
Learning Rank-1 Diffractive Optics for

Single-shot High Dynamic Range Imaging

Qilin Sun1 Ethan Tseng2 Qiang Fu1 Wolfgang Heidrich1 Felix Heide2

1KAUST 2Princeton University

In this supplement we present additional details and re-

sults for the methods presented in the main text. Specifi-

cally, we present

• Regularization (Section 1)

• Continued optimization without rank-1 height map

factorization and without regularization (Section 2)

• Scene depth experiments (Section 3)

• Limitations (Section 4)

• Details for reconstruction network (Section 5)

• Training details (Section 6)

• Details on ablation study (Section 7)

• Fabrication details (Section 8)

• PSF calibration (Section 9)

• Additional results (Section 10)

• Experimental setup (Section 11)

• Dataset sources (Section 12)

1. Regularization

As described in Section 3 of the paper, we apply a regu-

larization loss during training. This loss is applied by using

the energy distribution mask shown in Figure 1c and keep-

ing 94% of the energy in the center and 6% in the line-like

satellite regions. Our regularizer is formally given by

Lreg = τc|0.94− p⊙Mc|+ τs|0.06− p⊙Ms| (1)

where p is the PSF, Mc is the energy mask corresponding

to the center, and Ms is the energy mask corresponding to

the satellite regions. In our experiments we used τc = 0.05
and τs = 0.1 .

We also performed an experiment where we trained us-

ing our optical model but without regularization. We found

that the final PSF converges to a Dirac point instead of

spreading out energy from the saturated area and the per-

formance is only 36.9 dB PSNR and 61.45 points on HDR-

VDP 2 [?] on the test set. This experiment illustrates the

importance of our regularizer.

a b c

Figure 1. PSF corresponding to Rank-1 height map parameteriza-

tion. (a) Simulated PSF. (b) PSF captured in the real-world. (c)

Energy distribution mask used for regularization.

2. Continued optimization without rank-1

height map factorization and without reg-

ularization

To validate that we achieve a good local optimum with

our optical design we continued to train without our rank-

1 factorization and without our regularizer for 25 epochs.

That is, we take our learned height map profile and con-

tinue to train as an unconstrained height map where each

location is a learnable parameter. For this experiment the

starting learning rate of the optical model is lowered from

1e−3 to 1e−6 while all other hyperparameters are the same

as the original model training process. We observe that af-

ter 25 epochs the height map has changed insignificantly, as

illustrated in Figure 2. This suggests that we do indeed find

a good local optimum.
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Figure 2. Height map comparison. (a) Our learned height map. (b)

Continued training height map without rank-1 factorization and

without regularization. (c) Absolute difference between (a) and

(b). All figures are normalized by the maximum fabrication height

hmax = 1.125 µm
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3. Scene depth experiments

Our optical model assumes that the point light source is

placed 5 m away from the DOE plane. However, the PSF

varies with different scene depth. As such, we investigate

the robustness of our reconstruction network for handling

PSFs corresponding to different scene depths in simulation.

We change the position of the point light source from 1 m

to infinity (while adjusting the distance between the sensor

and focusing lens accordingly). Figure 3 shows our PSNR

results on the test set in simulation. Our reconstruction net-

work does best for 5 m depth as expected, and the perfor-

mance is slightly degraded for other depths.
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Figure 3. PSNR performance in simulation over different depths.

4. Limitations

Large saturated regions Our method is most effective

for recovering highly saturated, small area regions, but

struggles like other optical encoding methods when the sat-

urated regions are larger in area.

We performed simulation experiments on scenes with

larger saturated regions to further illustrate the capabili-

ties and limitations of our method, which can be seen in

Fig. 4. The left images contain large saturated regions

which causes some of the encoding streaks to be saturated.

In spite of this, our method is still able to recover lost de-

tails and remove the encoding artifacts. The middle images

show that our method is able to accurately detect and re-

cover highlights of different intensities even if they all lie

within the same saturated region. Specifically, the high in-

tensity ceiling lights are correctly determined to be of higher

intensity than the reflected light from the windows, even

though both are saturated in the LDR measurement. The

right image illustrates a failure mode consisting of a very

complex scene within a large saturated region. Neverthe-

less, our method is still able to recover details and with cor-

rect intensity levels.

Layer Convolution layer Activation Normalization

0 conv-n64-k1-d1 Leaky Relu nm

1 conv-n64-k3-d1 Leaky Relu nm

2 conv-n64-k3-d2 Leaky Relu nm

3 conv-n64-k3-d4 Leaky Relu nm

4 conv-n64-k3-d8 Leaky Relu nm

5 conv-n64-k3-d16 Leaky Relu nm

6 conv-n64-k3-d32 Leaky Relu nm

7 conv-n64-k3-d64 Leaky Relu nm

8 conv-n64-k3-d1 Leaky Relu nm

9 conv-n6-k1-d1 - -

Table 1. Configuration of residual splitting network. In the ta-

ble, “conv-n(a)-k(b)-d(c)” represents a convolution layer with a

output channels, using a b × b kernel, and using a dilation rate

c. Each “Leaky Relu” has slope 0.2 and nm(x) = w0x +
w1Instance norm(x), where w0 and w1 are trainable variables.

Multispectral Simulation In the design phase, our simu-

lation models how the DOE affects narrow RGB bands, and

using a model with finer wavelength sampling would reduce

the disparity between the simulated PSF and the real-world

captured PSF. However, note, that such a model would be

more time consuming to train, difficult to optimize, and it

would requires a large corpus of HDR multispectral training

data that does not exist today.

5. Details for reconstruction network

Details for residual splitting network Our residual split-

ting network configuration is shown in Table 1. As de-

scribed in Section 4 of the paper, we use the pre-trained

VGG-19 model to extract feature maps (1472 channels in

total) and upsample them to the same size as the input im-

age (3 channels). Then we concatenate them together (1475

channels) and feed into our residual splitting network. We

use a skip connection so that the output unsaturated image

estimate ÎU is given by the sum of the first three channels

of the output of our residual splitting network and the input

image Is. The last three channels of the output of our resid-

ual splitting network gives the encoded residual estimate Îr.

We clip ÎU to [0, 1] and Îr to [0, 24].

Details for highlight reconstruction network Our high-

light reconstruction network configuration is shown in Ta-

ble 2. We avoid using normalization in the last two-layers

’9 1’ and ’9 2’, and the last layer ’10’ to allow the network

to output a larger range of values. The output of the network

ÎS is clipped to [1, 28].

Details for fusion network As shown in Table 3, we first

convolve inputs ÎU and ÎS separately using two convolu-

tion layers for each input. Then we concatenate the feature

maps together and generate the final HDR prediction using

another two convolution layers. In addition, we mask out
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Figure 4. We provide additional simulation results on area with larger saturation regions. These larger saturated highlights are more difficult

to recover, but we are still able to provide accurate reconstructions. Note that different highlight intensities within saturated regions are

reconstructed with the correct intensity, for example, the ceiling lights in the middle image have higher intensity than light reflected from

the windows.

the unsaturated region for ÎS before it is sent to the fusion

network.

6. Training details

We implement our rank-1 DOE height map model and

reconstruction network in TensorFlow 1.14. Our recon-

struction network assumes inputs are in the range [0, 1], and

outputs are in the range [0, 28]. The model is jointly opti-

mized using the Adam optimizer with polynomial learning

rate decay. The optic was optimized using a starting learn-

ing rate of 1e−3 and the reconstruction network was opti-

mized using a starting learning rate of 1e−4. The network

was then fine-tuned with the trained optic by adding the ex-

clusion loss Lexcl with a starting learning rate of 1e−5. Fi-

nally, we fine-tune the fusion network with a starting learn-

ing rate of 1e−5. Each of the three stages is trained for 200

epochs and the learning rates are decayed after 60000 train-

ing iterations to 1e−10. The model is trained on a single

Titan RTX, and the training process lasts around 48 hours

for every 200 epochs described above.

We used the following loss coefficients:

• ν2 2 = 1/4.8, ν3 2 = 1/3.7, ν4 2 = 1/5.6 for LVGG

• α1 = 0.2, α2 = 0 during training and α1 = 0.2,

α2 = 0.01 during fine-tuning for LU

• β = 0.5 for LS

7. Details on ablation study

As illustrated in Table 1 of the paper, our method out-

performs the state-of-the-art methods by more than 7 dB in

PSNR and 6 points on HDR-VDP 2 [?].

HDR-CNN [?] estimates the HDR image directly from

a single LDR image without using any encodings. While

their method works well for small dynamic ranges, it fails

to reconstruct highlights with a higher dynamic range ac-

curately. This can be seen in Figures 9, 10, 11 where the

−8 EV reconstructions show that highlight intensities are

severely under-estimated.

Glare HDR [?] encodes saturated information into sur-

rounding areas using off-the-shelf glare filters. However,

their reconstruction algorithm often leaves behind strong

artifacts and fails to correctly reconstruct the saturated re-

gions. Furthermore, the algorithm takes several seconds to

process a single LDR image, making it impractical for real-

time applications. We also performed an experiment using

our reconstruction algorithm instead of theirs while still us-

ing the “Star PSF”. We found that by simply changing the

reconstruction algorithm, we improve by more than 10 dB

in PSNR and 11 points on HDR-VDP 2 on the test set.

Deep Optics [?] was done in parallel to our work and is

most similar to our approach. For our comparison exper-

iments, we fixed their learned “Dual Peak PSF” and only

trained their reconstruction network. We found that the

copied peaks produced by their PSF are easily saturated, or

overlap with the saturated regions, which makes them inef-

fective for highlight reconstruction. We also performed an

experiment using our reconstruction network while using

their Dual Peak PSF. By changing the reconstruction net-

work, we improve by more than 2 dB PSNR and 2 points

on HDR-VDP 2 on the test set.

Finally, we observed that if we used our reconstruction

network but varied the PSF between the Dirac PSF (no en-

coding), the Star PSF, the Dual Peak PSF, and our PSF, then



Layer Convolution layer Activation Normalization

1 1 conv-n32-k7-d1 Leaky Relu Instance

1 2 conv-n32-k3-d1 Leaky Relu Instance

Max Pooling

2 1 conv-n64-k3-d1 Leaky Relu Instance

2 2 conv-n64-k3-d1 Leaky Relu Instance

Max Pooling

3 1 conv-n128-k3-d1 Leaky Relu Instance

3 2 conv-n128-k3-d1 Leaky Relu Instance

Max Pooling

4 1 conv-n256-k3-d1 Leaky Relu Instance

4 2 conv-n256-k3-d1 Leaky Relu Instance

Max Pooling

5 1 conv-n512-k3-d1 Leaky Relu Instance

5 2 conv-n512-k3-d1 Leaky Relu Instance

Upsampling & Concat

6 1 conv-n256-k3-d1 Leaky Relu Instance

6 2 conv-n256-k3-d1 Leaky Relu Instance

Upsampling & Concat

7 1 conv-n128-k3-d1 Leaky Relu Instance

7 2 conv-n128-k3-d1 Leaky Relu Instance

Upsampling & Concat

8 1 conv-n64-k3-d1 Leaky Relu Instance

8 2 conv-n64-k3-d1 Leaky Relu Instance

Upsampling & Concat

9 1 conv-n32-k3-d1 Leaky Relu -

9 2 conv-n32-k3-d1 Leaky Relu -

10 conv-n3-k1-d1 - -

Table 2. Configuration of highlight reconstruction network. In the

table, “conv-n(a)-k(b)-d(c)” represents a convolution layer with a

output channels, using a b × b kernel, and using a dilation rate c.

Each “Leaky Relu” has slope 0.2 and “Max Pooling” represents a

max pooling layer with a 2×2 kernel and a stride of 2. Each “Up-

sampling” represents nearest neighbor upsampling with a factor 2

followed by a convolution layer with a 3× 3 kernel.

using our PSF has the best performance. This suggests that

our PSF provides the best encoding for our reconstruction

network.

8. Fabrication details

The optimized DOE is fabricated by multilevel pho-

tolithography techniques on a fused silica wafer. Since it

is difficult and costly to fabricate continuous height pro-

files in the micro-scale, we first slice the continuous height

map into N = 24 levels. This allows us to approximate

the continuous target shape with 16 staircases to compro-

Layer Convolution layer Activation Normalization

1 1U conv-n64-k3-d1 Leaky Relu -

1 2U conv-n64-k3-d1 Leaky Relu -

1 1S conv-n64-k3-d1 Leaky Relu -

1 2S conv-n64-k3-d1 Leaky Relu -

Concat

2 1 conv-n32-k3-d1 Leaky Relu -

2 2 conv-n3-k3-d1 Leaky Relu -

Table 3. Configuration of fusion network. In the table, “conv-n(a)-

k(b)-d(c)” represents a convolution layer with a output channels,

using a b×b kernel, and using a dilation rate c. Each “Leaky Relu”

has slope 0.2 and nm(x) = w0x+w1Instance norm(x), where w0

and w1 are trainable variables. 1 1U, 1 2U are applied to ÎU while

1 1S, 1 2S are applied to ÎS.

mise between manufacturability and diffraction efficiency

because 16-level DOEs offer > 90% diffraction efficiency

while providing good control over alignment between adja-

cent layers.

The fabrication procedure consists of two major parts,

photolithography and reactive ion etching (RIE). The pho-

tolithography step is used to form and transfer desired

patterns onto the substrate. The sliced binary pattern is

first written by a Heidelberg DWL 2000 laser direct writer

on a 5 inch soda-lime mask. Each pixel in the mask is

6 µm × 6 µm. For the substrate, we use a 4 inch fused

silica wafer. It is sputter deposited with 200 nm Chrome

(Cr) as a reflective layer, and then spin-coated with 0.6 µm

thick photoresist AZ1505. Next, the mask and substrate are

brought together through an i-line contact aligner EVG6200

for precise alignment between the two. The typical align-

ment error that can be achieved is ±1 µm. Once alignment

is done, the wafer is exposed to UV light with 15 mJ/cm2

dose. The exposed wafer is then developed in AZ MIF726

developer for 20 s to generate the pattern on the photore-

sist. To transfer the pattern from photoresist to Cr, we use

Cr etchant to remove the Cr in open areas. The photoresist

is then removed by acetone. At the end of this step, we have

a patterned Cr layer on a fused silica wafer.

The RIE step is then used to create final height reliefs in

the substrate. We use a mixture of Sulfur tetrafluoride (SF4)

and Argon (Ar) gases at 10 ◦C as the plasma source. The

etching depths are time controlled and monitored by mea-

surement on a profilometer. In each RIE cycle, we double

the depth that is done in the previous step in order to ap-

proximate 2π phase modulation. We design the DOE for

550 nm wavelength and the etching depths are 75 nm, 150

nm, 300 nm, and 600 nm respectively. After the etching, we

remove the residual Cr layer by Cr etchant.

We apply successive iterations of the photolithography

and RIE steps to have the final 16-level DOE. The final di-

mension of the sample is 20 mm × 20 mm × 0.5 mm.



9. PSF calibration

To obtain the high dynamic range real-world PSF, we

place a point white light source 5 m away from the sensor.

We take three images in rapid succession at 0 EV, −4 EV,

and −8 EV, which we then combine into one HDR PSF. We

then fine-tune our trained reconstruction network using the

obtained HDR PSF. Our fine-tuning process lasts for 200

epochs and uses a starting learning rate of 1e−5 and poly-

nomial decay after 60000 training steps to 1e−10.

Since the DOE is not installed on the aperture plane, the

shift-invariance of the PSF is not guaranteed at every posi-

tion on the sensor. Nevertheless, as shown in Figure 5 we

demonstrate that the PSF is almost constant across the field-

of-view of our designed frame size.

a b c

Figure 5. PSF corresponding to different sensor positions. (a) PSF

located at the center of the frame. (b) PSF located at the center-left

of the frame. (c) PSF located at the top-left of the frame.

10. Additional results

10.1. Real­world dynamic scene
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Figure 6. Visual comparison of our method against burst HDR on

a dynamic scene. The scene consists of a set of lights affixed to a

swinging pendulum.

We perform an additional experiment for capturing dy-

namic scenes consisting of moving high-intensity light

sources. As shown in Figure 6, we capture a swinging pen-

dulum fixture that has red and blue light sources. Since we

only use one snapshot for HDR reconstruction, our method

successfully recovers highlights of this dynamic scene with-

out motion blur artifacts. However, burst HDR, which takes

five images for every two stops, fails to handle this dynamic

scene.

10.2. Real captures

Figures 7 and 8 show real capture results using our pro-

totype. Note that all real captured results are shown at

1024 × 1024 resolution, please zoom in to see the encod-

ing streaks and the reconstructed details.

10.3. Simulation comparisons

Figures 9, 10, 11 show additional qualitative compar-

isons in simulation.

10.4. Automotive streak removal

We model streaks using a 2-point star PSF with the same

parameterization from Rouf et al. [?]. We set α = 1.0,

β = 0.00025, γ = 0, m = 0.014 in order to closely approx-

imate the streaks seen in the video sequence. To remove the

streaks we train our residual splitting network with the un-

saturated loss LU described in Section 4.1 and use ÎU as the

output. We do not use the highlight reconstruction network

or the fusion network for this task. Figure 12 shows addi-

tional qualitative results for automotive streak removal.

10.5. Automotive highlight reconstruction

Highlight reconstruction can also be performed with the

automotive streaks. Figures 13 and 14 show highlight re-

construction results when training our full network on the

same glare streaks described in Section 10.4.

11. Experimental setup

Figure 15 shows a close up frontal view of our camera

prototype. Figure 16 shows a close up of our manufactured

optic.

12. Dataset sources

Table 4 shows the list of dataset sources that were used

for training and testing. To accommodate different image

sizes, 512 × 512 crops containing small, saturated regions

were taken.
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Figure 7. Additional real-world captures using our fabricated DOE prototype. Note that in the top left image set, the orange lights were

shut off when taking the reference image. Please zoom in to see details.
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Figure 8. Additional real-world captures using our fabricated DOE prototype. These were earlier captures that were taken without the

reference images. Please zoom in to see details.
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Figure 9. Additional qualitative comparisons for different snapshot HDR methods.
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Figure 10. Additional qualitative comparisons for different snapshot HDR methods (continued).
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Figure 11. Additional qualitative comparisons for different snapshot HDR methods (continued). Note that the bottom image set does not

contain highly saturated regions.
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Figure 12. Additional qualitative results for automotive streak removal.



Sensor Images (0 EV) Sensor Images (-4 EV) Output Image (-4 EV)

Figure 13. Qualitative results for HDR image reconstruction from automotive windshield streaks.



Sensor Images (0 EV) Sensor Images (-4 EV) Output Image (-4 EV)

Figure 14. Qualitative results for HDR image reconstruction from automotive windshield streaks.



Figure 15. Close up front view of camera prototype.

Figure 16. Close up of manufactured optic.



Name Website Image Names

HDRI Haven https://hdrihaven.com Hansaplatz, Neuer Zollhof, Preller Drive, Satara Night, Vignaioli Night,

Moonless Golf, Night Bridge, Rathaus, Shanghai Bund, Zwinger Night,

Rooftop Night, Carpentry Shop 01, Indoor Pool, Modern Buildings Night,

Moonlit Golf, Industrial Pipe and Valve 01, Industrial Pipe and Valve 02,

Viale Giuseppe Garibaldi, Winter Evening, Street Lamp, Blue Lagoon Night,

Concrete Tunnel, De Balie, Garage, Boiler Room, Mutianyu, Pump House,

Subway Entrance, Courtyard Night, Hospital Room, Circus Arena,

Leadenhall Market, Carpentry Shop 02, Machine Shop 02,

Vintage Measuring Lab, Aircraft Workshop 01, Pond Bridge Night,

Old Bus Depot, Entrance Hall, Small Hanger 01, Brick Lounge

HDRI Hub https://www.hdri-hub.

com

HDR City Road Night Lights, HDR Night

HiDynamic https://shop.

hidynamicproductions.

com

KAH-005836-02-HDR

HDRILand https://hdriland.com Office Lobby, Bathroom, Sheldrake Hallway HDRI,

Valley Forge Soldiers Quarters HDRI

HDRMAPS https://hdrmaps.com Night in Calahonda, Basketball court at night, Expressway at night,

Blue hour at pier, By concert hall at night

HDRLabs http://www.hdrlabs.com Factory Catwalk

Joost Vanhoutte https://joost3d.com Amsterdam Night, Amsterdam Night 2, Amsterdam Castle,

11 Night HDRIs, 26 Free HDRIs

Ward http://www.anyhere.

com/gward/hdrenc/pages/

originals.html

Atrium Night, Montreal Float

Stanford http://scarlet.

stanford.edu/˜brian/

hdr/hdr.html

night1, night2, night3, night4, night5, night6, night7

MCSL Not available Lecture Hall 2, Night car

HDRCNN http://hdrv.org/hdrcnn/ Testset reconstructions

MPI http://resources.

mpi-inf.mpg.de/hdr/

video/

Tunnel

Stuttgart https://hdr-2014.

hdm-stuttgart.de

Carousel fireworks, Beerfest lightshow

Eisklotz https://www.eisklotz.

com

Night - Church Laufenburg

LollipopShaders http://www.

lollipopshaders.com

Traffic Light on Pacifica (Night), The Parking Lot (Night)

Openfootage https://www.

openfootage.net

River power station, Trainstation Salzburg

Zwischendrin https://www.

zwischendrin.com/en/

home

00065, 00080

Vlad Kuzmin https://www.artstation.

com/ssh4/store

GionSmallStreet01, SmallGion02, Gion at Night, Yard, Underpass, Tower

Corentin Defrance https://www.artstation.

com/corentindefrance

HDRI Indoor & Night Outdoor

Table 4. List of dataset sources along with specific image scenes and sets that were used.


