

Background and Our Solution

Existing time-of-flight depth imaging and transient imaging systems are limited either in terms of **spatial&temporal** resolution or are prohibitively bulky&expensive.

By jointly designing optics, mechanics, electronics, and computation, we overcome the spatial resolution (64×32) limit of Single Photon Avalanche Diode(SPAD) arrays by compressive sensing(image resolution up to 800×400) and realize a temporal resolution of ~20 picoseconds via a physical temporal PSF model.

Models and Optimization

Our SPAD array is working in TCSPC mode and the measurements from each SPAD pixel could be reconstructed independently with tiling artifacts addressed.

$$\widehat{X} = \arg\min_{X} \frac{1}{2} \|\Psi(X) - Y\|_{2}^{2} + \sum_{i} \lambda_{i} D_{i}(X)$$

Where $Y \in R^{K \times T \times n \times m}$ is the 4D data sharpened in the temporal domain after modulation, $X \in R^{T \times N \times M}$ is the 3D signal under evaluation, Ψ is an operator that maps the random patterns to individual pixels at each layer, and **D** is 3D TV regularizer.

As the picosecond laser pulse is approximately Gaussian and has a FWHM ~80ps, the target Gaussian pulse is shown and denoted as **G** who has fixed σ . Therefore, we can estimate the depth μ through solving a least square problem.

$$\min_{A,\mu} \left\| \boldsymbol{G}(t;A,\mu) * \boldsymbol{\Pi}(t) - \boldsymbol{\widehat{Y}} \right\|_{2}^{2}$$

Where \widehat{Y} is the raw sensor data We present the sharpened sensor data Y_i for each pixel *i* as a sequence of Gaussians *G*.

Depth and Transient Imaging with Compressive SPAD Array Cameras Xiong Dun Yifan Peng Wolfgang Heidrich Qilin Sun **UBC&KAUST** KAUST KAUST KAUST

Prototype

Optical Parameters in Experiment

- 1			-				-		
	Laser				DMLA			Auxiliary Optics	
	WaveLen	gth	655nm	Focal L	Focal Length		035mm	Imaging	Canon 85mm Lens
	Average Po	ower	~1mW	Struct	Structure		au period hase Level	Reimaging	Inverted 0.9X Edmund Double Side Telecentric
	FWHM	1	~80ps	Effiency	Effiency(<i>f</i> /20)		52.87%	DMD	TI DLP4500
	Repetition	Rate	50MHz	Fabrica	Fabrication		aphy(0.7µm) E etching	DMD optical system	Shown Below
	r_{EFF}			$\begin{array}{c} \gamma \\ \alpha_2 - \alpha_1 \\ \gamma \\ \theta_0 \end{array}$	γ α_1 θ_{i1} θ_{o1} α_1 θ_{o1} α_1 θ_{o1} θ_{o1} α_1 θ_{o1}		esoluti	on Analysis -8 × + (a) Recovered d	
	Integration Time	Harware Binning	Gate Width	Shift per Cycle	Photo Recei	ons ved			

Working Flow

) Raw data

Light Concentrated by a lens

Results

Transient Scene

200ps	Ops	400ps
240ps	80ps	480ps
280ps	160ps	560ps
320ps	240ps	640ps
Scene	320ps	Scene