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Theory: A Model for Classical Wavefront Sensors
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(a) General modeling of wavefront sensors.
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(b) The mask, typical raw images, and the numerical recovery.

Figure 1: (a) The general model. (b) The “optics” for our
wavefront sensor (variant of [5]), which recovers amplitude
A(r) and phase φ(r) from reference I0(r) and measured I(r).

Wavefront sensors are instruments that retrieve phase φ(r) from wavefront-encoded intensity measurements.
For incoherent light, classical wavefront senors are grouped in two categories (probing slopes or curvature):
•Slopes sensors: Shack-Hartmann [1], lateral shearing interferometers [2], coded wavefront sensors [3, 4, 5].
•Curvature sensors: Curvature sensors [6], based on the Transport-of-Intensity Equation (TIE) [7].
Figure 1(a) models wavefront sensors consists of an encoding optics placed distance z away from an intensity
sensor, and a numerical algorithm that decodes intensity images (I0(r) and I(r)) to retrieve wavefront φ(r). At
wavelength λ (though it also works for incoherent light), when z is small, we show in either ray or wave optics,
that the relationship between I0(r) and I(r) is:

I
r + λz

2π∇φ
 = |A(r)|2

1− λz2π∇2φ

 I0(r).

It is versatile, e.g., TIE can be derived via linearizing I
(
r + λz

2π∇φ
)
around r at the limit that z → 0. Our model

generalizes TIE in: (i) A concise theoretical model for two distanced planes; (ii) Nonlinearity; (iii) More degrees
of freedom to allow for a customizable modulation mask (reflected as a user-defined reference image I0(r)).
Table 1: Our equation under different (approximated) forms as commonly seen formulas for each wavefront sensor. δp(x) is the Dirac
comb function with period p (the lenslet pitch). k = 2π/λ is the wave number.

Name Optics Commonly seen formula

Shack-Hartmann micro-lens arrays
I0(r) = δp(x)δp(y)

I(r + λz
2π∇φ) = I0(r)

Lateral shearing sinusoid gratings (freq. ω)
I0(r) = cos2(ωx) cos2(ωy) I(r) = |A(r)|2I0(r − λz

2π∇φ)

Curvature sensor none
I0(r) = 1 ∇I2 · ∇φ + I1∇2φ = k

z (I1 − I2) ≈ −k ∂I∂z

Coded wavefront sensor random gratings
I0(r) are speckles I(r + λz

2π∇φ) = I0(r) in [5]; or our equation (this work)

Application: Snapshot Incoherent Phase & Intensity Quantitative Phase Microscopy

Our theory reveals a potential to retrieve |A(r)|2 and
φ(r) directly from raw data such as from [5]. As a
demonstration, by taking off the condenser lens, we
turn an ordinary low-budget bright field microscopy
into a simultaneous intensity and phase microscopy,
under collimated halogen lamp (HPLS245,
Thorlabs) illumination. A prototype coded
wavefront sensor is employed which consists of a
bare sensor (1501M-USB-TE, Thorlabs) and a
random binary phase mask (Fig. 1(b): pixel size
12.9 µm, either 0 or π phase modulation at
λ = 550 nm, placed z = 1.43mm away from the
sensor). Figure 2 shows simultaneous amplitude and
phase recovery of transparent thin cells. Note how
the speckles have been removed and the plausibility
of the reconstructed smooth phase maps.
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Figure 2: Quantitative phase imaging using our wavefront sensor. Images were taken under an ×100 Mitutoyo plan apochromat
objective, 0.70 NA. Inset close-up images show that the speckle patterns have been fully removed from the original raw data.

Computation: Numerical Solver

The forward model gives N equations but number of
unknowns is 2N (A and φ). For input images I0(r)
and I(r), let |Ã|2 = |A|2

(
1− λz

2π∇
2φ
)
, we solve the

following optimization problem to obtain Ã and φ:

min
Ã,φ

∥∥∥∥∥∥I
r + λz

2π∇φ
− |Ã|2I0(r)

∥∥∥∥∥∥
2

2
+ Γprior(φ, |Ã|2),

where the prior terms are (parameters α, β, γ, τ ):
Γprior(φ, |Ã|2) = Γphase(φ) + Γintensity(|Ã|2),

Γphase(φ) = α‖∇φ‖1 + β‖
∇
∇2

φ‖22,
Γintensity(|Ã|2) = γ‖

∇
∇2

 |Ã|2‖1 + τ‖
∇
∇2

 |Ã|2‖22.
Using modern optimization the ADMM scheme [8],
our solver typically elapses within 100ms on a Nvidia
Titan X (Pascal) GPU for megapixel input images.
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