Oral Presentation (COSI 2019)
12:30 - 12:45 pm, June 24

the speckles have been removed and the plausibility of transparent thin cells. Note how random binary phase mask (Fig. 1(b): pixel size 0.17 mm) directly from raw data such as from [5]. As a comb function with period $r = 2\pi/\lambda$ is the wave number.

Table 1: Our equation under different (approximated) forms as commonly seen formulas for each wavefront sensor. $\delta_t(x)$ is the Dirac function with period ρ (the lenslet pitch).

<table>
<thead>
<tr>
<th>Name</th>
<th>Optics</th>
<th>Commonly seen formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shack-Hartmann</td>
<td>micro-lens array $I_f(r) = \delta_t(x) I_0(r)$</td>
<td>$I_f(r) = \lambda^2 \Gamma \nabla^2 I_0(r) = \delta_t(x) I_0(r)$</td>
</tr>
<tr>
<td>Lateral shearing</td>
<td>sinusoidal gratings (freq. ω) $I_f(r) = \cos^2(\omega x) \cos^2(\omega y)$</td>
<td>$I_f(r) =</td>
</tr>
<tr>
<td>Curvature sensor</td>
<td>none</td>
<td>$I_f(r) = 1$</td>
</tr>
<tr>
<td>Coded wavefront sensor</td>
<td>random gratings $I_f(r)$ are speckles</td>
<td>$I_f(r) + \frac{2\pi}{\lambda} \nabla I_0(r) = \delta_t(x) I_0(r)$ in [5]; or our equation (this work)</td>
</tr>
</tbody>
</table>

Our theory reveals a potential to retrieve $|A(r)|^2$ and $\phi(r)$ directly from raw data such as from [5]. As a demonstration, by taking off the condenser lens, we turn an ordinary low-budget bright field microscope into a simultaneous intensity and phase microscopy, under collimated halogen lamp (HPLS245, Thorlabs) illumination. A prototype coded wavefront sensor is employed which consists of a bare sensor (1501M-USB-TE, Thorlabs) and a random binary phase mask (Fig. 1(b): pixel size 12.9 µm, either 0 or π phase modulation at $\lambda = 550$ nm, placed $z = 1.43$ mm away from the sensor). Figure 2 shows simultaneous amplitude and phase recovery of transparent thin cells. Note how the speckles have been removed and the plausibility of the reconstructed smooth phase maps.

Figure 2: Quantitative phase imaging using our wavefront sensor. Images were taken under an $\times 100$ Mitutoyo plan apochromat objective, 0.70 NA. Inset close-up images show that the speckle patterns have been fully removed from the original raw data.

References

Acknowledgments & Statement

The authors thank Dr. Fathia Ben Rached, Ioannis Isaiglou, Shahad Alsaiari, and Michael Margineanu for their help in preparing the biological specimens.

This work was supported by KAUST Individual Base Funding and Center Partnership Funding.

Main paper is under submission to Scientific Reports.