Existing time-of-flight depth imaging and transient imaging systems are limited either in terms of spatial/temporal resolution or are prohibitively bulky/expensive.

By jointly designing optics, mechanics, electronics, and computation, we overcome the spatial resolution(4××32) limit of Single Photon Avalanche Diode(SPAD) arrays by compressive sensing(image resolution up to 800××400) and realize a temporal resolution of ~20 picoseconds via a physical temporal PSF model.

Our SPAD array is working in TCSPC mode and the measurements from each SPAD pixel could be reconstructed independently with tiling artifacts addressed.

\[X = \arg \min_X \frac{1}{2} \| \Psi(X) - Y \|^2 + \sum \lambda_i D_i(X) \]

Where \(Y \in \mathbb{R}^{N \times T} \) is the 4D data sharpened in the temporal domain after modulation, \(X \in \mathbb{R}^{N \times T \times M} \) is the 3D signal under evaluation, \(\Psi \) is an operator that maps the random patterns to individual pixels at each layer, and \(D \) is 3D TV regularizer.

As the picosecond laser pulse is approximately Gaussian and has a FWHM ~80ps, the target Gaussian pulse is shown and denoted as \(G \) who has fixed \(\sigma \). Therefore, we can estimate the depth \(\mu \) through solving a least square problem.

\[\min_{A} \| G(A; \mu) * \Pi(t) - \tilde{Y} \|^2 \]

Where \(\tilde{Y} \) is the raw sensor data We present the sharpened sensor data \(Y_i \) for each pixel i as a sequence of Gaussians \(G \).