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Fig. 1. Overview of our optically coded computational super-resolution SPAD camera. We computationally design phase plates that can suppress aliasing

while preserving as much information as possible for super-resolution image reconstruction (right bottom). Fabricated using photolithography technique,

this optimized phase plate produces the target PSF at the image plane. In this figure, we demonstrate two representative applications of our optically coded

super-resolution SPAD camera: regular intensity imaging, as well as depth estimation, where we obtain high-quality super-resolved (4×) images (a-2) from

raw data (a-1) modulated by our phase mask, and super-resolved (4×) intensity (b-2) and depth images (b-3) from the noisy raw data (b-1).

Single Photon Avalanche Photodiodes (SPADs) have recently received a lot

of attention in imaging and vision applications due to their excellent per-

formance in low-light conditions, as well as their ultra-high temporal reso-

lution. Unfortunately, like many evolving sensor technologies, image sen-

sors built around SPAD technology currently suffer from a low pixel count.

In this work, we investigate a simple, low-cost, and compact optical

coding camera design that supports high-resolution image reconstructions

from raw measurements with low pixel counts. We demonstrate this

approach for regular intensity imaging, depth imaging, as well transient

imaging.
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Our method uses an end-to-end framework to simultaneously opti-

mize the optical design and a reconstruction network for obtaining super-

resolved images from raw measurements. The optical design space is that

of an engineered point spread function (implemented with diffractive op-

tics), which can be considered an optimized anti-aliasing filter to preserve

as much high-resolution information as possible despite imaging with a

low pixel count, low fill-factor SPAD array. We further investigate a deep

network for reconstruction. The effectiveness of this joint design and re-

construction approach is demonstrated for a range of different applica-

tions, including high-speed imaging, and time of flight depth imaging, as

well as transient imaging. While our work specifically focuses on low-

resolution SPAD sensors, similar approaches should prove effective for

other emerging image sensor technologies with low pixel counts and low

fill-factors.
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1 INTRODUCTION

Arrays of Single Photon Avalanche Diode (SPAD) have recently

emerged as an alternative hardware solution to photomultiplier

tubes (PMT) and streak cameras [Velten et al. 2012, 2013]. Fea-

tures such as single photon light sensitivity and sub-nanosecond

time resolution make this technology promising for many photon-

starved applications such as time-of-flight [Shin et al. 2016], tran-

sient imaging [Gariepy et al. 2015; O’Toole et al. 2017], fluores-

cence lifetime imaging [Li et al. 2010; Schwartz et al. 2008] and

positron emission tomography [Nemallapudi et al. 2015].

Unfortunately, image sensors built upon SPAD technologies still

suffer from low spatial resolution (e.g., 64 × 32) and low fill-factor,

i.e., the fact that the light-sensitive area of a pixel is only a small

fraction of the pixel’s total area (e.g., 3.14% in the MPD-SPC3 SPAD

camera used in our experiments). Although recent research proto-

types of SPAD arrays have substantially higher pixel counts (e.g.,

up to 512 × 512 pixels [Ulku et al. 2018]), they still fall short of the

resolution of conventional image sensors. Therefore, our method

is relevant to the latest generation of prototype SPAD image sen-

sors as well as all commercially available SPAD arrays. Both the

limited pixel count (e.g., Shin et al. [2016] and Sun et al. [2018])

and the limited fill-factor and its associated loss in light efficiency

[Intermite et al. 2015; Pavia et al. 2014] have been targeted by re-

cent research. However, no definitive solution is available at this

time.

To date, computational imaging has achieved tremendous

success in the fields of spatial resolution enhancement [Chen

et al. 2015; Sun et al. 2018] and defocus deblurring super-

resolution [Xiao et al. 2015]. Via point spread function (PSF) en-

gineering [Pavani et al. 2009; Shechtman et al. 2014], researchers

have succeeded in localizing microscopic point emitters in a 3D

volume by inserting either a spatial light modulator (SLM) or a

physical phase plate.

Although optimizing the parameters of diffractive optical

elements (DOEs) for a computational camera has been studied

intensively, state-of-the-art PSF engineering methods still for the

most part do not consider the optical design together with the

sensor performance and the reconstruction algorithm in a full end-

to-end fashion. A notable exception is a recent work by Sitzmann

et al. [2018], which employed an end-to-end optimization that

jointly considers optics and image processing to extract optimal

PSFs for the purposes of super-resolution and depth of field exten-

sion. Although this work takes a significant step towards full end-

to-end design of cameras, the reconstruction method used is quite

simple and with only fixed blocks; for example, the Wiener decon-

volution. In our work, we extend this concept by jointly optimizing

both the PSF design for the sampling model and the reconstruction

algorithm, particularly in the context of a deep neural network.

Putting these pieces together, we aim to overcome the essen-

tial spatial resolution limit of SPAD sensors by developing an op-

tically encoded super-resolution SPAD camera with only a single-

shot capture procedure. This is achieved by a combination of an

optical system that encodes the incident light and a deep neural

network that faithfully decodes the high-resolution image. The

optical encoding is interpreted as an engineered PSF, acting as

an anti-aliasing filter that helps preserve as much information as

possible, given the specific sampling pattern of SPAD sensors. We

demonstrate significant improvements gained by our prototype

when imaging natural scenes. While our method can in principle

be applied in any imaging system that employs SPAD array sen-

sors, we focus in particular on three applications: regular intensity

imaging (including high-speed imaging), depth imaging, and tran-

sient (i.e., light-in-flight) imaging.

Our main technical contributions are as follows:

• We exploit an end-to-end design paradigm for computational

super-resolution camera systems, incorporating both PSF de-

sign, imaging model, and deep network reconstruction. The

system finds optimized compromises between sharpness and

anti-aliasing for a given pixel fill-factor.

• We develop a novel single-shot optically coded SPAD camera

that achieves an aggressive spatial resolution enhancement

of 4×. By simply applying an ultra-thin phase plate that can

be easily fabricated and assembled, we achieve an almost zero

budget enhancement of hardware configuration.

• We build a prototype with a general phase plate being easily

assembled in front of a regular lens. We validate our claims

of resolving high-resolution images through simulations and

real experiments in normal imaging, high-speed imaging,

and time-of-flight (TOF)/transient imaging.

2 RELATED WORK

Computational imaging has been applied in both low-level vision

tasks like artifact removal [Peng et al. 2019], and higher-level imag-

ing applications like depth estimation [Levin et al. 2007, 2009].

Particularly, a large amount of work has studied image enhance-

ment using the end-to-end method for applications such as haze

removal [Cai et al. 2016], motion deblur [Gong et al. 2017], and

time-of-flight imaging [Su et al. 2018]. In the following, we focus

on a few more narrow categories of research that are most relevant

to our work.

Image Super-resolution (SR). For target applications such as high-

speed imaging, fluorescent lifetime imaging, time-of-flight depth

or transient imaging, achieving an aggressive resolution enhance-

ment is highly desirable. A large body of work is based on learn-

ing the mapping from low-resolution (LR) to high-resolution (HR)

images, using techniques such as dictionary learning [Yang et al.

2008, 2010], local linear regression [Timofte et al. 2014; Yang and

Yang 2013], random forests [Schulter et al. 2015], and CNNs [Dong

et al. 2016a, 2016b; Shi et al. 2016]. Alternatively, one can employ a

sparse coding–based network to fully explore the sparsity of nat-

ural images [Wang et al. 2015].

Ongoing research efforts have attempted to improve the SR

quality using deeper networks [Kim et al. 2016a, 2016b]. Alterna-

tive work includes a Laplacian Pyramid SR network [Lai et al. 2017]

and an enhanced deep SR network [Lim et al. 2017] that removes

unnecessary modules in conventional residual networks [He et al.

2016]. More recently, Haris et al. [2018] proposed a deep back-

projection network, exploiting iterative up and down sampling

layers and providing an error feedback mechanism for projection

errors at each stage.

The mentioned approaches take a traditional image process-

ing approach, whereby the imaging hardware is given and not

part of the design decision. Computational imaging approaches,
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where the imaging hardware and the reconstruction method are

co-designed, promise improved system performance. This is the

approach we take in this work, specifically with the design of

an optimal sampling strategy for low-pixel-count, small fill-factor

SPAD image sensors.

PSF Engineering for Computational Imaging. The optics and com-

putational imaging communities have widely investigated the de-

liberate design of (non-Dirac) point spread functions (PSFs) with

favorable properties for specific applications. One of the earliest

approaches was wavefront coding, a method to make the PSF depth-

invariant in an attempt to extend the depth of field [Dowski and

Cathey 1995; George and Chi 2003]. Recently, the utility of PSF

engineering was expanded to 3D to realize a 3D super-resolution

effect [Yeh and Waller 2016]. Encoding the aperture of the optical

system not only enables recovery of depth information with great

fidelity but also generates a high-resolution image image [Levin

et al. 2007; Zhou et al. 2011]. Furthermore, coded aperture tech-

niques have been intensively incorporated into compressive sens-

ing [Arce et al. 2014; Llull et al. 2013; Marcia et al. 2009].

Instead of inserting a (usually binary) coded aperture, we in-

vestigate the link between the aperture and the image plane in

the domain of diffractive optics. By introducing a phase modula-

tion diffractive optical element into the aperture, one has greater

flexibility to design the desired PSF in the image plane. There has

been a wide range of optimization-based algorithms capable of

generating desirable phase or amplitude distributions in both the

spatial and the spectral domains. To this end, iterative methods

based on Gerchberg-Saxton search, simulated annealing, or direct

binary search have been applied to design both monochromatic

and broadband DOEs [Kim et al. 2012; Qu et al. 2015].

Another related avenue of investigation is the design of diffrac-

tive optical elements to serve as replacements for refractive

lenses in imaging systems. Peng et al.’s work on achromatic DOE

lenses [2016] started a sequence of DOE design works with similar

methodology [Heide et al. 2016; Peng et al. 2018; Petrov et al. 2017].

Instead of automated end-to-end design, the PSF design and recon-

struction method are developed separately with a human in the

loop. Some recent works [Datta et al. 2018; Zhao et al. 2018] have

explored the role of anti-aliasing filters in image super-resolution;

however, they use analytical filters (Butterworth and Gaussian, re-

spectively), instead of end-to-end learned ones.

Imaging with SPAD Sensors. Time-correlated single photon

counting (TCSPC) [O’Connor 2012] is a common technique for

pico-second rate recording of photon events using SPAD arrays.

It has been widely applied, for example, in fluorescence lifetime

imaging [Li et al. 2010, 2012]. By repeatedly measuring the time

duration between a laser pulse and the corresponding transient

photon arrival, one can achieve typically sub-nanosecond resolu-

tion. Starting with first photon imaging [Kirmani et al. 2014], sev-

eral approaches have been proposed to abstract the correct tempo-

ral information such as temporal deconvolution [Sun et al. 2018],

pile-up compensation [Heide et al. 2018; Pediredla et al. 2018] and

non-line-of-sight imaging [Heide et al. 2019; Lindell et al. 2019].

To overcome the limitations of low fill-factor and low spatial

resolution, researchers have used 2D translation setups to shift

a 2D SPAD array with a fixed lens [Shin et al. 2016], or used a

galvo mirror setup to scan a 1D line SPAD camera [Lindell et al.

2018; O’Toole et al. 2017]. An alternative approach is the use of

DMD-based focal plane spatial modulation to enable a compressive

sensing design with SPAD arrays [Sun et al. 2018]. This method

requires high precision mechanics and additional imaging optics.

Other works have focused primarily on improving the fill-factor

of SPAD arrays [Intermite et al. 2015; Pavia et al. 2014].

Although state-of-the-art methods have yielded a reasonable

spatial resolution, they are significantly complicating the camera

design, and/or require multi-shot image acquisitions, which makes

it impossible to image non-repeatable phenomena. We seek a com-

putational super-resolution imaging solution that can maintain all

the advantages of SPAD sensors including the snapshot capability,

i.e., super-resolution reconstruction from a single image capture.

End-to-end Computational Cameras. Motivated by recent ad-

vances in hardware as well as optimization methods, researchers

have started to investigate joint optimization over optics like bi-

nary masks [Iliadis et al. 2016] for compressive sensing and even

sensor structure like a color filter array [Chakrabarti 2016]. More

recently, an end-to-end optimization [Sitzmann et al. 2018] over

more complicated phase modulation elements was reported. In

work parallel to ours, full end-to-end pipelines have been shown

recently for the design of depth-encoding PSFs in shape-from-

defocus applications [Chang and Wetzstein 2019; Wu et al. 2019].

In addition to conventional imaging applications, diffractive op-

tical elements can also be used as convolutional layers in neural

networks [Chang et al. 2018] to speed up the process. Instead, we

are inspired to simulate our imaging model for SPAD sensor using

a convolutional layer. Taking the convolutional layer into a physi-

cal world, we are able to realize the difficult super-resolution task

for low fill-factor and low-resolution SPAD sensor by incorporat-

ing both optics and deep reconstruction networks.

3 JOINT LEARNING OF OPTICS AND DEEP NETWORK

RECONSTRUCTION

We aim to realize super-resolution imaging over a SPAD sensor

that suffers from both low resolution and low fill-factor. These two

problems will result in significant spatial aliasing and the associ-

ated reconstruction artifacts [Parker 2017]. To address this issue,

we introduce an optical low-pass filter (OLPF) into the optical sys-

tem of the camera. The OLPF acts as an anti-aliasing filter, which is

specially designed to suppress aliasing while preserving as much

information as possible for super-resolution image reconstruction.

In our framework, this filter and the matching reconstruction

network are jointly learned in an end-to-end sense, as illustrated in

Figure 2. Specifically, we first synthesize the low-resolution input

using a convolutional layer conv (11, 1),1 representing the PSF and

the sensor sampling model, followed by a feature extraction step to

generate LR feature maps. Then, at the projection stages a mapping

between the LR feature maps and the HR feature maps is built.

Finally, a reconstruction step is added to convert the HR feature

maps into high-resolution images.

1For convenience, we denote a convolutional layer as conv (f , n)[.] and a transposed

convolutional layer as convT (f , n)[.], where f is the filter size and n is the number
of filters.
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Fig. 2. Framework for joint learning of imaging model and reconstruction. The anti-aliasing filter (PSF) for the low fill-factor SPAD array is learned using our

design paradigm. In each forward pass, the synthetic PSF is convolved with a batch of images, and Poisson noise is added to account for sensor’s counting

noise after the interval sampling process. After obtaining the optimized PSF, we apply a Gerchberg-Saxton–based phase-retrieval algorithm to derive the

phase mask. The reconstruction network is composed of three main parts: initial feature extraction, back projection stages, and reconstruction step. The

back-projection stage (bottom right), alternating between reconstruction of H t and Lt , consists of T up projection stages and T − 1 down projection stages.

Each unit is connected with the outputs of all previous units.

After training, we extract the optimal PSF from the weights of

conv (11, 1) and then apply a Gerchberg-Saxton (GS)-based phase

retrieval algorithm to derive the phase mask (see bottom left of

Figure 2), which acts as an optical coder installed at the front focal

plane of a regular lens to generate the optimal PSF for later imple-

mentations. To account for differences between the design and the

fabrication of the phase mask, the real-world PSF of the mask can

be calibrated, and the reconstruction network can be fine-tuned

through re-training.

In the following, we first detail the image formation model, in-

corporating the anti-aliasing filter applied to the sampling model

of SPAD array and the phase mask optimization to generate the

learned PSF combined with a regular imaging lens. Next, we

present the deep neural network reconstruction and the time pro-

file sharpening strategy.

3.1 Image Formation

3.1.1 Anti-aliasing Filtering and Image Sampling. As men-

tioned, the fill-factor of most current SPAD imaging sensors is very

low; that is, the light-sensitive area of the pixel is much smaller

than the total area occupied by the pixel structure. For example, the

SPAD array used in our experiments (MPD-SPC3) has a pixel pitch

of 150 μm horizontally and vertically; however, the active area is

only 30 μm in each dimension. The physical low pixel count and

small fill-factor severely degrade the image quality, creating the de-

sire for super-resolved image reconstruction. To avoid aliasing, the

image signal should be pre-filtered with a low-pass filter of the ap-

propriate cut-off frequency, followed by a down-sampling process

[Parker 2017]. Again, the goal is to trade-off sharpness and aliasing

to find a good compromise that preserves most details of interest.

Due to the low resolution of the sensor array, we can reasonably

neglect off-axis aberrations like coma. Image formation becomes

a shift-invariant convolution of a latent image with a kernel. To

this end, we jointly learn the optimal anti-aliasing filter (e.g., the

convolved kernel) and the reconstruction network to eventually

preserve the finest details of natural images to realize a super-

resolution enhancement. The quantitative evaluation of applying

this desired OLPF is detailed in Section 4.

At the position (x ,y) on the sensor, the detected signal Is (x ,y)
is expressed as:

Is (x ,y) = P (S (pλ ∗ I )), (1)

where S is a 2D sampling operator corresponding to the physical

structure of SPAD sensor, I is the latent image formed on the sen-

sor, pλ is the kernel (or PSF) realized by the optical system, and P
represents a generator of the Poisson noise, which is the appropri-

ate noise model for low-light scenarios that are typical for SPAD

imaging.

3.1.2 Learning Optimal PSF Using End-to-end Design. To obtain

the optimal PSF pλopt using our end-to-end framework, we model

our PSF as well as the low-resolution sampling process of the SPAD

array as a convolutional layer conv (11, 1). In each forward pass,

the synthetic PSF (convolutional layer) is convolved with a batch

of images, and Poisson noise is added to account for photon shot

noise after the interval sampling process. In other words, we repre-

sent both the PSF and the sampling process as layers in our neural

network during training, and then physically realize the learned

result as a custom DOE for our SPAD camera (see Section 3.3).

To determine the size of the kernel, we take a large kernel

21 × 21 at the beginning, and then we found only an 11 × 11 re-

gion of the filter had non-zero values. Therefore, we take 11 × 11
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as the kernel size of the PSF whose physical dimension is 412.5 ×
412.5μm2.

3.2 Image Reconstruction

Image reconstruction is the final stage for applications such as reg-

ular intensity imaging or high-speed imaging, and the second last

stage for applications such as depth and transient imaging. For

our camera the reconstruction is formulated as an optimization

problem of a data fitting term with an additional regularization

term:

min
I

1

2
‖S (pλopt ∗ I ) − I s ‖22 + β ‖Φ(I )‖1, (2)

where Φ(·) denotes the transform coefficients of I with respect to

some transform Φ that can be either linear or optimized non-linear.

Sparsity in the transform space Φ(I ) is encouraged by the �1 norm

with β being a regularization parameter.

Usually, natural images are non-stationary in classic domains

such as DCT, gradients, and wavelets, which may result in an ill-

posed problem under such an imaging model. Although an opti-

mized PSF model can preserve a large amount of spatial infor-

mation, conventional optimization-based methods fail to faithfully

reconstruct good quality results when the sampling ratio is very

low (e.g., in our case with a sampling ratio only 3.14%). To this

end, a trainable architecture for super-resolution with powerful

learning ability for features meets our strict requirements as our

learned PSF itself encodes features. We choose the state-of-the-art

method, dense deep back-projection networks (D-DBPN) [Haris

et al. 2018], as our reconstruction network, as shown in Figure 2.

The D-DBPN framework introduces an iterative error correcting

feedback mechanism to characterize the features in previous lay-

ers. More importantly, it addresses the mutual dependency by tak-

ing the back-projection from HR domain to LR domain.

3.2.1 Framework Architecture. As shown in Figure 2, the end-

to-end framework to obtain the optimal filter and reconstruction

network can be divided into four parts:

(a) Imaging model. As we have already discussed in Section 3.1.1,

we take the physical imaging model as the first part of our end-

to-end framework. The joint framework is used to learn the opti-

mal anti-aliasing filter. After fabricating the filter, we then refine

the learning process of the reconstruction network with additional

training to account for fabrication errors. For more details, please

refer to Section 5.

(b) Initial feature extraction. The initial feature maps L0 are

constructed using a conv (3,n0) layer to extract features and a

conv (1,nR ) layer to pool the features and reduce the dimension

from n0 to nR . In the experiments, n0 is set as 256; and nR , which

is the number of filters used in each projection unit, is set as 64.

(c) Back-projection. As illustrated in Figure 2, at t th stage (T =
7 stages in total), the LR feature maps [L1,L2, . . . ,Lt−1] and HR

feature maps [H1,H2, . . . ,H t ] are concatenated to be used as input

for up- and down-projection units, respectively. In each projection

unit, we use a conv (1,nR ) to merge all previous outputs from each

unit after the shown concatenation process.

The up-projection is defined as follows:

scale up H t
0 = conv

T ( fp ,nR )[Lt−1],

scale down Lt
0 = conv ( fp ,nR )[H t

0 ],

residual: el
t = Lt

0 − L
t−1,

scale residual up: H t
1 = conv

T ( fp ,nR )[el
t ],

output feature map:H t = H t
0 + H

t
1 .

(3)

The down-projection is defined as follows:

scale down Lt
0 = conv ( fp ,nR )[H t ],

scale up H t
0 = conv

T ( fp ,nR )[Lt
0],

residual: eh
t = H t

0 − H
t ,

scale residual down:Lt
1 = conv ( fp ,nR )[el

H ],

output feature map: Lt = Lt
0 + L

t
1.

(4)

(d) Reconstruction. Finally, we take the concatenated HR feature

maps [H1,H2, . . . ,H t ] as input and use a conv (3, 1) layer to recon-

struct the target HR image.

3.2.2 Training Details. To train the network, we use the mean

square error (MSE) loss function. In the stated framework, we use

an 8×8 convolutional layer with a stride of four and a padding

of two. All convolutional and transposed convolutional layers are

followed by a parametric rectified linear unit. We trained our net-

work using the high-resolution images from the DIV2K dataset,

using a batch size of 64. For convenience, the LR image resolution

was 32×32 (half the size of our SPAD array), and the HR image size

was 128×128. We take a convolution layer conv (11, 1) as our PSF

following the sampling model of the SPAD sensor to simulate the

LR images from HR images. We use ADAM as the optimizer with

momentum set to 0.9 and weight decay set to 10−4. The learning

rate is initialized to 10−4 for all layers and decayed by a factor of

10 for every half of total epochs. All experiments were conducted

using Pytorch on a single NVIDIA TITAN Xp GPU. For learning

the optimal PSF, we trained the whole framework with 50 epochs

taking around 40 hours. After calibrating the PSF generated by the

fabricated phase mask, we take the weights of the network trained

above as initialization and continue to train the reconstruction net-

work with 11 epochs taking around 8 hours.

3.3 Phase Mask Generation

After obtaining the optimal PSF with our framework, we establish

the relationship between the PSF and the phase mask. We first an-

alyze the propagation of light from the phase mask to the image

plane, and then present the details of phase mask design.

3.3.1 Optical Model. As shown in Figure 3, the mask is placed

at the front focal plane of the lens and acts as the pupil of the

whole system. For modeling the light propagation, we apply scalar

diffraction theory [Goodman 2005] to approximate the paraxial in-

cident wave. The phase of a complex-valued incident wave is de-

layed by a phase profile ϕ (x ′,y′) proportionally to the height map

of a diffractive optical element h(x ′,y′):

ϕ (x ′,y′) = Δn
2π

λ
h(x ′,y′), (5)
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Fig. 3. Illustration of light propagation and desired PSF. The phase mask

(i.e., DOE) is set at the equivalent Fourier plane of imaging lens to modu-

late the incident light and produces the desired PSF on the sensor.

where λ is the wavelength, (x ′,y′) is the location on the phase

mask plane, and Δn = n − n0 represents the refractive index dif-

ference between air (n0) and the substrate material (n). Placed at

the front focal plane of a lens together with our customized limited

stop, the phase mask acts as the complex pupil function.

The incident wave field Uλ (x ′,y′, z = 0−) = A(x ′,y′)ϕd (x ′,y′)
is modulated by the phase mask, shown as:

Uλ (x ′,y′, z = 0+) = Uλ (x ′,y′, z = 0−) · e iϕ (x ′,y′) , (6)

where we use the notation z = 0− and z = 0+ to denote positions

just before and just after the mask, respectively.

Using the Fresnel approximation, the light propagates through

a lens with a focal length f to the image plane is then formulated

as:

Uλ (x ,y) =
e ikf

iλf

∫ ∫
∑Uλ (x ′,y′, z = f )e

− ik
2f

(x ′2+y′2 )

e
ik
2f [(x−x ′)2+(y−y′)2]dx ′dy′

=

∫ ∫
∑ ϕ (x ′,y′)e−i2π

x ′x+y′y′
λf dx ′dy′, (7)

where k = 2π/λ is the wave number, (x ,y) is the location on the

image plane, and e
− ik

2f
(x ′2+y′2 )

represents the optical transfer func-

tion of the lens. Note that Equation (7) represents essentially a

Fourier transform (FT).

For an imaging system, the diffractive PSF on the image plane is

eventually obtained as:

pλ (x ,y) ∝ ‖ (F {ϕ (x ′,y′)}‖2. (8)

3.3.2 Phase Retrieval. After deriving the relationship between

PSF and the phase mask, we can design a physical height pro-

file h(x ′,y′) on a substrate of refractive index n to implement an

image-plane PSF pλ using the Gerchberg-Saxton (GS) [Gerchberg

and Saxton 1972] phase retrieval algorithm based on Equation (5).

The core of the phase retrieval is shown on the bottom left of

Figure 2. In the beginning, a random phase distribution serves as

the initial estimate subject to the amplitude of the PSF. Then, us-

ing the initial phase and the amplitude constraint (between 0 and

1) of learned PSF, we apply an inverse Fourier transform on this

synthesized complex field function. The resulting phase part of the

Fig. 4. Efficiency illustration of GS phase retrieval method for our design.

(a) Learned PSF; (b) Simulated PSF using the phase profile optimized by GS

method; (c) The absolute error between (a) and (b), and the RMSE is 0.0061;

(d) The correlation coefficient of the learned PSF and the PSF generated

by phase plate, and finally it converges to 0.9996.

discrete complex field is preserved while the amplitude part is dis-

carded. In the next round, this preserved phase is plugged into the

forward propagation procedure of applying a Fourier transform to

update the amplitude estimate of the complex field on the image

plane. Eventually, the process is repeated a finite number of times

to converge to an optimal phase profile. For more details, please

refer to the work by Morgan et al. [2004]. Since we optimize the

phase plate for only one wavelength (that of our picosecond laser),

we are guaranteed to obtain a phase plate that can generate the

optimal PSF we desire. As shown in Figure 4, the correlation coef-

ficient between the PSF generated by phase plate and the learned

PSF is 0.9996, and the RMSE between them is 0.0061. This all means

the optimal PSF is accurately realized by the phase mask.

3.3.3 Phase Mask Tiling. As shown in Figure 5, a subpixel

on the learned PSF has a size of lp = 37.5 μm. Accordingly, the

size of phase profile obtained using Equation (7) is lu = λf /lp =
0.8733 mm, which would make for a very small, square aperture.

To design optical systems with larger apertures, one could over-

parameterize the design space to optimize the phase profile over a

defined larger aperture. This would require a re-design of the pat-

tern for each aperture size and rule out the use of the aperture stop

diaphragm in the main camera lens.

A simple alternative that overcomes these issues is to side-by-

side replicate the small optimized phase pattern described above

to tile the aperture. In our prototype, we tile a square area of edge

length L = 14 mm, which defines a maximum aperture that can

be further stopped down using the lens diaphragm. The tiling has

the effect of creating a discrete dot pattern instead of a contin-

uous PSF in the image plane. At a size of lplu/L = 2.34 μm, the

individual dots are significantly smaller than a sub-pixel, and their

center-to-center spacing is exactly the sub-pixel pitch, which also

matches the edge length of the light-sensitive area of a SPAD pixel.
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Fig. 5. Calibrating the PSF generated by our fabricated phase plate.

(a) Captured PSF; (b) Synthetic learned PSF; (c) Effective PSF as a result of

combining PSF (a) with the SPAD pixel sampling pattern; (d) Illustrating

the effect of focus on the dot pattern from (a)—see text for details.

Therefore, as the SPAD sensor integrates spatially over the light-

sensitive area, it integrates over exactly one of the dots in the dot

pattern, which is equivalent to implementing the continuous ver-

sion of the PSF designed above.

As an added benefit, the dot pattern simplifies the alignment

process in the assembly of the optical system. As illustrated in

Figure 5, (d1)–(d3), slight defocus does not spread the energy out

of the subpixel block. If we were to instead employ a large, non-

repeating mask, then a slight defocus would spread energy to

neighboring subpixels, equivalent to an additional low-pass filter,

as illustrated in Figure 5, (d4)–(d5).

3.4 Temporal Sharpening for Depth

and Transient Imaging

To extract temporal information from our reconstructed images,

we use a recent reported temporal PSF model [Sun et al. 2018] for

SPAD sensors to sharpen our reconstructed 3D data. For depth and

transient imaging, our SPAD sensor works in time-correlated sin-

gle photon counting (TCSPC) mode.

This model is useful for precise temporal localization of Gauss-

ian laser pulses from an observed time profile at each pixel Ii , using

a model of the temporal response of the SPAD pixel, Π(t ). The gate

signal Π(t ) is not a simple rectangular pulse, but is distorted ac-

cording to a resistor-capacitor (RC) circuit response (also compare

Figure 6, bottom left). We band limit this RC model with a small

Gaussian filter (σf = 100 ps in the experiments)—see Figure 6, bot-

tom center.

The observed time profile at each pixel Ii is then modeled as a

convolution of this gate model Π(t ) with the Gaussian laser pulse

G (t ;A, μ ) = Ae
− (t−μ )2

2σ 2 , where the parametersA and μ of the Gauss-

ian are initially unknown. They can be determined by solving the

following minimization problem for each pixel:

min
A,μ
‖G(t ;A, μ ) ∗ Π(t ) − Ii ‖22 , (9)

where ∗ denotes the convolution. Please refer to the original

paper of Sun et al. [2018] for technical details. Instead of using

Fig. 6. Modeling the temporal PSF of the system as the convolution of

distorted SPAD gate signal and a Gaussian laser pulse profile [Sun et al.

2018]. The data of the histogram is selected from location (45, 167) in Fig-

ure 1 (b-3).

Table 1. Quantitative Assessment of Current SR Methods over the Low

Fill-factor Sampling Model in PSNR and SSIM (grayscale)

Methods Set5 Set14 BSDS100

Bicubic 24.26/0.8336 21.51/0.7589 20.83/0.7175

SRCNN 25.27/0.8620 22.34/0.7812 21.58/0.7397

VSDR 25.45/0.8717 22.57/0.7915 21.74/0.7481

Ours 27.17/0.9019 23.97/0.8066 23.82/0.7691

a Gaussian model for the laser pulse, we note that it would be

straightforward to substitute other models, such as an exponen-

tially modified Gaussian [Heide et al. 2014] to estimate parameters

for inter-reflection, subsurface scattering, or fluorescent lifetime

imaging (FLIM).

4 EVALUATION IN SIMULATION

We first present a quantitative comparison of some of state-of-the-

art SR methods such as VSDR [Kim et al. 2016b] and SRCNN [Dong

et al. 2016b]. Table 1 shows that although these kinds of methods

perform well on conventional super-resolution problems, they fail

in the low fill-factor case. In this table, each of the methods, includ-

ing our own reconstruction network, was trained using the low

fill-factor model (i.e., without an anti-aliasing filter) on the same

DIV2K dataset. We also tried VSDR and SRCNN on the optical de-

sign obtained with our method, but the resulting SNR and SSIM

results are slightly worse than in the low fill-factor case shown in

the table.

Next, we present a quantitative comparison of applying our

reconstruction network to four different sampling models: (1)

Low fill-factor sampling model, which considers the SPAD sensor

model without the phase mask; (2) Full fill-factor sampling model,

which is common for other imaging sensors; (3) Low fill-factor

sampling model, which considers the SPAD sensor with a Gaussian

PSF of standard deviationσN =
√

3 log 2/π ≈ 0.459, corresponding

to a least-squares fit of the sinc function that corresponds to the

ideal low-pass filter; (4) Our sampling model, which considers the

SPAD sensor model with setting the phase mask at the front focal

plane of imaging lens.

To make a fair comparison, we use the same training dataset

and parameters to retrain the network for the low fill-factor

model, full fill-factor model, and a low fill-factor model with a

Gaussian PSF. We then assess on three well-known datasets: Set5
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Table 2. Quantitative Comparison of 4× Super-resolution under

Different Sampling Models in PSNR and SSIM (Grayscale)

Model Set5 Set14 BSDS100

Low fill-factor 27.17/0.9019 23.97/0.8066 23.82/0.7691

Full fill-factor 29.77/0.9317 26.13/0.8442 25.59/0.8069

Gaussian (optimal) 30.41/0.9360 26.68/0.8498 26.05/0.8157

Gaussian (w./o. re-training) 20.46/0.8087 19.64/0.7268 20.07/0.7016

Ours 30.76/0.9399 26.91/0.8557 26.23/0.8198

σN is chosen to best approximate the ideal low-pass filter with a Gaussian (see text).

[Bevilacqua et al. 2012], Set14 [Zeyde et al. 2010], and BSDS100

[Arbelaez et al. 2011]. Table 2 summarizes the averaged PSNR and

SSIM scores. We observe that, without the aid of our phase mask,

the original low fill-factor model exhibits significantly worse

performance than ours both in terms of PSNR and SSIM. Concern-

ing the Gaussian PSF, even in comparison to a perfectly shaped

Gaussian diffuser (which would need to be carefully designed,

manufactured, and aligned for a specific sensor geometry, and

would certainly not be an off-the-shelf part), the scores and re-

covered image detail (see Figure 8) are still worse than that of our

end-to-end system. In addition, we also evaluate a hypothetical

full fill-factor model that might be feasible with alternative sensor

designs. The results show a clear advantage of our end-to-end

design over all alternatives sampling patterns on all datasets.

Figure 7 visualizes several examples selected from the test

dataset. Sampling of a low fill-factor sensor destroys most infor-

mation, thereby the reconstructed results suffer from noticeable

artifacts and distortions. These artifacts are alleviated by our pro-

posed method. For instance, the texture on the butterfly is well

preserved but is in comparison corrupted by artifacts in the low

fill-factor case without the phase mask. The full fill-factor sensor

shows slightly better performance than that of the low fill-factor

sensor, since it averages the information at all frequencies across

the full pixel block. Instead, our sampling model preserves the

most desired information, showing reconstruction results closer

to ground truth (GT). To this end, we believe our anti-aliasing fil-

tering design contributes to preserving interesting details while

suppressing other artifacts.

5 PROTOTYPE AND ASSESSMENTS

In this section, we assess the modulation transfer function (MTF) of

our imaging system and present the prototype results of three ap-

plication scenarios. Before detailing the experimental assessments,

we briefly summarize the fabrication of the phase masks and the

calibration of the PSFs.

5.1 Prototype

Fabrication. The phase mask is discretized into eight levels that

can then be realized by repeatedly applying photo-lithography and

reactive ion etching (RIE) three times [Morgan et al. 2004; Peng

et al. 2016] on a 0.5 mm Fused Silica substrate. The principal wave-

length is 655 nm and a 2π phase modulation is used to wrap the

height map. Refer to the supplemental document for fabrication

details.

Fig. 7. Selected examples of 4× super-resolution under different sampling

models. For the low fill-factor case, we directly apply the low fill-factor

model of SPAD to sample the high-resolution images to obtain 1/4 resolu-

tion images. For the full fill-factor case, we average the 4×4 pixel area to

obtain 1/4 resolution images. For our method, we apply the low fill-factor

sampling model of SPAD with pre-filtering using our learned PSF kernel.

We use a FLIR mono sensor GS3-U3-50S5M with a pixel pitch

of 3.45 μm to calibrate the PSF of the fabricated phase plate. The

phase plate is placed at the front focal plane of a Canon 50 mm

lens. A point light source with a 655 nm/10 nm bandpass filter is

set 1.35 m away from the sensor. Figure 5(a) shows the calibrated

PSF of our fabricated phase mask (see Section 3.3). The sparse dot

pattern structure is due to the tiling of the phase plate as described

in Section 3.3.3.

5.2 MTF Analysis

We use the slanted edge method [Burns and Williams 2002] to as-

sess the modulation transfer functions (MTFs) of our results and

that of the low-resolution reference, as shown in Figure 9. We

observe outliers larger than 1 in the plot of the SR image with-

out phase mask (orange plot). In contrast, the MTF of our super-

resolution camera is closer to the desired MTF in optical sys-

tems: smoothly and monotonously decreasing from an amplitude

of 100% for the DC term to ~10% at the Nyquist limit of the SR im-

age, with no erroneous maxima for higher frequencies. This result

is enabled by better preservation of super-resolution information
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Fig. 8. Imaging performance of the best Gaussian PSF (top) and our

end-to-end learned PSF (bottom). Our end-to end learned approach does

show significantly better preservation of details above the Nyquist limit

(see insets).

in our learned PSFs. Here, we remind the reader that MTFs are in-

tended to characterize linear systems and may not be the best met-

ric of assessing non-linear computational imaging systems such as

ours.

5.3 Intensity Imaging

Experimental setup. The prototype of normal intensity imaging

is illustrated in Figure 10. We use an MPD-SPC3 SPAD array as

the detector. The phase mask is optimized for imaging daily scenes

and human activity. The SPAD array is operated in snapshot mode

with the integration time set as 52 μs. We sum up 100 frames be-

fore read-out, corresponding to a total integration time of around

5.2 ms.

Results of intensity imaging. To validate the practicability of the

proposed optically coded single-shot super-resolution design, we

employ the fabricated phase mask on a normal imaging setup that

acts as the basis of alternative applications; for example, depth and

transient imaging, as well as low-light imaging. A sequence of raw

Fig. 9. MTFs derived from experimental results, including raw LR sensor

image and 4× super-resolved SR image with and without phase mask,

respectively. The corresponding images are revealed with different color

plots, and the ideal 4× SR image is marked by black color.

Fig. 10. Prototype for normal/high-speed imaging and the scene: (a) The

prototype of normal imaging and high speed imaging. (b) The scene of

running fans captured with a regular RGB sensor. (c) Static states of the

scene shown in (b) and the red marked area are manually set as black to

mark the rotating position.

images (upsampled to the size of the reconstructed images for ease

of comparison) is shown in Figure 11(1). The advantages of gener-

ating the optimal PSF specifically designed for the SPAD sensor’s

low fill-factor structure are significant. The reconstructed super-

resolution results (i.e., Figure 11(2) faithfully preserves many

details without introducing artifacts. Therefore, for such a kind of

low fill-factor sensor structure, our method succeeds in preserving

the spatial information.

Results of reference experiments. To further demonstrate that

our phase mask works as designed, we performed a reference ex-

periment for the same scenes without phase mask. Figure 11(3)

presents the raw images without phase mask. The visualization

of the raw images contains more high frequencies compared with

those with phase mask. These undesirable high frequencies only
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Fig. 11. Results of normal imaging. (1) Captured raw images with phase mask and with dark counts and background noise removed. (2) Results with phase

mask. (3) Captured raw images without phase mask and with dark counts and background noise removed. (4) Results without phase mask.

result in the loss of fine details we want to preserve, but also in-

troduce strong artifacts, as illustrated in Figure 11(4).

In comparison, our phase mask can preserve the most useful

information while suppressing aliasing, consistent with the simu-

lation results as described in Section 4.

5.4 High-speed Imaging

Experimental setup. We use the same camera setup described

above. The SPAD array is operated in snapshot mode at a frame

rate of 1,250 fps with the integration time set as 80 μs. In this ex-

ample, we sum up 10 frames before read-out. As illustrated in Fig-

ure 10(b), we use a CPU fan as a high-speed spinning object. One

of the blades is marked black as a position tracker, as shown in

Figure 10(c).

Results of high-speed imaging. The optically coded single-shot

super-solution camera fits well with unsynchronized and non-

repeatable conditions, where time-sequential spatial resolution en-

hancement methods such as compressive sensing with a DMD,

2D mechanical scanning, or 1D line scanning are not applicable.

As illustrated in Figure 12, we successfully capture and recon-

struct the frames of a high-speed rotating fan (roughly calculated

at 3,750 rpm from the shown frames). Figure 12(a) presents the

captured raw data with darkcounts and background noise re-

moved. Figure 12(b) presents the reconstructed 4× super-resolved

frames. We can distinguish the fine details of fan and football. For

more details, please refer to the supplemental video.

5.5 Depth and Transient Imaging

Experimental setup. Figure 13 illustrates the experimental setup

for depth and transient imaging and the corresponding scenes. We

use a 655 nm picosecond laser (PicoQuant LDH P-650) with an

average power of around 1 mW as the illumination source. The Full

width at half maximum of the laser pulses is around 80 ps, and the

repetition rate is 50 MHz. To illuminate the scene smoothly, we

scatter the laser beam using a diffuser and use an 80 mm plano-

convex lens to re-concentrate the overly scattered beam.

We operate the SPAD camera in TCSPC mode with a 200 ps gate

width and a 20 ps phase shift per cycle. The integration time is set

to 52 μs, and 1,500 frames are summed up before read-out. In total,

the capture process lasts around 9.8 s.

During the capture, the SPAD array sends the synchronizing sig-

nal to trigger the laser driver and then counts the arrival photons

with a fixed phase offset of the gate. After sufficient integration, the

SPAD camera shifts the gate window (i.e., 20 ps delay) and captures

another frame until covering all designed phase offsets.
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Fig. 12. Results of high-speed imaging. The displayed data are selected for

every five frames, and we set the frame rates around 1,250 fps. (a) Selected

raw frames with darkcounts and background noise removed. (b) Recon-

structed high-resolution frames.

Fig. 13. Photograph of hardware setup of depth and transient imaging (a);

and the scenes used in experiments (b).

Results of depth imaging. In this experiment, we demonstrate

the ability to resolve the geometric details of several objects (fans,

horse, wooden toys, etc.) in the scene depicted in Figure 14. As

shown, the reconstructed intensity (Figure 14(b)) and depth images

(Figure 14(c)) exhibit details that are hardly distinguishable in raw

data; for instance, the edges of fans and wooden toys. From Fig-

ure 14(a), we observe that the raw images obtained by summing

over the time axis remains very noisy, although the dark counts

and background noise have been mostly removed. Compared to

the raw data of intensity imaging, i.e., Figure 11(a), the summed

pixel values show a considerably larger uncertainty, which makes

it challenging to reconstruct good quality results. This is because

the output power of our laser is very low with an average output

only around 1 mW. Furthermore, the light is scattered to illumi-

nate the entire scene. Consequently, only a few photons can be

collected by our camera after bouncing back.

Results of transient imaging. Figure 15 presents the selected re-

sults of reconstructed transient frames. A mirror is placed near the

objects to reflect the light. In Figure 15(a), the light pulse starts hit-

ting the objects, resulting in a gradual increase and then a gradual

decrease of the illumination. Later, the reflected light from the ob-

jects propagates to the mirror. Similarly, the reflected image (left

part) shows the same phenomenon as the objects that the illumina-

tion gradually increases and then gradually decreases. The results

in Figure 15(b) show a similar process. Thus, we have successfully

captured and reconstructed high-resolution transient phenomena

from the low-resolution raw data. Please refer to the supplemen-

tary video for a better visualization.

6 DISCUSSION

Fabrication feasibility and generalization. Our optimized PSFs

are relatively small, which means that the phase plate only needs

to diffract the light slightly, which can be achieved with relatively

large feature sizes (5 μm in our experiments). This easily fits within

the fabrication capability of inexpensive mass-production methods

like micro-imprinting. In practice, the assembling accuracy (rota-

tion ±4◦, displacement ±2 mm) shows a minimal impact on recon-

struction results. It is viable to design systems where the phase

plate can be easily switched by end-users—as simply as switching

a regular lens—to maximize the performance for different applica-

tion scenarios. We believe the proposed design paradigm can be

generalized to alternative low fill-factor and low-resolution sen-

sors, such as onboard pixel processing circuits [Donati et al. 2007],

3D cameras, fluorescent analyzers, thermal cameras, and so on.

Limitations for depth and transient imaging. We reasonably

ignore the multipath effect at the stage of proof-of-concept, since

current illumination region is constrained within a level of a

few decimeters. But there are several limitations that affect the

reconstruction quality of depth and transient imaging. On the

one hand, the picosecond laser used in our experiments has a

power of only 1 mW. On the other hand, current photon detection

efficiency (PDE) is only 12% at the wavelength of 655 nm. These

two essential hardware constraints, in tandem with the need

of diffusing laser beam into a 2D space to illuminate the whole

scene, result in a fact that only a few reflected photons can be
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Fig. 14. Results of depth imaging: (a) raw image (with darkcounts and background noise removed) summed over the time dimension; (b) reconstructed

intensity image according to (a); (c) reconstructed depth image; (d) reconstructed depth image without temporal deconvolution.

Fig. 15. Results of transient imaging. From left to right and from top to bottom are the selected frames of our reconstructed transient video stream. We

here present one frame out of every nine frames with a visualized interval of 180 ps. The bottom right of (a) shows the captured scene containing a cup, a

polyhedron, and a large mirror. The bottom right of (b) is the captured scene containing a wooden skeleton and a large mirror.

collected by the sensor. In contrast, line SPAD-based scanning

methods [Lindell et al. 2018; O’Toole et al. 2017] scatter the laser

beam only into a line and use the spectra of 450 nm, corresponding

to a SPAD detection PDE around 50%. Therefore, currently the

relatively lower light efficiency of our method adds difficulties to

tackle the strong noise in the reconstruction.

Future Work. In-depth and transient imaging applications’ in-

creased illumination power always improves measurement range

and robustness to ambient light. However, safety and cost con-

cerns set tight limits to the laser power in many scenarios. To

overcome this problem, using an intensity-modulated continuous

laser, similar to amplitude modulated continuous wave (AMCW)

time-of-flight sensors, can be a good alternative. A future direc-

tion of research would be to build a counting and digital version

of AMCW TOF sensors using continuous wave illumination. This

can be achieved by replacing the two capacitors that collect the

charge of a photodiode with two counting units that count the

photons of SPAD. In this way the SPAD-PMD device can lower the

requirements on illumination while exhibiting more robustness to

ambient light. SPAD arrays are a particularly promising technol-

ogy for the field of fluorescent lifetime imaging, where state-of-

the-art hardware solutions either suffer from low resolution or re-

quire complex and time-consuming mechanical scanning. To this

end, optimizing a phase mask can enable a fast, high-resolution,

and scanning-free fluorescent lifetime imaging system.

7 CONCLUSION

In conclusion, we present a general design paradigm to realize an

optically coded single-shot super-resolution camera for low fill-

factor sensors. This is achieved by incorporating optical design,

sensor modeling, and deep network reconstruction. We build a

high-resolution SPAD camera and demonstrate its viability in the

application scenarios of intensity, high speed, and depth/transient

imaging. Our approach for the first time overcomes the spatial

resolution limit of existing SPAD sensor arrays with a single-

shot capture, without the need of any mechanical scanning or
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repeatable measurement. The hardware improvement requires

only a relatively inexpensive phase mask to the front focal plane

of an existing optical system. We envision a wide range of applica-

tions across computer vision, sensing, and microscopic imaging.
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