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1 Implementation details

We illustrate in the following a pseudo code of our proposed framework.

Algorithm 1 Framework of the Stereo Event-based PIV

1: procedure Stero Event-based PIV({ei}1i=1..N , {ei}
2
i=1..N ,M1,M2, ρ)

2: // Step 1: Event-based particle tracking using the algorithm presented in [8,9].
3: v1,v2 ← ParticleTraking({ei}1i=1..N , {ei}

2
i=1..N )

4:
5: // Step 2: Stereo matching performed using a triangulation procedure ([1,3]).
6: // The output is a list of matched particles’ center ({Xc(Pj), Yc(Pj), Zc(Pj)}j).
7: {Xc(Pj), Yc(Pj), Zc(Pj)}j ← StereoMatching({ei}1i=1..N , {ei}

2
i=1..N ,M1,M2)

8:
9: // Step 3: 3D velocimetry reconstruction.

10: // Initialization
11: u← 0, p← project(Pj ,M1)� project(Pj ,M2) ∀j
12: // Estimation of u using a multi-scale strategy.
13: // Generate the multi-scale data from the coarsest to the finest.
14: u1 ← u, p1 ← p
15: for s from 1 to Nbscales - 1 do
16: us+1 ← ρ ↓us
17: ps+1 ←↓ps
18: end for
19: for s from Nbscales to 1 do
20: us ← EstimateVelocityField(us)
21: us−1 ← 1

ρ
↑us

22: end for
23: u← u1

24:
25: return u
26: end procedure

In the line 20 of the algorithm 1 (us ← EstimateVelocityField(us)), at
each scale we estimate the velocity us using the Conjugate Gradient method.
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For a given iteration k, we update the velocity as follows: uk+1 = uk + ∆uk.
The update ∆uk is obtained by solving the following linear system of the form
A×∆uk

t = b, for each time step t:
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2 Stereo calibration

To implement the calibration, we attached an 17× 16 checkerboard, where each
square has an edge length of 0.5 mm, on a glass slide. By using the pinhole
model proposed by [7], we could use a controllable translation stage to control
the slide moving perpendicularly to its plane, 0 to 10 mm with a step of 0.5 mm
in our experiments, as illustrated in Figure 1. We generated 42 gray-scale images
for two cameras through the exposure measurement(EM) events in the camera
[5]. Examples are shown in Figure 2.

(a) Top view of the stereroscopic arrange-
ment for the calibration setup.

(b) Real experiment settup.

Fig. 1: Calibration Setup.

Each time when conducting the experiment, we also implemented the cali-
bration for the two cameras. One calibration result is as follows.

M1 =


25.7972 −0.5223 0.0011
0.6822 28.9551 −0.0002
12.6402 −1.3181 −0.0035
95.7501 78.4601 1.0000

 M2 =


26.6957 −0.0081 −0.0011
0.2530 29.6012 −0.0002
−13.5633 0.2220 −0.0034
213.0987 73.4363 1.0000

 (2)
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(a) Camera 1 (b) Camera 2

Fig. 2: Gray-scale images with detected corners.

3 Additional experiments

3.1 Additional synthetic experiments

Soft Constraint or Hard Constraint? To verify the efficiency of the soft
constraint used in this paper, we conducted comparisons among the four differ-
ent methods: our method without the use of the temporal coherence and the
divergence terms (w/o ETC & Ediv), our method without the divergence term
(w/o Ediv), hard constraint (Hard Constraint) and our proposed method
(Ours). The result is shown in Figure 3. It seems that the hard constraint did
not working better with the increase of the voxel numbers. And also the increase
of the volume size will also induce the increase of computation. A 3D velocimetry
vector in double for 320 × 320 × 320 voxels will take around 6.4 GB memory,
and this also means more computational time. In this paper, we utilized the soft
constraint.
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(a) Different methods comparison at voxel 80× 80× 80.

(b) Different methods comparison at voxel 160× 160× 160.

(c) Different methods comparison at voxel 320× 320× 320.

Fig. 3: Comparison of different methods in different voxels. (EPE errors increase
with precision of the voxels.)

3.2 Experiments on Johns Hopkins Turbulence Database

We also conducted some experiments using the Johns Hopkins Turbulence Data-
bases (JHTDB) [4,2]. We use two different turbulence datasets (Homogeneous
buoyancy driven turbulence and Forced isotropic turbulence datasets) to gener-
ate our data, where random particles are generated in a volume (80 × 80 × 80
voxels), with a density of 0.001 particles/voxels. These particles are then ad-
vected using the velocity fields of the turbulence datasets. Finally, two rendered
stereo sequences are generated and the corresponding events are obtained by
applying E-sim [6]. The reconstruction results are shown in Figure 4.
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(a) Ground truth (left) and reconstruction result using our method (right) for the
Johns Hopkins Homogeneous buoyancy driven turbulence dataset.

(b) Ground truth (left) and reconstruction result using our method (right) for the
Johns Hopkins Forced isotropic turbulence dataset.

Fig. 4: Our reconstruction results using Johns Hopkins Turbulence Datasets

In the figures 5 and 6, we can see that the end point error is better for the
Homogeneous buoyancy driven turbulence dataset in comparison to the Forced
isotropic turbulence dataset. Indeed, in our framework we assume that there is no
external forces that apply on the fluid. Moreover, we can notice that the angular
error is large in the boundary of the turbulence where neighboring particles will
have opposite directions. This could be improved by increasing the resolution of
the volume.
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(a) Angular Error in degree.

(b) End Point Error in voxel

Fig. 5: Error estimation of our reconstruction of the Johns Hopkins Datasets

3.3 Additional captured data

We present two more experiment results in Figure 7. One is stirring stopping
from 2, and the other is another fast injection. One is from side view and the
other is from top view.



Stereo Event-based PTV for 3D Fluid Flow Reconstruction 7

(a) Average Angular Error in degree.

(b) End Point Error in voxel

Fig. 6: Average error estimation of our reconstruction of the Johns Hopkins
Datasets for the different time steps.
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Fig. 7: Two additional experiment results. Left: Streamline visualization for vor-
tex with the stirrer slowing down from 2 to 0 (Side view). Right: Streamline
visualization for another fast injection using a syringe (Top View).
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