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Existing time-of-flight depth imaging and transient imaging systems are

limited either in terms of spatial&temporal resolution or are prohibitively

bulky&expensive.
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Where ࢅ ∈ 𝑅𝐾×𝑇×𝑛×𝑚 is the 4D data sharpened in the temporal domain

after modulation, 𝑿 ∈ 𝑅𝑇×𝑁×𝑀 is the 3D signal under evaluation, 𝚿 is an

operator that maps the random patterns to individual pixels at each layer,

and 𝑫 is 3D TV regularizer.

By jointly designing optics, mechanics, electronics, and computation, we

overcome the spatial resolution(64×32) limit of Single Photon Avalanche

Diode(SPAD) arrays by compressive sensing(image resolution up to

800×400) and realize a temporal resolution of ~20 picoseconds via a

physical temporal PSF model.

Where  𝒀 is the raw sensor data We present the sharpened sensor data 𝒀𝑖
for each pixel 𝑖 as a sequence of Gaussians 𝑮.

As the picosecond laser pulse is approximately Gaussian and has a

FWHM ~80ps, the target Gaussian pulse is shown and denoted as 𝐆 who

has fixed 𝜎. Therefore, we can estimate the depth 𝜇 through solving a

least square problem.

Our SPAD array is working in TCSPC mode and the measurements from

each SPAD pixel could be reconstructed independently with tiling artifacts

addressed.
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Optical Parameters in Experiment
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WaveLength 655nm Focal Length 1.035mm Imaging Canon 85mm Lens

Average Power ~1mW Structure
2𝜋 period

24 Phase Level
Reimaging

Inverted 0.9X Edmund
Double Side Telecentric

FWHM ~80ps Effiency(𝑓/20) 52.87% DMD TI DLP4500

Repetition Rate 50MHz Fabrication
Lithography(0.7𝜇m)
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