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Abstract

Motion blur from camera shake is a major problem in
videos captured by hand-held devices. Unlike single-image
deblurring, video-based approaches can take advantage of
the abundant information that exists across neighboring
frames. As a result the best performing methods rely on
the alignment of nearby frames. However, aligning images
is a computationally expensive and fragile procedure, and
methods that aggregate information must therefore be able
to identify which regions have been accurately aligned and
which have not, a task that requires high level scene under-
standing. In this work, we introduce a deep learning so-
lution to video deblurring, where a CNN is trained end-to-
end to learn how to accumulate information across frames.
To train this network, we collected a dataset of real videos
recorded with a high frame rate camera, which we use to
generate synthetic motion blur for supervision. We show
that the features learned from this dataset extend to deblur-
ring motion blur that arises due to camera shake in a wide
range of videos, and compare the quality of results to a num-
ber of other baselines 1.

1. Introduction
Hand-held video capture devices are now commonplace.

As a result, video stabilization has become an essential step
in video capture pipelines, often performed automatically
at capture time (e.g., iPhone, Google Pixel), or as a ser-
vice on sharing platforms (e.g., Youtube, Facebook). While
stabilization techniques have improved dramatically, the re-
maining motion blur is a major problem with all stabiliza-
tion techniques. This is because the blur becomes obvious
when there is no motion to accompany it, yielding highly
visible “jumping” artifacts. In the end, the remaining cam-
era shake motion blur limits the amount of stabilization that
can be applied before these artifacts become too apparent.

1Datasets, pretrained models and source code are available at
https://www.cs.ubc.ca/labs/imager/tr/2017/DeepVideoDeblurring
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Figure 1: Blur in videos can be significantly attenuated by
learning how to aggregate information from nearby frames.
Top: crops of consecutive frames from a blurry video; Bot-
tom: outputs from the proposed data-driven approach, in
this case using simple homography alignment.

The most successful video deblurring approaches lever-
age information from neighboring frames to sharpen blurry
ones, taking advantage of the fact that most hand-shake mo-
tion blur is both short and temporally uncorrelated. By bor-
rowing “sharp” pixels from nearby frames, it is possible to
reconstruct a high quality output. Previous work has shown
significant improvement over traditional deconvolution-
based deblurring approaches, via patch-based synthesis that
relies on either lucky imaging [4] or weighted Fourier ag-
gregation [6].

One of the main challenges associated with aggregating
information across multiple video frames is that the differ-
ently blurred frames must be aligned. This can either be
done, for example, by nearest neighbor patch lookup [4],
or optical flow [6]. However, warping-based alignment is
not robust around disocclusions and areas with low texture,
and often yields warping artifacts. In addition to the align-
ment computation cost, methods that rely on warping have
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to therefore disregard information from mis-aligned content
or warping artifacts, which can be hard by looking at local
image patches alone.

To this end, we present the first end-to-end data-driven
approach to video deblurring, the results of which can be
seen in Fig. 1. We address specifically blur that arises due
to hand-held camera shake, i.e., is temporally uncorrelated,
however we show that our deblurring extends to other types
of blur as well, including motion blur from object motion.
We experiment with a number of differently learned config-
urations based on various alignment types: no-alignment,
frame-wise homography alignment, and optical flow align-
ment. On average optical flow performs the best, although
in many cases projective transform (i.e. homography) per-
forms comparably with significantly less computation re-
quired. Notably, our approach also enables the generation
of high quality results without computing any alignment
or image warping, which makes it highly efficient and ro-
bust to scene types. Essential to this success is the use of
an autoencoder-type network with skip connections that in-
creases the receptive field and is yet easy to train.

Our main contribution is an end-to-end solution to train
a deep neural network to learn how to deblur images, given
a short stack of neighboring video frames. We describe
the architecture we found to give the best results, and the
method we used to create a real-world dataset from high
frame rate capture. We compare qualitatively to videos pre-
viously used for video deblurring, and quantitatively with
our ground truth data set. We also present a test set of videos
showing that our method generalizes to a wide range of sce-
narios. Both datasets are made available to the public to
encourage follow up work.

2. Related Work

There exist two main approaches to deblurring:
deconvolution-based methods that solve inverse problems,
and those that rely on multi-image aggregation and fusion.

Deblur using deconvolution. Modern single-image de-
blurring approaches jointly estimate a blurring kernel (ei-
ther single or spatially varying) and the underlying sharp
image via deconvolution [23]. In recent years many suc-
cessful methods have been introduced [3, 8, 22, 32, 39, 42,
51, 52], see [47] for a recent survey. Multiple-image de-
convolution methods use additional information to alleviate
the severe ill-posedness of single-image deblurring. These
approaches collect, for example, image bursts [14], blurry-
noisy pairs [53], flash no-flash image pairs [36], gyroscope
information [34], high frame rate sequences [44], or stereo
pairs [38] for deblurring. These methods generally assume
static scenes and require the input images to be aligned.
For video, temporal information [25], optical flow [17] and
scene models [33, 49] have been used for improving both

kernel and latent frame estimation.
All of the above approaches strongly rely on the accu-

racy of the assumed image degradation model (blur, mo-
tion, noise) and its estimation, thus may perform poorly
when the simplified degradation models are insufficient to
describe real data, or due to suboptimal model estimation.
As a result, these approaches tend to be more fragile than
aggregation-based methods [6], and often introduce unde-
sirable artifacts such as ringing and amplified noise.

Multi-image aggregation. Multi-image aggregation
methods directly combine multiple images in either spatial
or frequency domain without solving any inverse problem.
Lucky-imaging is a classic example, in which multiple low
quality images are aligned and best pixels from different
ones are selected and merged into the final result [15, 24].
For denoising, this has been extended to video using optical
flow [26] or piecewise homographies [28] for alignment.

For video deblurring, aggregation approaches rely on the
observation that in general not all video frames are equally
blurred. Sharp pixels thus can be transferred from nearby
frames to deblur the target frame, using for example ho-
mography alignment [30]. Cho et al. further extend this
approach using patch-based alignment [4] for improved ro-
bustness against moving objects. The method however can-
not handle large depth variations due to the underlying ho-
mography motion model, and the patch matching process
is computationally expensive. Klose et al. [20] show that
3D reconstruction can be used to project pixels into a sin-
gle reference coordinate system for pixel fusion. Full 3D
reconstruction however can be fragile for highly dynamic
videos.

Recently, Delbracio and Sapiro [5] show that aggregat-
ing multiple aligned images in the Fourier domain can lead
to effective and computationally highly efficient deblurring.
This technique was extended to video [6], where nearby
frames are warped via optical flow for alignment. This
method is limited by optical flow computation and evalu-
ation, which is not reliable near occlusions and outliers.

All above approaches have explicit formulations on how
to fuse multiple images. In this work, we instead adopt a
data-driven approach to learn how multiple images should
be aggregated to generate an output that is as sharp as pos-
sible.

Data-driven approaches. Recently, CNNs have been
applied to achieve leading results on a wide variety of re-
construction problems. These methods tend to work best
when large training datasets can be easily constructed, for
example by adding synthetic noise for denoising [50], re-
moving content for inpainting [35], removing color infor-
mation for colorization [13], or downscaling for superreso-
lution [7, 27]. Super resolution networks have been applied
to video sequences before [12, 16, 40], but these approaches
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Figure 2: Architecture of the proposed DeBlurNet model, that takes the stacked nearby frames as input, and processes them
jointly through a number of convolutional layers until generating the deblurred central frame. The depth of each block
represents the number of activation maps in response to learned kernels. See Tab. 1 for detailed configurations.

address a different problem, with its own set of challenges.
In this work we focus on deblurring, where blurry frames
can vary greatly in appearance from their neighbors, mak-
ing information aggregation more challenging.

CNNs have also been used for single- [2, 43] and multi-
[48] image deblurring, using synthetic training data. One
problem with synthetic blur is that real blur has significantly
different characteristics, as it depends on both the scene
depth and object motion. In our experiments, we show that
by leveraging multiple video frames, training on real blur,
and directly estimating the sharp images, our method can
produce substantially better results.

3. Our Method

Overview. Image alignment is inherently challenging
as determining whether the aligned pixels in different im-
ages correspond to the same scene content can be difficult
with only low-level features. High-level features, on the
other hand, provide sufficient additional information to help
separate incorrectly aligned image regions from correctly
aligned ones. To make use of both low-level and high-level
features, we therefore train an end-to-end system for video
deblurring, where the input is a stack of neighboring frames
and the output is the deblurred central frame in the stack.
Furthermore, our network is trained using real video frames
with realistically synthesized motion blur. In the follow-
ing, we first present our neural network architecture, then
describe a number of experiments for evaluating its effec-
tiveness and comparing with existing methods. The key ad-
vantage of our approach is the allowance of lessening the
requirements for accurate alignment, a fragile component
of prior work.

3.1. Network Architecture

We use an encoder-decoder style network, which have
been shown to produce good results for a number of gen-
erative tasks [35, 41]. In particular, we choose a variation

layer kernel size stride output size skip connection

input - - 15×H × W to F6 2∗

F0 5×5 1×1 64×H × W to U3

D1 3×3 2×2 64×H/2 × W/2 -
F1 1 3×3 1×1 128×H/2 × W/2 -
F1 2 3×3 1×1 128×H/2 × W/2 to U2

D2 3×3 2×2 256×H/4 × W/4 -
F2 1 3×3 1×1 256×H/4 × W/4 -
F2 2 3×3 1×1 256×H/4 × W/4 -
F2 3 3×3 1×1 256×H/4 × W/4 to U1

D3 3×3 2×2 512×H/8 × W/8 -
F3 1 3×3 1×1 512×H/8 × W/8 -
F3 2 3×3 1×1 512×H/8 × W/8 -
F3 3 3×3 1×1 512×H/8 × W/8 -

U1 4×4 1/2×1/2 256×H/4 × W/4 from F2 3
F4 1 3×3 1×1 256×H/4 × W/4 -
F4 2 3×3 1×1 256×H/4 × W/4 -
F4 3 3×3 1×1 256×H/4 × W/4 -

U2 4×4 1/2×1/2 128×H/2 × W/2 from F1 2
F5 1 3×3 1×1 128×H/2 × W/2 -
F5 2 3×3 1×1 64×H/2 × W/2 -

U3 4×4 1/2×1/2 64×H × W from F0
F6 1 3×3 1×1 15×H × W -
F6 2 3×3 1×1 3×H × W from input∗

Table 1: Specifications of the DBN model. Each con-
volutional layer is followed by batch normalization and
ReLU, except those that are skip connected to deeper lay-
ers, where only batch normalization has been applied,
before the sum is rectified through a ReLU layer [11].
For example, the input to F4 1 is the rectified summa-
tion of U1 and F2 3. Note that for the skip connec-
tion from input layer to F6 2, only the central frame of
the stack is selected. At the end of the network a Sig-
moid layer is applied to normalize the intensities. We use
the Torch implementation of SpatialConvolution
and SpatialFullConvolution for down- and up-
convolutional layers.

of the fully convolutional model proposed in [41] for sketch
cleanup. We add symmetric skip connections [29] between
corresponding layers in encoder and decoder halves of the



Figure 3: A selection of blurry/sharp pairs (split left/right respectively) from our ground truth dataset. Images are best viewed
on-screen and zoomed in.

network, where features from the encoder side are added
element-wise to each corresponding layer. This signifi-
cantly accelerates the convergence and helps generate much
sharper video frames. We perform an early fusion of neigh-
boring frames that is similar to the FlowNetSimple model
in [9], by concatenating all images in the input layer. The
training loss is MSE to the ground truth sharp image, which
will be discussed in more detail in Sec. 4. We refer to this
network as DeBlurNet, or DBN, and show a diagram of it
in Fig. 2. It consists of three types of convolutional layers:
down-convolutional layers, that compress the spatial reso-
lution of the features while increasing the spatial support
of subsequent layers; flat-convolutional layers, that perform
non-linear mapping and preserve the size of the image; and
finally up-convolutional layers, that increase the spatial res-
olution. Please refer to Tab. 1 for detailed configurations.

Alignment. One of the main advantages of our method
is the ability to work well without accurate frame-to-frame
alignment. To this end, we create three versions of our
dataset with varying degrees of alignment, and use these to
train DBN. At one end, we use no alignment at all, relying
on the network to abstract spatial information through a se-
ries of down-convolution layers. This makes the method
significantly faster, as alignment usually dominates run-
ning time in multi-frame aggregation methods. We refer
to this network as DBN+NOALIGN. We also use optical
flow [37] to align stacks (DBN+FLOW), which is slow to
compute and prone to errors (often introducing additional
warping artifacts), but allows pixels to be aggregated more
easily by removing the spatial variance of corresponding
features. Finally, we use a single global homography to
align frames, which provides a compromise in approaches,
in terms of computational complexity and alignment quality
(DBN+HOMOG). The homography is estimated using SURF
features and a variant of RANSAC [46] to reject outliers.

Implementation details. During training we use a batch
size of 64, and patches of 15×128×128, where 15 is the
total number of RGB channels stacked from the crops of 5
consecutive video frames. We observed that a patch size
of 128 was sufficient to provide enough overlapping con-
tent in the stack even if the frames are not aligned. We use

ADAM [19] for optimization, and fix the learning rate to
be 0.005 in the first 24,000 iterations, then halves for every
subsequent 8,000 iterations until it reaches the lower bound
of 10−6. For all the results reported in the paper we train the
network for 80,000 iterations, which takes about 45 hours
on an NVidia Titan X GPU. Default values of β1, β2 and ε
are used, which are 0.9, 0.999, and 10−8 respectively, and
we set weight decay to 0.

As our network is fully convolutional, the input resolu-
tion is restricted only by GPU memory. At test time, we
pass a 960 × 540 frame into the network, and tile this if
the video frame is of larger resolution. Since our approach
deblurs images in a single forward pass, it is computation-
ally very efficient. Using an NVidia Titan X GPU, we can
process a 720p frame within 1s without alignment. Previous
approaches took on average 15s [6] and 30s [4] per frame on
CPUs. The recent neural deblurring method [2] takes more
than 1 hour to fully process each frame, and the approach
of Kim et al. [17] takes several minutes per frame.

4. Training Dataset

Generating realistic training data is a major challenge
for tasks where ground truth data cannot be easily col-
lected/labeled. For training our neural network, we re-
quire two video sequences of exactly the same content: one
blurred by camera shake motion blur, and its corresponding
sharp version. Capturing such data is extremely hard. One
could imagine using a beam-splitter and multiple cameras
to build a special capturing system, but this setup would be
challenging to construct robustly, and would present a host
of other calibration issues.

One solution would be to use rendering techniques to
create synthetic videos for training. However if not done
properly, this often leads to a domain gap, where models
trained on synthetic data do not generalize well to real world
data. For example, we could apply synthetic motion blur on
sharp video frames to simulate camera shake blur. However,
in real world scenarios the blur not only depends on camera
motion, but also is related to scene depth and object motion,
thus is very difficult to be rendered properly.

In this work, we propose to collect real-world sharp
videos at very high frame rate, and synthetically create



Method #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Average

Input 24.14 / .859 30.52 / .958 28.38 / .914 27.31 / .900 22.60 / .852 29.31 / .951 27.74 / .939 23.86 / .906 30.59 / .976 26.98 / .926 27.14 / .918
PSDEBLUR 24.42 / .908 28.77 / .952 25.15 / .928 27.77 / .928 22.02 / .890 25.74 / .932 26.11 / .948 19.75 / .822 26.48 / .963 24.62 / .938 25.08 / .921
WFA [6] 25.89 / .910 32.33 / .974 28.97 / .931 28.36 / .925 23.99 / .910 31.09 / .975 28.58 / .955 24.78 / .926 31.30 / .981 28.20 / .960 28.35 / .944
DBN+SINGLE 25.75 / .901 31.15 / .966 29.30 / .946 28.38 / .922 23.63 / .885 30.70 / .962 29.23 / .959 25.62 / .936 31.92 / .983 28.06 / .949 28.37 / .941
DBN+NOALIGN 27.83 / .940 33.11 / .980 31.29 / .973 29.73 / .948 25.12 / .930 32.52 / .978 30.80 / .975 27.28 / .962 33.32 / .989 29.51 / .969 30.05 / .964
DBN+HOMOG. 27.93 / .945 32.39 / .975 30.97 / .969 29.82/ .948 24.79 / .925 31.84 / .972 30.46 / .972 26.64 / .955 33.15 / .989 29.30 / .969 29.73 / .962
DBN+FLOW 28.31 / .956 33.14 / .982 30.92 / .973 29.99 / .954 25.58 / .944 32.39 / .981 30.56 / .975 27.15 / .963 32.95 / .989 29.53 / .975 30.05 / .969

Table 2: PSNR/MSSIM [21] measurements for each approach, averaged over all frames, for 10 test datasets (#1→#10).

blurred ones by accumulating a number of short exposures
to approximate a longer exposure [45]. In order to sim-
ulate realistic motion blur at 30fps, we capture videos at
240fps, and subsample every eighth frame to create the
30fps ground truth sharp video. We then average together
a temporally centered window of 7 frames (3 on either side
of the ground truth frame) to generate synthetic motion blur
at the target frame rate.

Since there exists a time period between adjacent ex-
posures (the “duty cycle”), simply averaging consecutive
frames will yield ghosting artifacts. To avoid this, [18] pro-
posed to only use frames whose relative motions in-between
are smaller than 1 pixel. To use all frames for rendering, we
compute optical flow between adjacent high fps frames, and
generate an additional 10 evenly spaced inter-frame images,
which we then average together. Examples of the dataset are
shown in Fig. 3. We have also released this dataset publicly
for future research.

In total, we collect 71 videos, each with 3-5s average
running time. These are used to generate 6708 synthetic
blurry frames with corresponding ground truth. We sub-
sequently augment the data by flipping, rotating (0°, 90°,
180°, 270°), and scaling (1/4, 1/3, 1/2) the images, and from
this we draw on average 10 random 128×128 crops. In to-
tal, this gives us 2,146,560 pairs of patches. We split our
dataset into 61 training videos and 10 testing videos. For
each video, its frames are used for either training or testing,
but not both, meaning that the scenes used for testing have
not been seen in the training data.

The training videos are capture at 240fps with an iPhone
6s, GoPro Hero 4 Black, and Canon 7D. The reason to use
multiple devices is to avoid bias towards a specific captur-
ing device that may generate videos with some unique char-
acteristics. We test on videos captured by other devices,
including Nexus 5x and Moto X mobile phones and a Sony
a6300 consumer camera.

Limitations. We made an significant effort to capture a
wide range of situations, including long pans, selfie videos,
scenes with moving content (people, water, trees), recorded
with a number of different capture devices. While it is quite
diverse, it also has some limitations. As our blurry frames

are averaged from multiple input frames, the noise charac-
teristics will be different in the ground truth image. To re-
duce this effect, we recorded input videos in high light sit-
uations, where there was minimal visible noise even in the
original 240fps video, meaning that our dataset only con-
tains scenes with sufficient light. An additional source of
error is that using optical flow for synthesizing motion blur
adds possible artifacts which would not exist in real-world
data. We found that however, as the input video is recorded
at 240fps, the motion between frames is small, and we did
not observe visual artifacts from this step.

As we will show in Sec. 5, despite these limitations, our
trained model still generalizes well to new capture devices
and scene types, notably on low-light videos. We believe
future improvements to the training data set will further im-
prove the performance of our method.

5. Experiments and Results

We conduct a series of experiments to evaluate the effec-
tiveness of the learned model, and also the importance of
individual components.

Effects of using multiple frames. We analyze the con-
tribution of using a temporal window by keeping the same
network architecture as DBN, but replicating the central ref-
erence frame 5 times instead of inputing a stack of neigh-
boring frames, and retrain the network with the same hyper-
parameters. We call this approach DBN+SINGLE. Qualita-
tive comparisons are shown in Fig. 4 and 6, and quantitative
results are shown in Table 2 and Fig. 5. We can see that us-
ing neighboring frames greatly improves the quality of the
results. We chose a 5 frame window as it provides a good
compromise between result quality and training time [16].
Single-image methods are also provided as reference: PS-
DEBLUR for blind uniform deblurring with off-the-shelf
shake reduction software in Photoshop, and [52] for non-
uniform comparisons.

Effects of alignment. In this set of experiments,
we analyze the impact of input image alignment in the
output restoration quality, namely we compare the results
of DBN+NOALIGN, DBN+HOMOG., and DBN+FLOW. See



Input (top) / ours (bottom) Input PSDEBLUR WFA[6] DBN+SINGLE DBN+NOALIGN DBN+HOMOG DBN+FLOW ground-truth
21.79dB 24.09dB 21.53dB 24.51dB 27.24dB 26.66dB 26.69dB
31.72dB 31.13dB 29.83dB 31.49dB 32.89dB 34.76dB 34.87dB

Figure 4: Quantitative results from our test set, with PSNRs relative to the ground truth. Here we compare DBN with a
single-image approach, PSDEBLUR, and a start-of-the-art multi-frame video deblurring method, WFA [6]. DBN, achieves
comparable results to [6] without alignment, and improved results with alignment.
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Figure 5: Quantitative comparison of different approaches.
In this plot, the PSNR gain of applying different methods
and configurations is plotted versus the sharpness of the in-
put frame. We observe that all multi-frame methods pro-
vide a quality improvement for blurry input frames, with
diminishing improvements as the input frames get sharper.
DBN+NOALIGN and DBN+FLOW perform the best, but qual-
itatively, DBN+FLOW and DBN+HOMOG. are often compa-
rable, and superior to no alignment. We provide a single-
image uniform blur kernel deblurring method as reference
(PSDEBLUR).

Tab. 2 and Fig. 5 for quantitative comparisons, and the
qualitative comparison in Fig. 6. Our main conclusions
are that DeBlurNet with optical flow and homography are
often qualitatively equivalent, and DBN+FLOW often has
higher PSNR. On the other hand, DBN+NOALIGN performs

even better than DBN+FLOW and DBN+HOMOG in terms of
PSNR, especially when the input frames are not too blurry,
e.g. >29dB. However, we observe that DBN+FLOW fails
gracefully when inputs frame are much blurrier, which leads
to a drop in PSNR and MSSIM (see Tab. 2 and Fig. 5).
In this case, DBN+FLOW and DBN+HOMOG. perform bet-
ter. One possible explanation for this is that when the in-
put quality is good, optical flow errors will dominate the
final performance of the deblurring procedure. Indeed, se-
quences with high input PSNR have small relative motion
(consequence of how the dataset is created) so there is not
too much displacement from one frame to the next, and
DBN+NOALIGN is able to directly handle the input frames
without any alignment.

Comparisons to existing approaches. We compare
our method to existing approaches in Fig. 6. Specifically,
we show a quantitative comparison to WFA [6], and qual-
itative comparisons to Cho et al. [4], Kim et al. [18], and
WFA [6]. We also compare to single image deblurring
methods, Chakrabarti [2], Xu et al. [52], and the Shake Re-
duction feature in Photoshop CC 2015 (PSDEBLUR). We
note that PSDEBLUR can cause ringing artifacts when used
in an automatic setting on sharp images, resulting in a sharp
degradation in quality (Fig. 5). The results of [4] and [18]
are the ones provided by the authors, WFA [6] was applied
a single iteration with the same temporal window, and for
[52, 2] we use the implementations provided by the authors.
Due to the large number of frames, we are only able to



Input (top) / ours (bottom) Input PSDEBLUR L0DEBLUR[52] NEURAL [2] WFA [6] DBN+SINGLE DBN+NOALIGN DBN+HOMOG DBN+FLOW

Input (top) / ours (bottom) Input PSDEBLUR Cho et al. [4] Kim and Lee [17] WFA [6] DBN+SINGLE DBN+NOALIGN DBN+HOMOG DBN+FLOW

Figure 6: Qualitative comparisons to existing approaches. We compare DBN under various alignment configurations, with
prior approaches, e.g. Cho et al. [4], Kim and Lee [17], Chakrabarti [2], Xu et al. [52], WFA [6], and Photoshop CC Shake
Reduction. In general DBN achieves decent quality without alignment, and is comparable or better when simpler frame-wise
homography is applied. Note that [4] adapts homography-based motion model, while [6] and [17] are estimating the optical
flow for alignment.

compare quantitatively to approaches which operate suffi-
ciently fast, which excludes many non-uniform deconvolu-
tion based methods. The complete sequences are given in
the supplementary material. It is important to note that the
test images have not been seen during the training proce-
dure, and many of them have been shot by other cameras.
Our conclusion is that DBN often produces superior quality
deblurred frames, even when the input frames are aligned
with a global homography, which requires substantially less
computation than prior methods.

Generalization to other types of videos. As discussed
in Sec. 4, our training set has some limitations. Despite
these, Fig. 7 shows that our method can generalize well

to other types of scenes not seen during training. This in-
cludes videos captured in indoor, low-light scenarios and
motion blur originating from an object moving, rather than
the temporally uncorrelated blur from camera shake. While
our dataset has instances of motion blur in it, it is domi-
nated by camera-shake blur. Nonetheless, the network is
able to produce a moderate amount of object motion deblur-
ring as well, which is not handled by other lucky imaging
approaches.

Other experiments. We tested with different fusion
strategies, for example late fusion, i.e. aggregating fea-
tures from deeper layers after high-level image content has
been extracted from each frame, with both shared and non-



Input DBN+HOMOG Input DBN+HOMOG

Figure 7: Our proposed method can generalize to types of
data not seen in the training set. The first example shows
a low-light, noisy video, and the second shows an example
with motion blur, rather than camera shake. The biker is
in motion, and is blurred in all frames in the stack, but the
network can still perform some moderate deblurring.

shared weights. Experimental results show that this pro-
duced slightly worse PSNR and training and validation
loss, but it occasionally helped in challenging cases where
DBN+NOALIGN fails. However this improvement is not
consistent, so we left it out of our proposed approach.

Multi-scale phase-based methods have proven to be able
to generate sharp images using purely Eulerian representa-
tions [31], so we experimented with multiscale-supervised,
Laplacian reconstructions, but found similarly inconclusive
results. While the added supervision helps in some cases,
it likely restricts the network from learning useful feature
maps that help in other frames.

We also tried directly predicting the sharp Fourier coeffi-
cients, as in [5], however this approach did not work as well
as directly predicting output pixels. One possible reason is
that the image quality is more prone to reconstruction er-
rors of Fourier coefficients, and we have not found a robust
way to normalize the scale of Fourier coefficients during
training, compared with the straightforward way of apply-
ing Sigmoid layers when inputs are in the spatial domain.

Visualization of learned filters. Here we visualize some
filters learned from DBN+FLOW, specifically at F0, to gain
some insights of how it deblurs an input stack. It can be ob-
served that DBN not only learns to locate the corresponding
color channels to generate the correct tone (Fig. 8, left), but
is also able to extract edges of different orientations (Fig. 8,
middle), and to locate the warping artifacts (Fig. 8, right).

Figure 8: Here we selectively visualize 3 out of 64 filters
(highlighted) and their response at F0 from DBN+FLOW.

Limitations. One limitation of this work is that we ad-
dress only a subset of the types of blur present in video,
in particular we focus on motion blur that arises due to
camera-shake from hand-held camera motion. In practice,
our dataset contains all types of blur that can be reduced
by a shorter exposure time, including object motion, but
this type of motion occurs much less frequently. Explic-
itly investigating other sources of blur, for example focus
and object motion, which would require different input and
training data, is an interesting area for future work.

Although no temporal coherence is explicitly imposed
and no post-processing is done, the processed sequences
are in general temporally smooth. We refer the reader to
the video provided in the supplementary material. However,
when images are severely blurred, our proposed model, es-
pecially DBN+NOALIGN, can introduce temporal artifacts
that becomes more visible after stabilization. In the fu-
ture, we plan to investigate better strategies to handle un-
aligned cases, for example through the multi-scale recon-
struction [10, 1].

We would like also to augment our training set with a
wider range of videos, as this should increase general appli-
cability of the proposed approach.

6. Conclusion
We have presented a learning-based approach to multi-

image video deblurring. Despite the above limitations, our
method generates results that are often as good as or su-
perior to the state-of-the-art approaches, with no parameter
tuning and without the explicit need for challenging image
alignment. It is also highly efficient due to the relaxation
of the quality of alignment required – using a simplified
alignment method, our approach can generate high quality
results within a second, which is substantially faster than
existing approaches many of which take minutes per frame.

In addition, we conducted a number of experiments
showing the quality of results varying the input require-
ments. We believe that similar strategies could be applied
to other aggregation based applications.
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