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Abstract: Wavefront sensors and, more general phase retrieval methods have recently attracted
a lot of attention in a host of application domains, ranging from astronomy to scientific imaging
and microscopy. In this paper, we introduce a new class of sensor, the Coded Wavefront Sensor,
which provides high spatio-temporal resolution using a simple masked sensor, under white
light illumination. Specifically, we demonstrate megapixel spatial resolution and phase accuracy
better than 0.1 wavelengths at reconstruction rates of 50 Hz or more, thus opening up many new
applications from high-resolution adaptive optics to real-time phase retrieval in microscopy.
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1. Introduction

Wavefront sensing and phase retrieval are two closely related tasks that find applications in a

wide range of fields. The classical Shack-Hartmann Wavefront Sensor [1] is commonly used in

astronomy and ophthalmology. As a first-order method that tracks the 2D motion of focus spots

generated by a lenslet array, the Shack-Hartmann sensor offers high frame rates, but suffers from

low spatial resolution, corresponding to the number of sub-apertures rather than the number of

pixels in the image sensor. While the spatial resolution can be improved by reducing the number

of pixels per sub-aperture, e.g. to 2 × 2 pixels per lenslet as in the Altair adaptive optics system

for Gemini [2], this comes at the cost of reduced range, such that large distortions can not be

measured. Similar tradeoffs exist for other designs, including the pyramid wavefront sensor [3]

and its variant [4], and the Hartmann wavefront sensor [5].

Better accuracy and higher spatial resolution can be achieved with Curvature Wavefront

Sensors [6], and closely related phase retrieval methods developed recently in microscopy [7, 8].

These methods are based on inverting the Transport of Intensity Equation (TIE) [9], which

requires phase diversity, i.e. multiple image measurements along the optical axis. TIE has been

extensively investigated [10], and proves to be effective and accurate approach for wavefront

sensing. However, the requirement for phase diversity makes it difficult to design snapshot-

capable systems that can image fast-moving dynamic phenomena.

In this paper, we propose a novel first-order wavefront sensor named Coded Wavefront Sensor.

By placing a binary mask in close proximity of a camera sensor, one can numerically decode

the wavefront from the apparent motion of the diffraction patterns. Our work is closely related

to the sampling field sensor [11] and the quadri-wave lateral shearing interferometer wavefront

sensor [12], but offers full sensor resolution under both coherent and incoherent illumination.

Compared to the classical Shack-Hartmann wavefront sensor, the Coded Wavefront Sensor offers

much higher pixel utilization and full sensor resolution reconstruction, overcoming the trade-off

between spatial resolution and range. Specifically, the Coded Wavefront Sensor offers the ability

to measure large distortions with high spatial resolution. Compared to TIE-based methods, the

Coded Wavefront Sensor does not require phase diversity, works with both monochromatic

and polychromatic illumination, is simple to build, and offers much faster reconstruction than

video-rates. It is therefore highly suitable for imaging dynamic deformations of the wavefront.

2. Principle

A schematic of Coded Wavefront Sensor is shown in Fig. 1. A uniform random binary mask is

placed closely (for instance, distance z ≈ 1.5 mm) in front of a bare image sensor. For calibration,

the Coded Wavefront Sensor is illuminated by a planar wavefront, and the corresponding

diffraction pattern of the mask on the image sensor is recorded. During measurement, distortions

of the wavefront result in localized diffraction pattern displacements (small arrows in Fig. 1(b)),

which can be tracked and used to measure the wavefront at the full resolution of the image sensor.

To model the principle of the Coded Wavefront Sensor, we denote the scalar field at the

mask plane and the sensor plane as u0(r) and uz (r) respectively, where r = (x , y) denotes a

coordinate point on the 2D plane. The original scalar field u0(r) is the product of the mask transfer

function p0(r) and the scalar optical field exp[jφ(r)], where φ(r) is the distorted wavefront under

investigation.





2.1. Sensor performance

The wavefront slope is determined by the following relationship:

∇φ = a
2πds

λz
, (4)

where ds is the sensor pixel size, and a is the amount of apparent motion measured in numbers

of pixels. For a given tracking algorithm to solve Eq. (2), a limits itself to a certain range, e.g.

a ∈ [amin amax]. The sensitivity (or, the accuracy) of the sensor depends on amin, whereas the

dynamic range depends on amax.

Denoting the local wavefront radius as R, one of the approximation made in deriving Eq. (1)

requires (see Appendix):
z

k
∇2φ(r) =

z

R
≈ 0, (5)

which indicates R ≫ z. For a given distance z, Eq. (5) can be used to estimate the maximum

curvature 1/R that can be measured by our sensor.

2.2. Numerical solver

While the purpose of the Coded Wavefront Sensor is to estimate φ(r) from I0(r) and I (r),

standard optical flow methods seek to reconstruct the per-pixel apparent motion vectors between

the reference image and measurement image, i.e. the gradient of the phase function. Instead of

using standard optical flow algorithms like Horn-Schunck [13], we therefore devise our own

reconstruction model that directly solves for the phase function itself and regularizes the apparent

motion to be curl free.

Define the unknown wavefront as φ, the image gradient field as (gx , gy ) = ∇I0(r), and a

“time” derivative gt = I (r)− I0(r), at each linearisation, the reconstruction problem is formulated

as:
minimize

φ
‖GM∇φ + gt ‖

2
2 + α ‖∇φ‖

2
2 , (6)

where G = [diag(gx ) diag(gy )] is a concatenated diagonal matrix with the image derivatives on

the diagonal, and M is a binary diagonal matrix that selects only the M visible pixels from the N

wavefront samples that affect the measurement, for direction x and y respectively.

Like existing optical flow methods, Eq. (6) contains both a “photoconsistency” term (first

term) that describes the apparent motion of the pattern in the image plane, and a smoothness

regularization term (second term), which is controlled with an additional parameter α > 0. With

a smoothness regularizer added directly to the phase function, Alternating Direction Method of

Multipliers (ADMM) [15] is used to solve this optimization problem, where each updating step

involves either element-wise operations or fast Fourier transforms (FFT), and hence is naturally

parallelizable.

3. Implementation

3.1. Hardware

Our prototype Coded Wavefront Sensor (see Fig. 4) exploits a uniformly random binary mask

pattern, and a GS3-U3-14S5M-C PointGrey monochromatic 2/3′′ CCD sensor with a pixel

pitch of 6.45 µm. The mask is placed on top of the bare sensor, with a spacing of approximately

1.5 mm. The binary mask is fabricated using photolithography in a chrome layer deposited on a

4′′ Fused Silica wafer, with a pixel pitch of 12.9 µm.



3.2. Software

Our GPU version is implemented in CUDA, and the CuFFT library is used for all the involved

FFT operations, which are the most time-consuming parts. To make the best utilization of CuFFT,

the unknown width and height are set to be the powers of small primes, e.g. two or three.

4. Results

In this section the results are presented, including the synthetic ones in simulation, the experimen-

tal validation using a Spatial Light Modulator (SLM), and the realistic wavefront visualization of

heat flow and defocusing.

All numerical experiments are run with a fixed regularization parameter. Both the CPU and

GPU version of our algorithm are run on a workstation that has 125.8 GB RAM, exploits Intel

Xeon E5-2697V3 @2.60 GHz×16 as CPU, and GeForce GTX TITAN X (Pascal) as GPU, with

a Ubuntu 14.04 Linux as operating system.

4.1. Simulation

We have conducted two simulations to investigate the sensitivity and accuracy of the Coded

Wavefront Sensor. In the simulations, the illumination is monochromatic (as of λ = 550 nm).

The overall aperture size equals 6.6 mm × 6.6 mm with sensor and mask pixel pitch be 6.45 µm

and 12.9 µm respectively. The scalar field of interest is sampled with 1.29 µm. Gaussian noise

is added and the image signal-to-noise-ratio (SNR) equals 40 dB. The wave propagation is

simulated using the angular spectrum method [16] with filtering [17] to suppress high frequency

artifacts.

The first numerical experiment evaluates the dynamic range of our sensor. A planar wave (i.e.

the reference), and sixteen different scales of spherical waves are simulated at the mask plane,

respectively, for five different distances z. The reference image, and sixteen measurement images

are consequently recorded at the sensor plane. Figure 2 shows the wavefront reconstruction

error (in terms of root mean square, RMS) our sensor can attain, providing the fixed curvature

wavefronts that progressively violate Eq. (2). With the increase of wavefront range, the decrease

of accuracy can be partially explained by the approximations made to derive Eq. (1).

Figure 3 shows the second numerical experiment, where we evaluate the performance of

our sensor by sensing typical atmospheric turbulence. The same turbulence is evaluated at

different scales. The synthetic atmospheric turbulence respects the Kolmogorov’s theory, and is

implemented using the sub-harmonic method [18]. The outer scale and inner scale of the base

turbulence are set to be 4 m and 1 mm respectively. The mask-to-sensor distance z = 1.5 mm.

The result indicates the possibility to apply our sensor for atmospheric turbulence measurement.

4.2. Quantitative experimental demonstration

We also evaluated the accuracy of Coded Wavefront Sensor by using it to measure known

wavefronts. The experimental setup is shown in Fig. 4. The different target wavefronts are

generated using a reflective LCoS-based SLM, the PLUTO SLM by HOLOEYE, whose pixel

pitch is 8.0 µm, and the maximum phase retardation of 2π. We use phase wrapping to simulate

larger phase retardations. This introduces higher diffraction orders in the synthesized waveforms,

which are detected by the Coded Wavefront Sensor and show up as noisy structures in Fig. 5.

This limits the experiments to small and medium distortions. We used different scales of cubic

wavefronts, spherical wavefronts, customized wavefronts, and Zernike single-mode wavefronts

as ground-truth targets.

A distant, white point light source is used as collimated illumination. A polarizer is placed

in the optical path to produce linearly polarized illumination, which is required for the SLM

to operate as a pure phase modulator. Behind the beamsplitter, a Kepler telescope structure is











Appendix

Our mathematical model is based on modifications and simplification of the Green’s function

model by Teague [9] (Appendix A.3). Consider a general scalar field u0(r) (where r = (x , y)

denotes a coordinate point on a 2D plane of interest) with wave number k, on the mask plane:

u0(r) = f0(r)p0(r), (7)

where f0(r) = exp[jφ(r)] is the scalar field corresponding to the wavefront φ(r) that we want to

measure, and p0(r) is the transfer function of the mask. We assume:

• The mask p0(r) is of high frequency (in our case, it is uniformly random binary), whose

Fourier transform P0(ρ) (where ρ is the Fourier dual of r) is broadband.

• The wavefront φ(r) is of low-frequency, and is second-order differentiable, and hence the

distorted scalar field f0(r) is smooth enough such that its spectrum is bandlimited, and

decays sufficiently close to zero in high frequency regions.

We now consider the wave propagation problem for small distance z. For a general mask

p0(r), the Fresnel approximation may not be valid, and the more general Huygens-Fresnel based

principle must be applied. Using the compact form of the Rayleigh-Sommerfeld diffraction

formula, and expand it in the Fourier domain, the diffractive scalar field uz (r) is:

uz (r) = exp















jkz

(

1 +
∇2

k2

)1/2














u0(r)

=

∫

exp(j2πr · ρ) exp

[

jkz
(

1 − λ2‖ρ‖22

)1/2
]

×

∫

P0(ρ′)F0(ρ − ρ′) dρ′ dρ

≈ exp(−jkz)

∫

exp(j2πr · ρ′) exp

[

jkz
(

1 − λ2‖ρ′‖22

)1/2
]

×

∫

exp(j2π(r − λzρ′) · ρ′′) exp

[

jkz
(

1 − λ2‖ρ′′‖22

)1/2
]

F0(ρ′′) dρ′′P0(ρ′) dρ′

= exp(−jkz)

∫

exp(j2πr · ρ′) exp

[

jkz
(

1 − λ2‖ρ′‖22

)1/2
]

×

P0(ρ′) exp
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(
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∇2

k2
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
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

f0(r − λzρ′) dρ′ , (8)

where the third equality of Eq. (8) results from the introduction of variable ρ′′ = ρ − ρ′. And

the approximation step comes from:

(

1 − λ2‖ρ‖22

)1/2
≈

(

1 − λ2‖ρ′‖22

)1/2
+

(

1 − λ2‖ρ′′‖22

)1/2
− λ2ρ′ · ρ′′ − 1, (9)

which holds for smooth wavefront F0(ρ′′) with λ2‖ρ′′‖2
2
≪ 1. The last term in Eq. (8) is the

diffraction of f0(r − λzρ′), for which the nth diffraction order [(z/k)∇2φ(r)]n = (z/R)n ≈ 0

when local radius R ≫ z. Also, a Taylor expansion of φ(r − λzρ′) up to second-order suggests:

φ(r − λzρ′) ≈ φ(r) − λzρ′ · ∇φ(r) +
1

2
λzρ′ ·

(

λz∇2φ(r)
)

ρ′

= φ(r) − λzρ′ · ∇φ(r) + πλz
z

R
‖ρ′‖22 . (10)

The linear approximation is reasonable when the second-order term approximates zero. It implies

a lower bound d∗

m for the mask pixel pitch dm , by the Nyquist Theorem that ‖ρ′‖2
2
≤ 1/(4d2

m ):

dm ≫ d∗

m =

√

πλ

R
·

z

2
. (11)



In our prototype, dm = 12.9 µm and d∗

m ≈ 1 µm for R = 1 m. Given R ≫ z and the valid linear

approximation of φ(r), we approximate the last term in Eq. (8) as:

exp















jkz

(

1 +
∇2

k2

)1/2














f0(r − λzρ′) ≈ exp(jkz) exp
[

jφ(r)
]

exp
[

−jλzρ′ · ∇φ(r)
]

. (12)

Substituting Eq. (12) into Eq. (8), it yields:

uz (r) ≈ exp[jφ(r)]pz (r − (z/k)∇φ(r)), (13)

where pz (r − (z/k)∇φ(r)) is the diffractive scalar field of p0(r) at the sensor plane.
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