower sensitivity of the
camera to the wavelength change and the light scattering limit the depth reso-
lution of the retrieved velocity field. Similar drawback can be observed with the
intensity-coded PIV setup [2]. Otherwise, the plenoptic PIV systems have a more
limited spatial resolution, since they capture on the same image several copies
of the volume from different angles. They also suffer from a reduced temporal
resolution, given the frame rate of current light-field cameras.

On the other hand, Particle Tracking Velocimetry (PTV) techniques [13,39]
work by tracking individual particles to retrieve their velocity. The obtained
flow field is then sampled according to these particles. Some variational ap-
proaches [28,21,63] were proposed to optimize the 3D flow field from particle
tracks in order to estimate the flow in all the volume. Another advantage of us-
ing variational approaches is to incorporate physical constraints as prior in the
optimization framework. This has been done in several PTV and PIV techniques
[58,60,59,3,28,70,38].
The major limitation of PTV approaches has been the low number of particles
that can be tracked. However, the recent shake-the-box method [62] succeeded
into tracking particles with high densities, similar to those in PIV techniques.

All of these techniques require the use of high speed cameras, in order to
reconstruct many real-world flow phenomena. Combined with the high resolu-
tion requirement, the large data generated at each capture (typically a rate of
2 GB/s) induces high bandwidth and large memory specifications for the used
camera(s). To address this issue, [15] presented a proof-of-concept study about
the use of dynamic vision sensor (DVS) in the capture and the tracking of par-
ticles. The proposed algorithm is suitable only for the 2D tracking of a sparse
set of fully resolved particles (10 pixels diameter) in the volume. Recently, [11]
proposed another approach based on Kalman filters to track neutrally buoyant
soap bubbles from three cameras. This technique can handle the tracking and
3D reconstruction of under-resolved particles, which allows the larger studied
volumes. However, this approach is not well-suited for high particle seeding den-
sities, and it is not able to provide a dense measurement of the velocity field. In
this paper, we propose a new framework that reconstructs a dense time-resolved
3D fluid flows from two event-based cameras.

Event cameras (a.k.a dynamic vision sensors) were first developed by [41] to
mimic the retina of eyes, which is more sensitive to motions. These cameras
respond only to the brightness change in the scene asynchronously and indepen-
dently for each pixel. Event cameras have a very low latency (up to 1 µs), a
low power consumption, and a high dynamic range [30,49,8,64]. These proper-
ties are major assets to fulfill several computer vision tasks. For instance, event
cameras were introduced for object and feature tracking [14,22], depth estima-
tion [57,53], optical flow estimation [7,5,74], high dynamic range imaging [55]
and many other applications. An exhaustive survey about event camera appli-
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cations can be found in [20]. In our framework, the event cameras are used for
the particle tracking and optical flow estimation.

To track micro-particles using an event-camera, [45] estimate the particles’
positions using an event-based Hough circle transform, combined with a centroid
(a centre-of-mass algorithm). [9] apply an event-based visual flow algorithm [7]
in order to track particles imaged by a full-field Optical Coherence Tomography
(OCT) setup. This visual flow algorithm estimates the normal flow by fitting the
events to a plane in the x-y-t space. The optical flow is then estimated as the
slope of this plane. However, these two approaches reconstruct only 2D velocities,
and are limited to the tracking of sparse particle densities.

To improve the optical flow estimation from event sequences, [73,75] propose
to regroup events into features in a probabilistic way. This assignment is governed
by the length of the optical flow. The latter is computed as a maximization of the
expectation of all these assignments. An affine fit is used to model the features
deformation. In our approach we use this technique to compute the optical flow
over the event sequences.

3 Proposed method

3.1 System overview

We propose a new particle tracking velocimetry technique for the reconstruc-
tion of dense 3D fluid flows captured by two event-cameras. Our framework,
illustrated in Figure 1, is mainly composed of four modules: (1) a Cameras
calibration step, which entails estimation of the camera calibration matrices
for both event cameras. (2) Event feature tracking for a 2D particle velocity
reconstruction. In this step, we apply feature tracking algorithms proposed by
[73,75] in order to track the particles in the two captured sequences of event
images. Then the 2D particle velocity in the two cameras image planes is recov-
ered. (3) A Stereo matching step is performed using a double triangulation
method to find the position of the particles in the 3D volume. (4) 3D veloc-
ity field reconstruction. This last module is an optimization framework that
includes our derived data fitting term, and a physically constrained 3D optical
flow model. In the following section, we provide a detailed presentation of the
three main modules of our framework.

3.2 Image formation model

In this section, we derive a model that links the 3D fluid velocity field to the
captured event sequences.

Event camera model. Each pixel (x, y) of an event camera independently
generates an event ei = (x, y, ti, ρi), when detecting a brightness change higher
than a pre-defined threshold τ :

|L(x, y, ti)− L(x, y, tprevious)| ≥ τ (1)
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Fig. 1: Overview of the architecture of our stereo-event PTV framework. The two
event cameras capture the motion of the particles inside the fluid. They generate
two sequence of events, represented here in the x-y-t space. A 2D tracking step
provide the 2D velocity of the captured particles for each sequence. Then, using
a stereo matching step we build a sparse 3D velocity field that we use in order
to estimate the dense 3D fluid flow.

where L(x, y, ti) is the brightness (log intensity) of the pixel (x, y) at time ti,
tprevious is the time of occurrence of the previous event and ρi = ±1 is the event
polarity corresponding to the sign of the brightness change.

Camera calibration. Each point (X,Y, Z) in the fluid is projected onto a pixel
(xk, yk) of the kth camera image plane:

α ·
[
xk, yk, 1

]T
= Mk

[
X, Y, Z, 1

]T
(2)

where α is a scale factor, and Mk is a 4 × 3 matrix describing the kth camera
calibration matrix (intrinsic + extrinsic parameters). This matrix is obtained
during the calibration step. Note that we use lowercase letters for 2D pixel
coordinates and the Uppercase for the 3D voxel positions.

These camera calibration matrices are also used to project the 3D fluid veloc-
ity field u = [uX ,uY ,uZ ]T onto the image planes of the cameras. The obtained
2D velocity fields are denoted vk. Given that the velocity can only be measured
for the positions where particles are present, we can write:

vk = pk � (Mku) (3)

where � is the Hadamard product, and pk is the particle occupancy distribution.
pk equals to 1 when a particle is mapped to the kth camera.

The 3D velocity field can be retrieved by solving the linear system given
in Equation 3 for the two event cameras. However, the projected velocities vk
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are not directly obtained from the event cameras. In the following section, we
explain the approach used to estimate these velocities from the event sequences.

3.3 Event-based particle tracking

The main objective of this step is to recover (v1 and v2), the 2D velocity fields of
the particles in the two captured event sequences. First, we pre-process the event
sequences by applying a circular averaging filter in order to simplify the detection
of the particles centers. The size of this filter is chosen according to the particle
size in the images. At this stage the center coordinates of each particle in the two
event sequences can be easily determined. After this prepossessing step, we use
the event-based optical flow method introduced by [73,75], in order to track the
particles in the image planes, and then retrieve the velocities v1 and v2. In this
approach, the events {ei} are associated with a set of features representing the
particles in our case. All events associated with a given particle P are within a
spatio-temporal window, where the average flow v(P, t) is assumed to be constant
if the temporal dimension [t, t+∆t] of the window is small enough. This window
can be written as:

W (R, t) := {ei | ti ≤ t, ‖(xi, yi)− tiv(P, t)− (xc, yc)‖ ≤ R} , (4)

where R and (xc, yc) are respectively the spatial extension (radius) and the
coordinate of the particle center in the image plane.

The association of events to particles is defined in terms of the flow v(P, t)
that we would like to estimate: events corresponding to the same 3D point should
propagate backward onto the same image position. [73] propose an Expectation
Maximization algorithm to solve this flow constraint. In the first step (E step),
they update the association between events and the particles, given a fixed flow
v(P, t). Then, this flow is updated in the second step (M step), using the new
matches between events and particles. More details about the implementation of
this algorithm can be found in [73,75]. By applying this algorithm for tracking
all particles and for all time stamps, we can recover the 2D velocity fields v1 and
v2.

3.4 Stereo matching

The aim of this step is on one hand to find the particle positions in 3D space.
On the other hand, the retrieved 2D velocity field can be backprojected to get
an estimation of the 3D velocity field u for the positions corresponding to the
particles. We perform this stereo matching step using a triangulation procedure
[36,40]. The main idea is to build for each particle a pixel-to-line transformation
and then find the 3D positions that minimizes the total distances to all the lines.

For each identified particle Pi in an image captured by camera 1, its center
(x1i,c, y

1
i,c) is used to backproject a line of sight to the different planes of the

volume of interest. Then, the intersection points of this line with the different



8 Y. Wang, R. Idoughi and W. Heidrich

planes of the volume will be reprojected on the corresponding image frame cap-
tured by camera 2. Candidate particles Pj are selected in camera 2 only if the
distance d1−2

ij between the particle’s center on the camera 2 and the reprojected
points corresponding to the center of particles Pi on the camera 1 are under a
given threshold distance (2 pixels, for example). Similarly, we perform the in-
verse mapping, a particle Pi on the camera 2 is backprojected to the fluid volume
then reprojected to the image plane of the camera 1 to find candidates particles
Pi, under the constraint that the distance d2−1

ij is less than the fixed thresh-
old. The correspondence between the two cameras are obtained by minimize the
summation of all the distances. This is formulated as a simple linear assignment
problem, and solved by using the Hungarian algorithm:

minCijd
1−2
ij + Cijd

2−1
ij (5)

subject to


∑

j Cij ≤ 1∑
i Cij ≤ 1

Cij ∈ {0, 1}

From this stereo matching step, we estimate the particles 3D position as well
as the velocity of those particles. However in practice, because of occlusions and
noise, some of the particles may not be matched or, worse, they might be be
mismatched. This is what motivate us to use a variational approach to improve
the particles’ velocity estimation and also to extend the velocity estimation to
whole volume of interest.

3.5 3D velocimetry reconstruction

We propose to reconstruct the 3D fluid velocity field u = [uX ,uY ,uZ ]T for
each voxel of the volume of interest, by solving Equation 3 using the two event
cameras, and by combining all time frames. In order to handle this ill-posed
inverse problem, we introduce several regularizer terms, directly derived from
the physical properties of the fluid.

Data fitting-term. As mentioned previously, we define the data-fitting term
from Equation 3. This term translates that the projection of the 3D velocity
field to each camera image plane, should be consistent with the 2D velocity field
observed with that camera. The data-fitting term can then be written as follows:

Edata(u) = 1
2‖p� (M1u)− v1‖22 + 1

2‖p� (M2u)− v2‖22, (6)

where p = p1�p2 is the particle occupancy distribution, that take into account
only the matched particles between the 2 cameras.

Spatial smoothness. The second term of our optimization is a spatial smooth-
ness on the 3D velocity field. The advantage of this term is to help in giving a
better interpolation for the voxels where no particles are detected.
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Esmooth(u) = ‖∇Su‖22 (7)

Incompressibility. In the case of incompressible fluid simulation or capture,
it is common to constrain the flow field to be divergence-free [23,70,16]. This
constraint is derived directly from the mass-conservation equation for the fluid.
Usually the divergence-free regularization is applied by projecting the velocity
field onto the space of divergence-free velocity field. However, we notice that in
the case of lower spatial resolution, the discretization of the divergence operator
may introduce some divergence to the flow. Therefore, we prefer to include the
incompressibility prior as a soft (L-2) constraint instead of a hard projection.

Ediv(u) = ‖div(u)‖22 (8)

Temporal coherence. In the absence of external forces, the Navier-Stokes
equation for a non-viscous fluid can be simplified as follows:

∂u

∂t
+ (u · ∇)u = 0 (9)

This equation can be used as an approximation of the temporal evolution of the
fluid flow. We can then, advect the velocity field at a given time stamp by itself
to deduce an estimate of the field at the next time stamp. This advection is
applied in a forward and backward manners. This yields the following term:

ETC(ut) =‖p� (ut − advect(ut−1, ∆t))‖22+

‖p� (ut − advect(ut+1,−∆t))‖22
(10)

where ut is the velocity field at the time t. The particle occupancy p is used
here as a mask, in order to take into account only the regions of the volume
where particles have been observed, since these are the only regions with reliable
velocity estimates.

Optimization framework. The general optimization framework is then ex-
pressed as:

(u∗) = argmin
u

Edata(u) + λ1Esmooth(u) + λ2ETC(u) + λ3Ediv(u) (11)

Equation 11 is composed only of L-2 terms. We solve it then using the con-
jugate gradient method. To handle the large velocities in the fluid, we build a
multi-scale coarse-to-fine scheme [70]. More details about our implementation
are given in the supplement material.
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4 Experiments

Experiments on both simulated and captured fluid flows were conducted to eval-
uate our approach. We implemented our framework in matlab 1. All the experi-
ments were conducted on a computer with an Intel Xeon E5-2680 CPU processor
and 128 GB RAM. The reconstruction time for the simluted dataset which con-
tains 8 frames (with 80× 80× 80 voxels) was around 28 minutes. Furthermore,
the parameter settings for the optimization (see Equation 11) were kept the same
for all the datasets (λ1 = 2.5× 10−5, λ2 = 0.025, λ3 = 2.5× 10−5).

4.1 Synthetic data

To quantitatively assess our method, we simulated a fluid undergoing a rigid-
body-like vortex, with a fixed angular speed. A volume with a size of 20 mm×
20 mm × 20 mm was seeded randomly with particles of an averaged size of
0.1 mm (1 % variance). This fluid is captured by two different simulated event
cameras having a spatial resolution of 800 × 800, which is similar to the real
experiment setup in Figure 5. Different vortex speeds and particle densities were
simulated. The approach introduced by [65] was applied to advect the particles
over time using the vortex velocity field. Moreover, we simulated different frame
rate images. Finally, we used E-sim code [54] to generate the event sequences
observed by the simulated sensors.

Ablation study. In order to illustrate the impact of each of our priors, we
conducted an ablation study. We compare our method without the use of the
temporal coherence and the divergence terms (w/o ETC & Ediv), our method
without the divergence term (w/o Ediv), and our proposed method (Ours).
For the quantitative comparison, we use two metrics: the average angular error
(AAE), i.e. the average discrepancy in the flow direction, and the average end-
point error (AEE), i.e. the average Euclidean norm of the difference between the
real and estimated flow vectors.

In Figure 2, we illustrate the velocity field reconstruction using our method
versus the ground truth. Except for the borders, the reconstruction is very accu-
rate. The numerical results of the ablation study are shown in the Figure 3. As
expected, both the AAE and the EPE errors are improved when adding the dif-
ferent priors. Moreover, these errors are almost constant from one time frame to
another. We need to point out that the temporal coherence term might not im-
prove too much the reconstruction for all frames. However, in the general case,
it smoothes the result in the temporal domain, which is important for visual
quality in frame-based or time-based data processing.

In Figure 4 we illustrate for a 2D slice the end point error as well as the
divergence of the velocity field for different methods. The mean error for the
different methods is 0.182, 0.178, 0.171 respectively. The error will generally
become smaller gradually as expected. The mean absolute divergence for the
three different method is 0.0096, 0.0100, 0.0071. We notice that the temporal

1 The code is available on: https://github.com/vccimaging/StereoEventPTV.

https://github.com/vccimaging/StereoEventPTV
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Fig. 2: Ground truth (left) and reconstruction result using our method (right)
for a simulated rigid-body-like vortex.

Fig. 3: Quantitative comparisons with ground truth velocity field for different
reconstruction using different priors. Left: Average angular error (in degree).
Right: Average end-point error (in voxel).

Fig. 4: End point error (first row) and the divergence of the flow (second row)
computed on a 2D slice. From left to right: Ground truth, Our method without
the incompresibility and the tempral coherence terms, Our method without the
incompresibility term, and Our proposed method

coherence term introduces some divergence to the flow. It can be explained by
the fact that the temporal smoothness might propagate wrong stereo matching
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to adjacent time frame. However, the incompressibility constraint will reduce
the divergence and bring it closer to zero.

Table 1: Quantitative evaluation (AAE in degree / EPE in voxel) of different
particle densities and at different rotation speeds.

Angluar Speed

(rad/s)

Particle density (ppp)

0.006 0.012 0.018 0.024 0.03

5 9.73/0.046 10.22/0.042 9.56/0.043 15.38/0.052 12.83/0.048

10 10.20/0.097 11.12/0.090 10.72/0.092 13.34/0.097 12.12/0.087

15 10.58/0.146 10.38/0.131 9.94/0.123 13.77/0.150 11.77/0.133

20 9.73/0.187 10.37/0.164 9.76/0.168 12.13/0.178 11.49/0.180

Particle densities and vortex speed impact. We also evaluated our method
for different particle densities and different angular speeds of the vortex. The
results are shown in Table 1. These experiments have been conducted for the
same duration. As expected the larger the speed, the larger the EPE. However,
the angular error is in the same range independent of the vortex speed. On the
other hand, from these experiments we can deduce that our method can handle
a wide range of particle densities. These experiments show that our method can
be used in very different situations with a wide range of particle densities and
different fluid velocities.

4.2 Captured data

Experimental setup The experimental setup used for the event-based fluid
imaging is shown in Figure 5. To capture the stereo events at the same time,
we utilized two synchronized Prophesee cameras (Model: PEK3SHEM, Sensor:
CSD3SVCD [7.2 mm× 5.4 mm], 480× 360 pixels), with an angle of 60 degrees
between the two optical axes. Two lenses with a focal length of 85 mm and a 3D
printed extension tubes were attached to the cameras. The aperture was set to
f/16 to have a depth-of-field of 10 mm. The tank was seeded with white particles
(White Polyethylene Microspheres) having a diameter in the range [90, 106 µm].
The size of the particles on the image plane is approximately 6.7 pixels. By
applying downsampling with a downsample factor of 6 and stereo matching, we
reconstruct a volume with: 78× 48× 42 voxels. For the calibration step, a 17×16
checkerboard where each square has an edge length of 0.5 mm was attached on
a glass slide. We used a controllable translation stage to modify the distance
of the checkerboard to the cameras. More details about the calibration can be
found in the supplement material.
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Fig. 5: Left: Illustration of our experimental setup. A collimated white light
source illuminate the hexagonal tank. A vortex generator is used to control the
speed of the vortex during the experiments. Right: illustration of the calibration
step, where images of a small check board are captured for several positions. A
controlled translation stage is used to change the positions.

Controlled vortex flow The first experiment we performed was a controlled
vortex flow. We used a magnetic stirring rod (Model: Stuart CB162) to generate
different vortices by controlling the rotation speed of the stirring rod. We eval-
uate our reconstruction method over the different vortices. The reconstructed
streamlines for two examples are shown in Figure 6. We can see that our recon-
struction offers a good representation of the vortex structure, and the velocity
norm seems to be reliable given the speed of the stirring rod. Please refer to the
supplement for more results.

(a) Stirring speed set to 2 (b) Stirring speed set to 2.5

Fig. 6: Streamline visualization for controlled vortex flows. Left: The stirrer speed
was set to 2. Right: The stirrer speed was set to 2.5.

Fluid injection Finally, we conducted another set of experiments, consisting of
a relatively fast fluid injections into the tank using a syringe. As shown in Figure
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7, different speeds of the flow and different injection directions can be easily
distinguished from our reconstructed results. Additional results and illustrations
are presented in the supplemental material.

(a) Deflected injection. (b) Vertical injection.

Fig. 7: Streamline visualization for a fast fluid injections using a syringe. By
controlling the syringe orientation we have captured: (a) a deflected injection
and (b) a vertical injection.

5 Conclusions

We have introduced a stereo event-based camera system coupled with 3D fluid
flow reconstruction strategies in this paper. Instead of using image based optical
flow reconstruction in the traditional tomographic PTV, our approach is based
on generating the two dimensional flow from the event information, and then
matching the resulting trajectories in 3D to obtain full 3D-3C flow fields.

Both the numerical and experimental assessment confirm the effectiveness of
our approach. By simulating different particle numbers in the tank that usually
used in the PTV, we found that our method works on a wide range of particle
densities. Furthermore, by controlling the stirring speed of the vortex, we found
that our approach can deal with fast fluid flow.

There are some drawbacks to our approach. First of all, the spatial resolution
of currently available event cameras is quite low, which also adversely impacts
the spatial resolution of the reconstruction. Second, due to the high dynamic
range of the event camera, the light intensity and the camera sensitivity should
be carefully selected to have a good measurements in real experiments. Last but
not least, the bandwidth of the event-camera is limited, the method fails when
the speed of the controlled vortex exceeds a certain threshold, in which case the
bus of the camera was saturated. However, with future improvements of event
camera hardware, we believe these shortcomings can be overcome, making our
method an attractive option for 3D-3C fluid imaging.
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