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Fig. 1. An exemplary triplet design for extended depth-of-field imaging optimized by our end-to-end differentiable complex lens design framework. Top left: 3D
model of the optimized triplet lens design (50𝑚𝑚/𝐹4). Bottom left: prototype fabricated by single-point diamond turning. Middle: final image that is captured
by our end-to-end designed lenses and processed by our algorithm. Right: the same scene captured by a Sony 28 − 70𝑚𝑚 zoom lens at 50𝑚𝑚/𝐹4.5. The
objects are placed in the range from around 0.8𝑚 to 1.8𝑚 from the lenses. Our prototype succeeds in obtaining the all-in-focus image, while the conventional
lens shows a narrow depth of field.

Imaging systems have long been designed in separated steps: experience-
driven optical design followed by sophisticated image processing. Although
recent advances in computational imaging aim to bridge the gap in an end-
to-end fashion, the image formation models used in these approaches have
been quite simplistic, built either on simple wave optics models such as
Fourier transform, or on similar paraxial models. Such models only support
the optimization of a single lens surface, which limits the achievable image
quality.

To overcome these challenges, we propose a general end-to-end complex
lens design framework enabled by a differentiable ray tracing image forma-
tion model. Specifically, our model relies on the differentiable ray tracing
rendering engine to render optical images in the full field by taking into
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account all on/off-axis aberrations governed by the theory of geometric op-
tics. Our design pipeline can jointly optimize the lens module and the image
reconstruction network for a specific imaging task. We demonstrate the
effectiveness of the proposed method on two typical applications, including
large field-of-view imaging and extended depth-of-field imaging. Both simu-
lation and experimental results show superior image quality compared with
conventional lens designs. Our framework offers a competitive alternative
for the design of modern imaging systems.

CCS Concepts: • Computing methodologies→ Ray tracing; Computa-
tional photography.
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1 INTRODUCTION
Cameras are designed with a complicated tradeoff between image
quality (e.g. sharpness, contrast, color fidelity), and practical consid-
erations such as cost, form factor, and weight. High-quality imaging
systems require a stack of multiple optical elements to combat ab-
errations of all kinds. At the heart of the design process are tools
like ZEMAX and Code V, which rely on merit functions to trade off
the shape of the PSF over different image regions, depth, or zoom
settings. Such a design process requires significant user knowledge
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and experience, and the emphasis on PSF shaping neglects any sub-
sequent image processing operations, specific application scenarios,
or the desire to encode extra information in the image.
Therefore, domain-specific computational imaging has attrac-

ted researchers’ attention in the past several decades. Enabling
the co-design of optics with post-processing, computational cam-
eras have achieved impressive results in extended depth of field
(EDOF) [Cathey and Dowski 2002; Dowski and Cathey 1995; Levin
et al. 2009; Tucker et al. 1999], high dynamic range imaging (HDR) [De-
bevec and Malik 1997; Mann and Picard 1994; Reinhard and Devlin
2005; Rouf et al. 2011], and image resolution [Brady et al. 2012;
Cossairt et al. 2011; Nayar et al. 2004]. Nevertheless, all those older
methods are either heuristic or use some proxy metric on the point
spread function (PSF) rather than considering the imaging quality
after post-processing. Therefore, finding a joint optimal solution
for both imaging optics and image reconstruction for a given task
remains an unsolved problem in general.
Over the past few years, co-design of optics and image pro-

cessing [Peng et al. 2019; Sun et al. 2018], or even data-driven
end-to-end design [Sitzmann et al. 2018] have emerged to bridge
the gap between optical design and algorithm development. Co-
design of optics and post-processing algorithms has achieved a
superior performance for domain specific tasks such as depth estima-
tion [Chang andWetzstein 2019a], large field-of-view imaging [Peng
et al. 2019], extended depth-of-field [Chang and Wetzstein 2019b],
optimal sampling [Sun et al. 2020b], and high dynamic range (HDR)
imaging [Metzler et al. 2020; Sun et al. 2020a]. Unfortunately, the
differentiable lens models used in these works have been too lim-
ited to describe complex optical assemblies, and have instead only
allowed to optimize a single optical surface with a single material.
This narrow design space limits the final image quality compared
to commercial consumer-level or industrial-level cameras. Further-
more, existing models are based on the paraxial approximation and
ignore off-axis aberrations, which degrades the quality for large
field of view imaging.

Data-driven optimization of all the parameters in a complex lens
assembly is challenging. On the one hand, the varying paramet-
ers of the optical surfaces cause scaling and distortion that change
during the optimization process. On the other hand, a naive imple-
mentation will consume huge computational resources due to the
differentiable ray tracing engine [Nimier-David et al. 2019]. In this
work, we overcome these challenges, and achieve the first end-to-
end optimization system for complex lens assemblies. We propose a
unique differentiable and configurable optical model that not only
overcomes the limitation of a single optical surface and a single
material, but also supports optimizing off-axis regions. In addition,
we propose an end-to-end framework configurable for a given task
with a tailored recovery algorithm, loss function, and data. As a
result, we are able to directly render the images with aberrations of
all kinds. That means we can optimize the complex lens model while
accounting for the continuous variation of the PSF across the image
plane. Beyond the goal of capturing a sharp and clear image on the
sensor, the proposed method offers huge design flexibility that can
not only find a compromise between optics and post-processing,
but also opens up the design space for optical encoding.

It must be stressed, however, that our approach does not com-
pletely eliminate the need for an experienced user. Specifically, since
lens design is a highly non-convex problem, we can not initialize
the parameter space randomly; instead, we initialize the system
with a coarse design that has the desired number of lens elements,
and is roughly focused along the optical axis. This optical system
is then improved and adapted to a specific imaging scenario us-
ing end-to-end optimization. In this paper we demonstrate both
large field-of-view and large depth-of-field as the two application
scenarios. The proposed approach outperforms the state-of-the-art
complex lens design (by ZEMAX) in both simulation and experi-
ments. We prototype our designs with complex lenses manufactured
by a CNC machining system that supports point diamond turning.
The experiments are carried out in-the-wild as conventional cam-
eras. Our results show significantly improved performance over
conventional designs on the above-mentioned applications.

Specifically, we make the following contributions:
• We introduce a novel configurable and differentiable complex
lens model based on differentiable ray-tracing, and this model
can simulate aberrations of all kinds. We allow users to easily
define the initial optics design, including lens surface profile,
positions, and materials.
• Our differentiable complex lens model is the first in end-
to-end design to consider off-axis performance, and offers
a greater design freedom compared to existing end-to-end
optics models.
• We propose an end-to-end pipeline that can jointly optimize
the lens model and the recovery network. The reconstruc-
tion network and loss functions can be tailored to a given
computational imaging task.
• We successfully apply our model and pipeline to large field-
of-view imaging and extended depth-of-field imaging using
designs that are compact and low-budget, but high-quality.
We validate them in both simulations and on real-world meas-
urements captured by our assembled and fabricated aspher-
ical lens group and verify that the experimental results agree
with the simulations.

2 RELATED WORK
Optical Aberrations and Traditional Lens Design. The most com-

mon monochromatic aberrations are defocusing, spherical aberra-
tion, coma, astigmatism, field curvature, and distortion, while the
chromatic aberrations are typically axial and lateral chromatic ab-
erration. Both types of aberrations are the result of the differences
in the optical path length when light travels through different re-
gions of a lens at different incident angles [Fowles 2012]. These
aberrations manifest themselves as an unwanted blur, which be-
comes more severe with increasing depth of field (DOF), numerical
aperture, and field of view (FOV) [Smith 2005].

Conventional lens design is a semi-automated process, in which a
rough initial design is chosen by an experienced designer, and then
optimized with software like CODE V and ZEMAX. These typic-
ally use either the Levenberg-Marquardt algorithm or damped least
squares (DLS) to optimize the optical system including spherical
and aspherical lenses, hybrid optical elements [Flores et al. 2004;
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Liu et al. 2007], and lens elements with different material proper-
ties. These tools are the cornerstone of lens design and rely on
existing aberrations objectives, so-called merit functions, to find a
compromise across a variety of criteria [Malacara-Hernández and
Malacara-Hernández 2016; Shih et al. 2012], trading off the PSFs
across sensor locations, lens configurations (e.g., zoom levels), and
target wavelength band.
However, critically the established merit functions only operate

on the PSFs, trading off their footprint over different configurations.
This approach is agnostic to any intended usage case or image recon-
struction approach. As a result, it is hard to co-design the optics and
post-processing together for domain-specific cameras [Sitzmann
et al. 2018] since they can not use the final imaging performance
criteria as an optimization object. Thinking beyond the traditional
complex lens design for a given task, we seek to investigate a dif-
ferentiable complex lens model and end-to-end optimization frame-
work to bring the complex lens design into an end-to-end era.

Computational Optics. Manyworks on computational imaging [Levin
2010; Levin et al. 2007; Stork and Gill 2013, 2014] have proposed
designing optics for aberration removal in post-processing. These
methods often favor diffractive optical elements (DOEs) [Antipa
et al. 2018; Dun et al. 2020; Heide et al. 2016; Monjur et al. 2015], or
even metasurfaces [Colburn et al. 2018] over refractive optics be-
cause of their large design space or ultra thin form factor [Khan et al.
2019]. To simplify the inverse problem in post-processing, all of the
described approaches ignore off-axis aberrations by restricting the
FOV to a few degrees – existing methods do not realize monocular
and chromatic imaging with a large FOV. The state-of-the-art joint
designing of optics and post-processing [Peng et al. 2019] firstly
enables a large FOV imaging with a single lens. However, their
model is still to design the optics and image processing algorithm
separately to include the FOV in the design process. Moreover, they
need a complicated and time-consuming dataset acquisition from
the monitor.
In addition to minimizing optical aberrations optics, computa-

tional imaging also aims to improve the basic capabilities of a cam-
era by including optical coding, such as depth of field [Cathey and
Dowski 2002; Dowski and Cathey 1995; Levin et al. 2009; Tucker
et al. 1999], dynamic range [Debevec and Malik 1997; Mann and
Picard 1994; Reinhard and Devlin 2005; Rouf et al. 2011] and image
resolution [Brady et al. 2012; Cossairt et al. 2011; Nayar et al. 2004].

Our proposed end-to-end complex lens design framework could
be applied to many of these applications. It introduces a general
design paradigm for computational cameras that optimizes directly
for the post-processed output with respect to a chosen quality metric
and domain-specific dataset.

End-to-endOptics Design. Co-designing of optics and post-processing
has demonstrated superior performance over traditional heuristic
approaches in single-lens color imaging [Chakrabarti 2016; Peng
et al. 2019], HDR imaging [Metzler et al. 2020; Sun et al. 2020a], single
image depth estimation [Boominathan et al. 2020; Chang and Wetz-
stein 2019a; Haim et al. 2018; Kotwal et al. 2020; Wu et al. 2019a,b;
Wu et al. 2020; Zhang et al. 2018], microscopy imaging [Horstmeyer
et al. 2017; Kellman et al. 2019; Nehme et al. 2019; Shechtman et al.
2016].

In computer vision, the emergence of deep learning has led to
rapid progress in several challenging tasks and the state-of-the-art
results for well-established problems [Schuler et al. 2013; Xu et al.
2014; Zhang et al. 2017]. For example, a deep approach for deconvo-
lution by including a fully connected convolutional network [Nah
et al. 2017] has been proposed. Generative adversarial networks
(GANs) are shown to provide generative estimates with high image
quality. Kupyn et al. [2017; 2019] demonstrated the practicability
of applying GAN reconstruction methods to deblurring problems.
Those approaches have been demonstrated to obtain state-of-the-art
results in many computational photography tasks but not take one
step further to optimize the optics together. G. Côté et al. [2019; 2021]
utilize deep learning to get lens design databases to produce high-
quality starting points from various optical specifications. However,
they generally focused on the design of starting points, and the
designing space is limited to spherical surfaces.
The deep optics [Sitzmann et al. 2018] approach involves joint

design of optics and image recovery for a specific task in an end-to-
end fashion. Based on this model, a series of applications have been
investigated in the last two years like hyperspectral imaging [Baek
et al. 2020; Jeon et al. 2019], high dynamic range imaging [Metzler
et al. 2020], full-spectrum imaging [Dun et al. 2020] and depth es-
timation [Chang and Wetzstein 2019b]. These works are inherently
limited to designing only a single optical surface, and therefore the
image quality of their final designs does not reach the level of reg-
ular consumer camera optics. A solution to this problem has been
to utilize a commercial lens but add a single, co-designed element
for a specific purpose. This approach has been applied to super-
resolution SPAD cameras [Sun et al. 2020b] and high dynamic range
imaging [Sun et al. 2020a]. However, none of these approaches can
deal with large FOVs as their image formationmodel relies on simple
paraxial approximation in addition to the single-surface restriction.
Co-designing complex optics with the image reconstruction was
not addressed until the work on learned large FOV imaging [Peng
et al. 2019]. They overcame the limitation of FOV by separating
the optical design and image processing but not in an end-to-end
fashion.
In conclusion, existing end-to-end methods work in a very re-

stricted setting, including only a single optical surface and a simple
paraxial image formation model (small FOV), or rely on existing
optical design tools. They also have in common that they require
either accurate PSF calibration or extensive training data. We pro-
pose a general configurable and differentiable complex lens model
and an end-to-end framework with tailored recovery networks for
different tasks. Drawing inspiration from the state-of-the-art dif-
ferentiable rendering technique [Bangaru et al. 2020; Nimier-David
et al. 2019; Zhang et al. 2020, 2019], our complex lens model offers a
great design freedom where the number of elements, lens surface
profiles and positions can be configurable. The ample design space
of our proposed lens model allows for rich optical encodings and
the end-to-end pipeline achieves optimal synergy with the image
reconstruction algorithm. Our complex lens model can optimize
the lens parameters and simulate all kinds of aberrations without
considering spatial and depth varying PSF. This property makes
it easier for the later reconstruction network retraining and fine-
tuning stage to get a highly accurate simulated dataset. Finally, our
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solution overcomes the limitation for large FOV and makes it pos-
sible to design a high-quality consumer-level lens in an end-to-end
manner.
3 END-TO-END OPTIMIZATION OF COMPLEX LENS

AND IMAGE RECOVERY

3.1 Image Formation Model
Our end-to-end framework consists of an optical simulation stage
with the lensmodel and a trimmed recovery network as a reconstruc-
tion stage to achieve the best results by employing a generative ad-
versarial network (GAN). As in most existing complex lens systems,
the refraction is usually generated by either spherical or aspherical
surfaces. Throughout the rest of this paper, we consider rotationally
symmetric lens profile designs, which can be manufactured using
diamond turning machines.
Note, however, that our lens model could be easily applied to

rotationally asymmetric profiles such as Zernike basis functions.

3.1.1 Differentiable Lens Model and Ray Tracer. We implement
our differentiable lens tracer following [Kolb et al. 1995], based on
Mitsuba2 [Nimier-David et al. 2019]. The framework is fully differ-
entiable, including the configurable and differentiable complex lens
model and the image recovery network. Each part of this pipeline
can be easily configured to tailor for specific tasks.
After training, we take the optimized parameters like radius,

conic coefficients and high order coefficients of the lens profiles
to fabricate the lens. To account for better reconstruction with
the image processing pipeline and the recovery network, it can be
tailored and fine-tuned through re-training after the lens parameters
are fixed.

In the following, we show how to efficiently integrate the differ-
entiable ray-tracing into our lens designing pipeline.

Aspherical Lenses. Our lens model is based on a standard rep-
resentation of an aspherical lens as a spherical component with a
polynomial correction factor. Given a Cartesian coordinate system
(𝑥,𝑦, 𝑧), the 𝑧-axis coincides with the optical axis, while (𝑥,𝑦) forms
the transverse plane. Let 𝑟 =

√︁
𝑥2 + 𝑦2 and 𝜌 = 𝑟2. Then the height

of the aspheric surface and its derivative is defined as:

ℎ(𝜌) = 𝑐𝜌

1 + √1 − 𝛼𝜌
+

𝑛∑︁
𝑖=2

𝑎2𝑖𝜌
𝑖 , (1)

ℎ′(𝜌) = 𝑐
1 + √1 − 𝛼𝜌 − 𝛼𝜌/2
√
1 − 𝛼𝜌

(
1 + √1 − 𝛼𝜌

)2 + 𝑛∑︁
𝑖=2

𝑎2𝑖𝑖𝜌
𝑖−1, (2)

where 𝑐 is the curvature, 𝛼 = (1 + 𝜅)𝑐2 with 𝜅 being the conic
coefficient, and 𝑎2𝑖 ’s are higher-order coefficients. The implicit form
𝑓 (𝑥,𝑦, 𝑧) and its spatial derivatives ∇𝑓 are:

𝑓 (𝑥,𝑦, 𝑧) = ℎ(𝜌) − 𝑧, (3)
∇𝑓 =

(
2ℎ′(𝜌)𝑥, 2ℎ′(𝜌)𝑦,−1

)
. (4)

Note that spherical surfaces are special cases of aspheric surfaces
when 𝜅 = 0 and 𝑎2𝑖 = 0 (𝑖 = 2, · · · , 𝑛).

In the following, we derive a differentiable ray-tracing based
image formation model which simulates all kinds of aberration at
the same time. For each surface in the lens, its profile is directly
described by (1) and the lens materials are predefined according

to the prior knowledge of optical design to cancel the chromatic
aberrations.

Ray-surface Intersection by Newton’s Method. To use the above
lens model in a ray-tracer, we need to be able to compute the inter-
section point (𝑥,𝑦, 𝑧) and ray marching distance 𝑡 for intersecting
surface 𝑓 (𝑥,𝑦, 𝑧) = 0 (implicit form), given a ray (o, d) of origin
o = (𝑜𝑥 , 𝑜𝑦, 𝑜𝑧) and direction d = (𝑑𝑥 , 𝑑𝑦, 𝑑𝑧) of unit length (i.e.
∥d∥ = 1). Mathematically, this is a root finding problem, i.e. we need
to determine 𝑡 > 0 such that

𝑓 (𝑥,𝑦, 𝑧) = 𝑓 (o + 𝑡d) = 0. (5)
Since there is no analytical solution for this problem for the

aspherical lens model, we solve the problem numerically using
Newton’s method. At iteration 𝑘 +1, we update 𝑡 (𝑘+1) from previous
estimate 𝑡 (𝑘) as:

𝑡 (𝑘+1) ← 𝑡 (𝑘) − 𝑓 (o + 𝑡 (𝑘)d)
𝑓 ′(o + 𝑡 (𝑘)d)

← 𝑡 (𝑘) − 𝑓 (o + 𝑡 (𝑘)d)
∇𝑓 · d , (6)

where 𝑓 ′ and ∇𝑓 denote derivatives w.r.t. 𝑡 and (𝑥,𝑦, 𝑧), respectively.
A coarse (non-singular) initialization is 𝑡 (0) = (𝑧 − 𝑜𝑧)/𝑑𝑧 , and the
iteration stops when the difference is smaller than tolerance.

Dispersion by Cauchy’s equation. To model dispersion, we extend
Mitsuba2 by formulating the lens material refractive index using
Cauchy’s equation [Jenkins and White 2018]:

𝑛(𝜆) = 𝐴 + 𝐵

𝜆2
+ 𝐶

𝜆4
+ · · · . (7)

In practice, we found it sufficient to use only the first two terms (with
parameters 𝐴 and 𝐵) in the equation. When the central wavelength
𝑛𝐷 and Abbe numbers 𝑉 are given, 𝐴 and 𝐵 are computed as:

𝐴 = 𝑛𝐷 −
𝐵

𝜆2
𝐷

and 𝐵 =
𝑛𝐷 − 1

𝑉 (𝜆−2
𝐹
− 𝜆−2

𝐶
)
, (8)

where 𝜆𝐷 = 589.3 nm, 𝜆𝐹 = 486.1 nm, and 𝜆𝐶 = 656.3 nm.

3.1.2 Optics simulation. End-to-end computational imaging con-
sists of simulated optics used to generate simulated image data with
all aberrations present, as well as software reconstruction pipeline.
For joint design, both of these modules should be fully differentiable
so that gradient update become possible across both components.

With the optimal trade-off between the simulation stage and the
reconstruction stage, the PSF usually varies within the field of view,
and across scene depth and spectrum. For a given color channel 𝑐 ,
the recorded sensor measurement 𝐼𝑐 can be expressed as:

𝐼𝑐 (𝑥 ′, 𝑦′) =
∫

𝑄𝑐 (𝜆) · [𝑝 (𝑥 ′, 𝑦′, 𝑑, 𝜆) ∗ 𝑠𝑐 (𝑥 ′, 𝑦′, 𝑑)]𝑑𝜆 + 𝑛(𝑥 ′, 𝑦′),
(9)

where the PSF 𝑝 (𝑥 ′, 𝑦′, 𝑑, 𝜆) is a function with spatial position
(𝑥 ′, 𝑦′) on the sensor, the depth 𝑑 of scene, and the incident spectral
distribution 𝜆. 𝑄𝑐 is a function of the color response of the sensor,
and 𝑠𝑐 (𝑥 ′, 𝑦′, 𝑑) and 𝑛(𝑥 ′, 𝑦′) represent the latent scene and meas-
urement noise (white Gaussian noise), respectively. The operator ∗
represents convolution.
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Fig. 2. Framework for end-to-end designing of differentiable complex lens model and reconstruction. In each forward pass, we set up one scene from a certain
point-of-view and render the simulated sensor image through the differentiable complex lens model. Then, the simulated images are sent to the image
reconstruction network and we train the whole framework simultaneously. For the experimental stage, we directly send the preprocessed real-captures to the
pre-trained network. Notice that the scene setup, initial lens design and image recovery network can be tailored to specific applications.

We use Monte Carlo sampling in the rendering engine. At each
pixel, rays are sampled starting from the sensor plane, with the
wavelengths, sub-pixel origin shift, and direction sampled by a uni-
form random number generator without any importance sampling.
These sampled rays are then traced sequentially through each of
the refractive surfaces following Snell’s law. Rays are marked as
invalid and do not contribute to the final rendered image when the
intersections are outside of the lens geometry or when total internal
reflection takes place.
Unfortunately, the number of samples per pixel (SPP) is limited

by the GPU memory, resulting in Monte Carlo rendering noise. To
overcome this issue, we first render several passes and average them
to get a clean estimate, then replace the PyTorch variable with the
clean estimation to calculate the gradient multiple times to get the
averaged clean gradients. After this processing, the obtained images
and gradients are clean enough, and the Monte Carlo sampling noise
can be ignored [Guo et al. 2018] compared to added white Gaussian
noise.
3.1.3 Image alignment during training. Another challenge for end-
to-end optical design is that in the initial stages of the optimization,
the simulated image is both distorted and scaled compared to the
desired reference. This misalignment makes it hard to accurately
calculate a meaningful loss between the reference image and the
rendered simulations. To solve the problem of pixelwise alignment,
we first forward trace 16 points that are uniformly distributed from
the center of the texture plane to the border and obtain the points
r𝑑 intersected with the sensor plane. Then we set corresponding
ideal points on the sensor as r and the relation between the point
pairs can be expressed as:

r𝑑 = 𝜉r(1 + 𝑘1r2 + 𝑘2r4 + 𝑘3r6) (10)

To simulate the distortion and magnification, we only consider
the radial distortion and solve a least-squares problem as:

min
K
∥ [r, r3, r5, r7]K𝑇 − r𝑑 ∥22, (11)

where K = 𝜉 (1, 𝑘1, 𝑘2, 𝑘3) represents the current distortion coeffi-
cients along with a magnification coefficient 𝜉 . Then we distort and
resize the reference ground truth to match the currently rendered
simulation pixel-to-pixel. Once the lens parameters are fixed, we
undistort the captured image in the experiments.

3.2 Image Reconstruction
End-to-end lens design. As shown in Figure 2, we connect a U-net

like architecture [Chen et al. 2018] with deep layers trimmed (only
use the marked layers in Figure 3 in designing stage) but its early
layers filters that can encode the information on sensor [Peng et al.
2019]. This setup speeds up the training process and provides suffi-
cient degrees of freedom to encode the simulated information for
the end-to-end design. Specifically, the trimmed U-net architecture
in the design stage has three scales with two max pool operations
for downsampling and two transposed convolutions for upsampling.
At the bottleneck, we adopt two flat convolutional layers. Each con-
volutional layer is followed by a parametric rectified linear unit
(PRelu). The trained weights in this trimmed U-net network are
then taken to initialize the corresponding layers for the final fine
reconstruction. Refer Figure 3 for details.

Generator. At the final reconstruction stage with fixed lens para-
meters, we adopt a GAN as shown in Figure 3 to recover the cor-
rupted sensor image 𝐼 from the estimate 𝐼 . The generator 𝐺 is a
U-net architecture with seven scales and six downsampling and
upsampling stages. We compute the loss between the prediction 𝐼

and the corresponding ground truth 𝐼𝑟𝑒 𝑓 by

L𝑐 (𝐼𝑟𝑒 𝑓 , 𝐼 ) = 𝜈1∥𝜙𝑙 (𝐼 ) − 𝜙𝑙 (𝐼𝑟𝑒 𝑓 )∥2 + 𝜈2∥𝐼 − 𝐼𝑟𝑒 𝑓 ∥1, (12)

where 𝜈1 = 0.5 and 𝜈2 = 0.006 are loss balancing weights and 𝜈2 is
added to keep the color fidelity, and 𝜙𝑙 extracts the feature maps
from the 𝑙-th layer of pre-trained VGG-19. Specifically, we use the
“conv3_3” layer of the VGG-19 network.
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Fig. 3. Image reconstruction architecture. The generator model is a U-net architecture that has seven scales with six consecutive downsampling and upsampling
operations. We adopt a global and a local discriminator to incorporate both full spatial contexts and local details. In addition, the layers marked by the dashed
line is the trimmed U-net for the end-to-end designing stage, and they are initialized with the results of the designing stage.

Discriminators. As illustrated in Figure 3, we adopt a global dis-
criminator to incorporate full spatial context and a local discrimin-
ator based on PatchGAN [Isola et al. 2017] to take advantage of local
features. We adopt the relativistic "warping" on the least square
GAN named RaGAN-LS loss [Kupyn et al. 2019] for a discriminator
𝐷 can be expressed as:

L𝑎𝑑𝑣 (𝑥, 𝑧) = E
𝑥∼P𝑥
[(𝐷 (𝑥) − E

𝑧∼P𝑧
[(𝐷 (𝐺 (𝑧)) − 1)2]

+ E
𝑧∼P𝑧
[(𝐷 (𝐺 (𝑧)) − E

𝑥∼P�̂�
[(𝐷 (𝑥) − 1)2],

(13)

where P𝑥 and P𝑧 are the distributions of the data and model, respect-
ively. This proved faster and more stable than WGAN-GP [Arjovsky
et al. 2017] in minimizing a model-generated image 𝑧 and the ground
truth 𝑥 . The resulting total loss can be expressed as:

L𝑡𝑜𝑡𝑎𝑙 = L𝑐 (𝐼𝑟𝑒 𝑓 , 𝐼 ) + 𝜎𝑔𝐿𝑎𝑑𝑣−𝑔 (𝐼𝑟𝑒 𝑓 , 𝐼 ) + 𝜎𝑙𝐿𝑎𝑑𝑣−𝑙 (𝐼𝑟𝑒 𝑓 , 𝐼 ), (14)
where 𝐿𝑎𝑑𝑣−𝑔 and 𝐿𝑎𝑑𝑣−𝑙 represents global and local adversarial loss
and 𝜎𝑔 = 𝜎𝑙 = 0.01.

4 IMPLEMENTATION AND PROTOTYPES

4.1 Datasets and Training details
For the training details of the end-to-end designing stage, please
refer to Section 5 and Section 6 according to the requirements of the
application LFOV and EDOF. With the lens parameters fixed, we
train and finetune the image recovery network for both applications
as follows. First, we rendered simulations with the full DIV2K data-
set, and the texture plane are set according to the applications. We
reserve the first 100 images in the DIV2K dataset [?] for quantitative
comparisons, and use the remainder for training. Then we calibrate
the lens distortion and find the homography to align the rendered
result with the ground truth image. We use ADAM as the optimizer
with 𝛽1 = 0.9 and 𝛽2 = 0.999. The learning rate is initialized to 10−4
for the first 50 epochs and linearly decayed to 0 over another 100
epochs using 256×256 patch pairs. All experiments were conducted
using a single Nvidia RTX Titan GPU and each design takes around
20 hours.

4.2 Prototypes
Fabrication. Once the parameters 𝑐 , 𝜅 and 𝑐𝑘 of each lens profile

are fixed after the end-to-end design, we fabricate each lens element
with a coarse CNC machining process followed by a single-point

diamond turning process. First, each lens blank was machined using
a CNC machine with a precision of 0.05mm to prepare it for turning.
Then we used a CNC machining system that supports 3-axis single
point diamond turning (Nanotech 450) [Fang et al. 2013]. We use
two substrates: polymethyl methacrylate (PMMA) with a refractive
index of 1.493, and polycarbonate (PC) with a refractive index 1.5892,
both measured at a principal wavelength of 550 nm. These materials
represent a set of low index/low dispersion and high index/high
dispersion materials that is required for designing achromatic optics.

Fig. 4. Prototypes and the rendered section views of our designed lenses. The
top left shows our fabricated lens for LFOV (left) and EDOF (right) imaging,
and the corresponding structures are shown in the medium/bottom left
and medium/bottom right, respectively. The top right shows the assembled
prototype with the camera body.
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We consider two applications, large field-of-view (LFOV) and ex-
tended depth-of-field (EDOF). For the LFOV application, we design
a lens system with two lens elements, made from PPMA and PC,
respectively. For the EDOF application, we use three elements and
six design surfaces, the corresponding materials are PMMA, PC, and
PC.

System Integration. To demonstrate the proposed framework ex-
perimentally, we use a Sony A7 camera with 6,000×4,000 pixels and
a pixel pitch of 5.96 𝜇m. The equivalent focal length for both lens
designs is 50mm, with aperture sizes of 12mm and 12mm for LFOV
and EDOF, respectively. Correspondingly, both of the lens designs
have f-numbers of about 𝐹4. The fabricated lenses are mounted by
our custom-designed lens tubes, and both of them have a stand-
ard C-mount as shown in 4. Finally, both of the two lens tubes are
mounted to the camera with a C/E mount adapter.

5 LARGE FIELD-OF-VIEW IMAGING
A modern complex system is effective in minimizing optical aber-
rations but the depth of the lens stack limiting in manufacturing
high-quality LFOV lens with a low cost and will introduce addi-
tional issues, such as lens flare and complicated optical stabilization
and assembling [Brady et al. 2012; Hasinoff and Kutulakos 2011;
Venkataraman et al. 2013; Yuan et al. 2017]. In the last year, Peng et
al. [2019] proposed the state-of-the-art of large FOV imaging with
a thin-plate optics which adopts a virtual aperture design of two
aspherical surfaces, reconstructed by a generative network. How-
ever, limited by the designing space of a single element, the PSFs at
different FOVs are typically larger than 900 pixels yielding strong
hazing and blurring artifacts recorded on the sensor. In addition, the
optics and reconstruction network are not designed fully end-to-
end, the recovered image left visible artifacts even with a powerful
GAN recovery network.
With our proposed differentiable complex lens model, we can

design a lens with multiple elements with an aspherical profile
according to the needs of the applications and find the best com-
promise between the complexity of lens and image quality. To apply
our framework to LFOV imaging ( ≥ 30◦ ), we set a texture plane
at 1m away from the camera with the size around 437mm×54.5mm
and set the sensor resolution to 4096×512 pixels to cover the full
designed FOV. As the lens is designed rotationally sycemmatric, the
full FOV should be calculated as 2 arctan(0.437/2∗

√
2) = 34.3◦. The

pixel size in the simulation is defined as 6𝜇m, matching the camera
sensor used in the experiments. Limited by the GPU memory, we
set the SPP to 64 for each rendering pass and average ten passes
for a single scene to get a clean rendered image and corresponding
accurate gradients. Refer to Section 3.1.2 for more details. To sim-
ulate a larger field of view with limited resources and reduce the
time consumption, we align the sensor’s left bottom corner with
the optical center and simulate the image only in the first quadrant
as the lens is symmetric.
We initialize the system with an initial lens design made of two

lenses that are brought in focus on the optical axis. The materials
are chosen as PMMA and PC for better cancelling of chromatic
aberrations. To train the lens parameters for LFOV, we set all the
conic coefficients 𝜅 of each surface as variables. As illustrated in

Figure 2, a trimmed U-net architecture G𝑡 connected to the end-to-
end framework. The initial learning rate is set to 0.08 and 0.0008
for the lens parameters and network parameters, and both of them
are decayed by a factor of 0.8 at each epoch. Our loss function is
described as:

L𝑐 = ∥G𝑡 (𝐼𝑐 ) − 𝐼𝑟𝑒 𝑓 ∥1 . (15)

Where the 𝐼𝑟𝑒 𝑓 represents the ground truth. In addition, once the
lens parameters are fixed, we take the parameters of the network to
replace the corresponding layers (marked in Figure 3) of the image
recovery network as the initialization and train the image recover
network as described in Section 3 to process the images captured
in the real experiments. In addition, the reference images are pre-
distorted and resized at the beginning of each optimization step
by the method described in Section 3.1.3 to make the image pairs
matched pixel-to-pixel.

5.1 Evaluation in Simulation
Figure 5 shows a qualitative comparison of high-quality commer-
cial available lenses and the state-of-the-art LFOV imaging lens
(LFOV19) [Peng et al. 2019]. We also show the modulation transfer
functions (MTFs) of each lens before and after the post-processing.
Notice that some data in those MTF charts are missing due to the
observed edges are heavily blurred and becomes uncalculatable. We
first compare against the high-quality commercial available aspher-
ical lens Thorlabs AL2550-A, which is optimized for focusing light
incident on the aspherical side of the lens with minimal spherical
aberration. Then we compared against an air-spaced doublet design
ACA254-050-A, which provides superior spherical and chromatic ab-
erration correction. As illustrated in Figure 5, the simulated PSFs by
Zemax of AL2550-A and ACA254-050-A are well focused at the cen-
ter FOVwhile corrupted when reaching a FOV 20◦. The whole FOVs
of simulated images shown in Figure 5 are all up to 30◦. The Cooke
triplet performs better compared with AL2550-A and ACA254-050-A
but still has a noticeable blurry at a large angle. Refer to the supple-
mentary material for more details. The state-of-the-art dual-surface
aspherical lens design named LFOV19 has a better performance
than the commercially available lenses as they balanced the aberra-
tions of different FOV to achieve a larger FOV. However, this design
yielding a very large PSF (≥ 900 pixels) that overly degrades the
image and has noticeable artifacts even with powerful generative
post-processing. Our design, which is also compact and low-cost,
introduces a differentiable ray-tracing based complex lens model
that can directly optimize the lens parameters according to the tasks.
The second column of Figure 5 illustrates that ours performs bet-
ter from the PSF across the FOV. The third and fourth columns in
Figure 5 give two examples of the cropped rendered simulation and
corresponding reconstructed results, which use the same model and
were retrained according to the lens. We show the cropped part
of rendered simulation from a full FOV 0◦ (left side) to 30◦ (right
side). Obviously, the results of AL2550-A and ACA254-050-A has a
good performance at a small FOV but suffer from heavy blurring in
off-axis regions. The LFOV19 shows an almost equal performance
across the FOV but left noticeable artifacts. Ours has a better PSF
behavior across the FOV, yielding better sensor measurements and
reconstruction results.
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Fig. 5. Evaluation of LFOV imaging in simulation. We compare the performance of the state-of-the-art commercially available aspherical lens Thorlabs
AL2550-A, lens pairs ACA254-050-A, jointly designed optics without modulation to flat lens [Peng et al. 2019], Cooke triplet and our end-to-end designed
camera. All the texture planes are located at 1m away from the camera, and the simulations are based on ray optics without considering diffraction. The first
column shows the section view of each lens, and the second column shows the corresponding PSFs at different angles up to 30· . The third column shows the
simulated sensor image (top) and recovered image (bottom). The fourth column shows the MTFs of each lens at different angles. The PSFs and rendered
simulation of AL2550-A and ACA254-050-A lenses show a strong blurring at large angles. LFOV19 lens performs better in balancing PSF but left significant
artifacts in both measurements and reconstructions. Cooke triplet performs better than AL2550-A and ACA254-050-A but still fails at a large FOV. Instead, our
design shows a better PSF distribution, and the results have fewer artifacts. Notice that all lenses are adjusted to F4.

We also show the quantitative comparisons in simulation in
Table 1. Obviously, our lens performs better in both PSNR and SSIM
compared with the others over a FOV from 0◦ to 30◦. Note that the
training data and recovery network are re-rendered and retrained
for each lens.

5.2 Experimental Results
To validate the practicability of the proposed differentiable complex
lens model and the end-to-end framework, we fabricated the lens
elements using single-point diamond turning and assembled them
with the custom designed lens tube as shown in Figure 4. Figure 6
shows the pairs of “in-the-wild” captured raw sensor data (left) and
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Fig. 6. Experimental results of large field of view imaging with two elements and four surfaces design. For each pair, we give the sensor measurement by our
prototype camera and the reconstructed results. Please zoom in to see more details.

Table 1. Quantitative comparison of image recovery performance of differ-
ent lenses. We compare PSNR values in dB and SSIM values over a FOV
from 0◦ to 30◦. Notice that all lenses are adjusted to F4.

AL2550-A ACA254-050A LFOV19 Cooke Ours
PSNR 16.96 19.03 16.86 15.724 22.8
SSIM 0.478 0.499 0.314 0.422 0.719

corresponding reconstructed results (right). The exposure times for
each image are 33ms, 167ms, 167ms, 100ms with ISO 50. With our
end-to-end designed imaging lens and reconstruction, we achieve
a high-quality LFOV imaging with minor artifacts with only two
lens elements. Notice the sensor measurements show haze artifacts,
which is mainly introduced by the surface roughness, scratch, and
low transparency of PMMA and PC in experiments. With our gener-
ative image reconstruction, we obtain clean results with fine details,
as shown in Figure 6. Our lens design is compact and low-cost com-
pared to commercial bulky lens and can get comparable results with
the help of our differentiable complex lens model and end-to-end
framework.

6 EXTENDED DEPTH OF FIELD
Computational EDOF cameras usually design an approximately
depth-invariant PSF for one wavelength and then employ a simple
deconvolution to the sensor capture to obtain an all-in-focus im-
age [Cossairt and Nayar 2010; Cossairt et al. 2010; Dowski and
Cathey 1995]. Recently, researchers proposed an end-to-end pipeline
for diffractive optics or Zernike Basis [Sitzmann et al. 2018] and
applied it to achromatic EDOF imaging. However, their optics model
is based on the paraxial approximation, which is only a simple Four-
ier transform and can only deal with a single optical surface. With
the proposed differentiable complex lens model and our end-to-end
framework, we relax the designing space from a single surface to
multiple surfaces for EDOF imaging.

To apply our end-to-end framework to EDOF imaging, we start
with an initial triple-lens design with six surfaces where the second
surface of the first and third elements are aspherical. This design is
brought in good focus near the optical axis. The materials for the
three lens elements are selected as PMMA, PC, and PC for better
canceling of chromatic artifacts and easier fabrication. Refer to the
supplementary material for more details. To obtain clean rendered
images and corresponding accurate gradients despite the limited
GPU memory, we use 10 rendering passes with 128 samples per
pixel each. Please refer to Section 3.1.2 for more details.
We place the texture plane at 0.5m, 0.7m, 1m, and 1.5m away

from the camera in simulation and try to find the best compromise
between the different depths. The pixel size in the simulation is set
to 6𝜇m and the sensor resolution is set 256×256 pixels while the tex-
ture plane sizes are set to 13.82mm×13.82mm, 20.51mm×20.51mm,
30.72mm×30.72mm and 46.08mm×46.08mm, respectively. To train
the lens parameters to achieve a EDOF camera, we set the conic
coefficients 𝜅 of the spherical surface as the variable (four surfaces
in total). The initial learning rate is set to 0.08 for the lens paramet-
ers, and they are decayed by a factor of 0.8 at each epoch. Our loss
function can be expressed as:

L𝑐 = Σ 𝑗𝜁𝑖 ∥𝐼𝑐𝑖 − 𝐼𝑐2∥1 + Σ 𝑗3(1 − 𝑆𝑆𝐼𝑀 (𝐼𝑐 , 𝐼𝑟𝑒 𝑓 )), (16)

where 𝜁𝑖 represents the weights for different depths, and we set
them to {3, 3, 0.3, 1} corresponding to the depths mentioned above,
respectively. 𝐼𝑐2 represents the sensor measurement with the texture
plane placed a distance of 1m, and we take it as a reference to
balancing the blurring amount over different depths. For each depth,
we adopt a structural similarity index measure (SSIM) loss between
the sensor measurement and the corresponding clean reference as
the brightness and gamma might mismatch with the reference. In
addition, the reference images are pre-distorted and resized at the
beginning of each optimization step by the method described in
Section 3.1.2 to align the image pairs pixel-to-pixel.
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Fig. 7. Evaluation of extended depth of field imaging in simulation. We compare the performance of the state-of-the-art commercially available aspherical
lenses, including Thorlabs AL2550-A and ACA254-050-A. The first row shows the MTFs of each lens before and after post-processing at different depths. All the
texture planes are placed 1m away from the camera, and the simulation is based on ray optics without considering diffraction. The second row shows the
corresponding PSFs at the selected depth. The third column shows the simulated sensor image. Obviously, the PSFs of rendered simulation of AL2550-A
and ACA254-050-A lenses exhibit a strong blur when out of focus. Instead, our design shows an almost depth invariant PSF and results with fewer artifacts.
Additional results are available in the supplementary material. Notice that all lenses are adjusted to F4.
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6.1 Evaluation in Simulation
We first validate our lens design in simulation and compared our
lens with the high-quality commercially available lenses, including
AL2550-A and ACA254-050-A. We focus all the lenses at 1m away
from the camera. As illustrated in Figure 7, the simulated center
PSFs by Zemax of AL2550-A and ACA254-050-A behave well when
in focus. However, their PSF becomes unacceptably large when out
of focus. In contrast, our design has an almost depth invariant PSF
behavior compared with the others. We first validate our lens design
in simulation and compared our lens with the high-quality com-
mercially available lenses, including AL2550-A and ACA254-050-A.
We focus all the lenses at 1m away from the camera. As illustrated
in Figure 7, the simulated center PSFs by Zemax of AL2550-A and
ACA254-050-A behave well when in focus. However, their PSF be-
comes unacceptably large when out of focus. In contrast, our design
has an almost depth invariant PSF behavior compared with the
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Fig. 9. Experimental results of extended depth of field with three elements and six surfaces design. The left column shows the raw sensor data from our
design, the center column shows our reconstruction result and the right column shows images captured by a commercial Sony 28-70mm zoom lens adjusted to
50mm/F4.5. The objects shown in these two figures are placed from around 0.8m to 1.8m, and we succeed in obtaining the all-in-focus image. Please zoom in
to see more details.

others. Besides, the MTFs in Figure 7 show that the MTF of our op-
timized lens is closer to the desiredMTF in optical systems: smoothly
and monotonously decreasing from an amplitude of 100% for the
DC term to ca. 10% at the Nyquist limit of the SR image, with no er-
roneous maxima for higher frequencies. Instead, the others show an
obvious outlier for the post-processed data and worse performance
before processing.
We further rendered the scene at different depths for each lens

to provide further evidence that our end-to-end design has a lar-
ger DOF. We rendered the whole dataset for each rendered scene
and retrained the recovery network for fair comparison for each
rendered scene and recovered estimation pairs. As illustrated in
Figure 7, AL2550-A and ACA254-050-A have better performance
when in focus for both rendered results and corresponding recov-
eries but break when out of focus. In contrast, our design has a
depth-balanced performance in both sensor measurements and re-
constructed images.

We also show the quantitative comparisons in simulation in Fig-
ure 8. Our lens performs better balancing over depth in both PSNR
and SSIM compared with the others. For a fair comparison, all lenses

are adjusted with an aperture of F4. Note that the training data and
recovery network are re-rendered and retrained according to each
lens. Furthermore, the rendered images’ energy distribution might
vary with the lenses and make them different from the reference
images, causing a relatively low matric value and less accuracy.

6.2 Experimental Results
To demonstrate the practicability of our approach in EDOF, we
fabricated and assembled the lenses with the custom-designed lens
tube as shown in Figure 4. Figure 9 shows the captured raw sensor
measurement (left), reconstructed results (middle), and the reference
image captured by a Sony 28-70mm standard zoom lens adjusted to
50mm/F4.5. The exposure times for each image are all set to 200ms
with ISO 50. Figure 9 illustrates that we achieved good performance
and high image quality over a large DOF. Compared with our lens
(F4), the Sony 28-70mm standard zoom lens has a larger f-number
but worse DOF performance. Notice the sensor measurements show
haze artifacts, which has been discussed in Section 5.2 and Section 7.
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7 DISCUSSION AND CONCLUSION

7.1 Discussion
Stablity and efficiency. We have introduced a differentiable com-

plex lens model that can be connected with tailored image recon-
structions. Compared to conventional lens design, which requires
much experience in setting up merit functions to affect the desired
design characteristics, our approach reduces the need for human
involvement. However, both methods can converge to a local min-
imum if the starting point of the design is too far off from a feasible
solution. Like traditional lens design, which requires a proper ini-
tialization, our approach still requires a good initial structure that
can then be further optimized automatically. Our data-driven optics
do not yet take into account many standard tasks of optical design,
such as zoom and focus changes, or design aspects such as toler-
ancing or anti-reflective coatings. We believe, however, that such
extensions will be easy to add to the framework in the future.
Our approach traces hundreds of rays for each pixel as for the

computational efficiency, resulting inmillions of rays to compute the
gradients. This is less time-efficient evenwith the help of the state-of-
the-art ray tracing cores and has a vast space to optimize. In future
work, we would like to introduce a patch wised rendering strategy
instead of tracing the whole FOV to improve the computational
efficiency during the designing stage.

Fabrication. To demonstrate our differentiable optics model and
end-to-end the pipeline, we fabricated two prototypes for differ-
ent applications using single-point diamond turning from PC and
PMMA material. PC and PMMA are easy to manufacture, but the
stability, transparency, and the easily transformed make it hard to
achieve a good imaging quality for a complex lens system. Besides,
the center alignment of the lenses and surfaces is a challenging task
during machining and assembling. As a result, the real captured
sensor images have haze artifacts compared with the simulations.
However, many of these issues can likely be overcome in mass pro-
duction, such as injection molding fabrication processes like the
ones already used in the manufacture of cell phone cameras. We
also would like to fabricate lenses from optical glass with coatings
to reduce the stray light in the future.

7.2 Conclusion
We proposed a novel differentiable complex model that provides a
new approach for optics designing and an end-to-end framework
that can be tailored for specifics tasks. We demonstrated our model
and pipeline on two applications, including LFOV and EDOF ima-
ging with compact lens designs, and tested both in real-world ex-
periments. In addition, our model can not only be applied to the
end-to-end designing of optics but also offers a new approach for
simulating lens’ aberrations, which makes it less cumbersome to
obtain a large, well-aligned training dataset for the image recovery
training stage. While the proposed approach enables practical, high-
quality imagery with compact designs, stability to initialization, and
computational efficiency need to be further investigated in future
work.

In the future, it might also be interesting to explore hybrid re-
fractive/diffractive optical systems, and to incorporate features like

coatings and other optical effects. Furthermore, building a know-
ledge graph that contains a large library of classic designs are an
exciting direction to get rid of human involvement in initializing
our system and making the design process fully automatic.
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