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Theory: A Model for Classical Wavefront Sensors Computation: Numerical Solver
Calibration Measurement Wavefront sensors are instruments that retrieve phase ¢(r) from wavefront-encoded intensity measurements. The forward model gives N equations but number of
Z L For incoherent light, classical wavefront senors are grouped in two categories (probing slopes or curvature): unknowns is 2\ (A and ¢). For input images /o(r)
: o Slopes sensors: Shack-Hartmann [1], lateral shearing interferometers [2], coded wavefront sensors [3,4,5]. and I(r), let |A]* = |A|? (1 — %qub), we solve the
e Curvature sensors: Curvature sensors [6], based on the Transport-of-Intensity Equation (TIE) [7]. following optimization problem to obtain A and ¢:
Figure 1(a) models wavefront sensors consists of an encoding optics placed distance z away from an intensity _ AZ ~ 5 ; ~ 5
. . . e . min ||l {r+—=Vo| — |A“b(r)| + o, |A|7),
sensor, and a numerical algorithm that decodes intensity images (/h(r) and /(r)) to retrieve wavefront ¢(r). At A oZis ,
wavelength A (though it also works for incoherent light), when z is small, we show in either ray or wave optics, where the prior terms are (parameters «, 3, v, 7):
that the relationship between fy(r) and /(r) is: v v
r Onsip WEET O( ) )\( ) ! \ I_prior(¢1 A‘z) — rphase(¢) =+ rintensity(‘A‘2)1
z z o
[|r Vo | = |A(r)]? |1 Ve | Io(r). \% 2
( o ¢) Alr) ( o ¢) o(r) Fonse( ) = al| V1 + Bl | ool I3
It is versatile, e.g., TIE can be derived via linearizing / (r + g—;V@ around r at the limit that z — 0. Our model - V] =0 R vA -
generalizes TIE in: (i) A concise theoretical model for two distanced planes; (ii) Nonlinearity; (iii) More degrees Cintensity (|A|7) = 7 V2 Al + 7l V2 Az
of freedom to allow for a customizable modulation mask (reflected as a user-defined reference image Iy(r)). Using modern optimi_zati;)n the ADMM <cheme 8],
Table 1: Our equation under different (approximated) forms as commonly seen formulas for each wavefront sensor. d,(x) is the Dirac our solver typically elapses within 100 ms on a Nvidia

comb function with period p (the lenslet pitch). k = 27/ is the wave number. Titan X (Pascal) GPU for megapixel input images

Name Optics Commonly seen formula
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wavefront sensor (variant of [5]), which recovers amplitude
A(r) and phase ¢(r) from reference ly(r) and measured /(r).
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Application: Snapshot Incoherent Phase & Intensity Quantitative Phase Microscopy Ref .
eference

Our theory reveals a potential to retrieve |A(r)|* and
¢(r) directly from raw data such as from [5]. As a

demonstration, by taking off the condenser lens, we
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of the reconstructed smooth phase maps. objective, 0.70 NA. Inset close-up images show that the speckle patterns have been fully removed from the original raw data.
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