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Abstract

Although motion blur and rolling shutter deformations
are closely coupled artifacts in images taken with CMOS
image sensors, the two phenomena have so far mostly been
treated separately, with deblurring algorithms being unable
to handle rolling shutter wobble, and rolling shutter algo-
rithms being incapable of dealing with motion blur.

We propose an approach that delivers sharp and undis-
torted output given a single rolling shutter motion blurred
image. The key to achieving this is a global modeling of
the camera motion trajectory, which enables each scanline
of the image to be deblurred with the corresponding motion
segment. We show the results of the proposed framework
through experiments on synthetic and real data.

1. Introduction and Related Work

Motion blur (MB) from camera shake is one of the most
noticeable degradations in hand-held photography. Without
information about the underlying camera motion, an esti-
mate of the latent sharp image can be restored using so-
called blind deblurring (BD), which has been studied exten-
sively in the past decade. Some representative work on this
problem includes Cho et al. [6] in which salient edges and
the FFT are used to speed up the uniform deblurring, and
the introduction of motion density functions by Gupta et
al. [7], which specializes in non-uniform cases. Maximum
a posteriori (MAP) estimation is a popular way to formulate
the objective of blind deblurring – a theoretical analysis on
its convergence was conducted in [12] recently.

One common assumption made in almost all previous
deblurring methods [6, 7, 8, 9, 12, 15, 16, 17, 18] is the use
of a global shutter (GS) sensor. That is, each part of the
image is regarded as having been exposed during the ex-
act same interval of time. This assumption, however, does
not hold for images captured by a CMOS sensor that uses
an electronic rolling shutter (RS), which is the case for the
majority of image sensors on the market. This is due to
the fact that RS exposes each row sequentially as opposed
to simultaneously, and that the popularity of RS sensors in
mobile devices makes them particularly susceptible to mo-
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Figure 1: Simulated blur kernels for global (a) and rolling
shutter (b) cameras. Blur kernels in global shutter images
tend to be spatially invariant (assuming a static scene and
negligible in-plane roation) while in a rolling shutter image
they are always spatially variant. (c) Spatial variance of the
blur kernel in a real RSMB image indicated by light streaks.

tion blur, especially in low light scenarios. Fig. 1 demon-
strates some samples of the point-spread-functions (PSFs)
simulated by applying the same camera motion to a global
and a rolling shutter camera during exposure. Assuming a
static scene and no in-plane rotation, the blur kernel of the
global shutter image in Fig. 1(a) is shift invariant, since all
pixels integrate over the same motion trajectory. For the
rolling shutter image, however, different scanlines integrate
over a slightly different segment of the trajectory, resulting
in a shift-variant kernel in Fig. 1(b) even in the case of static
object and no in-plane rotation. Thus, when applied to the
wide range of RSMB images such as that shown in Fig. 1(c),
existing methods [6, 7, 8, 9, 12, 15, 16, 17, 18] are destined
to fail.

The shift variance of the rolling shutter kernel effect can
be modeled by capturing the overall camera motion with a
gyroscope and computing different kernels for each scan-
line [11]. Without such specialized hardware, an alternative
is to solve different blind deconvolution problems for blocks
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Figure 2: Illustration of the GS (top) and RS (middle) sen-
sor mechanisms. The horizontal bar represents the expo-
sure interval of the i-th scanline in the sensor. M + 1 is the
number of scanlines in both sensors, te denotes the expo-
sure time of each scanline, and tr is the time the RS sen-
sor takes to readout the i-th scanline before proceeding to
the next. When camera motion exists (bottom), all pixels
in a GS camera integrate over the same motion trajectory,
while different scanlines integrate over a slightly different
segment of the trajectory in a RS sensor.

of scanlines, but these solutions would have to be stitched
together, which is made more difficult by the rolling shutter
wobble.

Geometric distortions in RS images have received more
attention, but typically without considering blur. A major
motivation for rolling shutter correction is the removal of
wobbles in RS videos [1], where inter-row parallax is larger
than one pixel. The work by Saurer et al. [14] is another
example that attempts to make traditional computer vision
algorithms (e.g. stereo, registration) work on RS cameras.
Most of such work relies on sharp input images so that fea-
ture detectors can reliably deliver inter-frame homography
estimates. Meilland et al. [10] were the first to propose a
unified framework for RS and MB, but they rely on a se-
quence of images that can be registered together. Another
approach was presented by Pichaikuppan et al. [13], but it
targets change detection and requires a sharp global shutter
reference image.

In this paper, we propose a single image approach that
deblurs RSMB images by estimating and parametrically
modeling each degree of freedom of the camera motion tra-
jectory as polynomial functions of time. The motivation of
this parametric representation is based on a recently study
of human camera shake from Kohler et al. [9], see Sec. 3.
To achieve good initial estimates of the motion trajectory
coefficients, we adopt a back-projection technique [8] to es-
timate higher dimensional camera poses from their 2D pro-

jections, i.e. PSFs. The specific contributions of this work
are:

• A blind deblurring technique that handles the charac-
teristic of rolling shutter;

• A method for motion trajectory estimation and refine-
ment from a single RSMB image.

Throughout the paper we assume the scene to be suf-
ficiently far away so that planar homographies are able to
describe the transformations. Based on an analysis of the
data from Kohler et al. [9], we also determine that in-plane
rotation is negligible except for very wide angle lenses, al-
lowing us to restrict ourselves to a 2D translational motion
model.

2. Motion Blur in Rolling Shutter Cameras
In the global shutter case, motion blur with a spatially

varying kernel can be modeled as a blurred image G ∈
R(M+1)×(N+1) resulting from the integration over all in-
stances of the latent image L ∈ R(M+1)×(N+1) seen by the
camera at poses along its motion path during the exposure
period t ∈ [0, te]:

G =
1

te

∫ te

0

Lp(t)dt+ N, (1)

where p(t) = (p1(t), p2(t), p3(t)) ∈ R3 corresponds to the
camera pose at time t, and Lp(t) is the latent image trans-
formed to the pose p at a given time. N represents a noise
image, which is commonly assumed to follow a Gaussian-
distribution in each pixel.

The above model proves to be effective for formulat-
ing a GSMB image but cannot be directly applied to the
RSMB case, as scanlines in RS sensors are exposed se-
quentially instead of simultaneously as that is assumed in
Eq. (1). Specifically, as illustrated in Fig. 2, although each
scanline is exposed for the same duration te, the exposure
window is offset by tr from scanline to scanline [4]. We
thus rewrite Eq. (1) for each row bi in a RSMB image
B = (bT0 , . . . ,b

T
M )T as

bi =
1

te

∫ i·tr+te

i·tr
l
p(t)
i dt+ ni, (2)

where the subscript i also indicates the i-th row in Lp(t) and
N.

Eq. (2) can be expressed in discrete matrix-vector form
after assuming a finite number of time samples during the
exposure of each row. Assuming that the camera intrinsic
matrix C ∈ R3×3 is given, bij ∈ bi = (bi0, ..., biN ) can be
exactly determined at any pixel location x = (i, j)T in B

bij =
1

|Ti|
∑
t∈Ti

ΓL(w(x;p(t))) + nij , (3)



where Ti = {i·tr+ j
K te}j=0...K is a set of uniformly spaced

time samples in the exposure window of row i, ΓL(·) is the
function that bi-linearly interpolates the intensity at some
sub-pixel position in L, and w(·) is a warping function [2,
5] that maps positions x from the camera frame back to
the reference frame of the latent image L according to the
current camera pose p:

w(x;p) =
DH(DTx + e)

eTH(DTx + e)
. (4)

Here H = CRC−1 is a homography matrix, R = ep×

is its rotational component1, e = (0, 0, 1)T , and

D =

[
1 0 0
0 1 0

]
.

From Eq. (3,4) a sparse convolution matrix K can be
created and Eq. (2) can be rewritten as

b = Kl + n, (5)

where b, l and n respectively are the RSMB input, latent
image, and noise, all in vector form.

3. Camera Motion Modeling
The sequence of camera poses p(t) describes a 1D con-

tinuous path through the 3D camera pose space [7]. Before
explaining how this serves as an important constraint for
blind RSMD, we first seek a suitable model for p(t) from
t = 0 to te + Mtr, and then rewrite the RSMB image for-
mation model based on this modeling.

Exposure time of interest. To discuss the model for
p(t), we need to be more specific about the temporal range
of ∪i=0:M{Ti} for exposing the whole image. If the expo-
sure time is large compared to the aggregate readout time
for a full frame (i.e. te � Mtr), then the rolling shut-
ter distortion is dominated by the motion blur and conven-
tional deblurring methods can be used with good results.
Unfortunately, this scenario can only occur in still photog-
raphy, since in video mode the exposure time cannot exceed
one over the frame rate. The other extreme is that there is
sufficient light for the exposure time to be very short com-
pared to the readout time (i.e. te � Mtr). In this case,
the blur is typically negligible, except for very fast cam-
era motion. Inbetween these two extremes is the common
scenario where the exposure time approaches the aggregate
readout time. While this scenario is particularly common in
small-format cameras and cell-phones, it affects all cameras
in lower light conditions. In this case, both rolling shutter
distortion and motion blur are present, and existing methods
cannot be used.

1p× =

 0 −p3 p2
p3 0 −p1
−p2 p1 0

 as the matrix exponential.
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Figure 3: Left: a segment of the camera motion trajectory
from [9] in 3D rotational pose space; Right: the resulting
pixel shift at the corner of a full-HD image, assuming the
rotation center is the image center. With a moderate angled
lens (50mm in this example), the effect of roll (Rot z) re-
duces to subpixel-level pixel shift in most handheld shake
cases. See the supplemental material for more examples.

Pose trajectory model. To get a sense of what the se-
quence of p(t) typically looks like for a shaky hand-held
camera during the time of interest, we performed an analy-
sis over all the 40 publicly available camera motion trajec-
tories from Kohler et al.2. The camera pose was recorded
at 500Hz by a Vicon system when 6 human objects were
asked to hold still a camera in a natural way. Detailed de-
scriptions of the experiment can be referred to the original
paper [9]. Here we illustrate in Fig. 3 the three rotational
pose trajectories during a randomly selected 1/25s segment
(108-128) from the 39th dataset.

As can be seen, even though the blur kernel of a RSMB
image varies spatially, the decomposed p1(t), p2(t), p3(t)
from the underlying camera motion are in fact parameter-
izable. This observation generalizes to the other samples
from the same dataset. Therefore we decide to fit polyno-
mial functions to the pose trajectories

p(t) = tθ, (6)

where t = (tP , ...t0), t ∈ [0,Mtr + te], and θ is a
(P + 1)× 3 matrix having coefficients of each polynomial
function as entries. In this work we set the polynomial de-
gree P to 3 or 4, which achieves a good fit. We note that
quartic splines provide a better fit if the trajectory is more
complex, i.e. the camera shakes at higher frequencies, but
this is rarely the case for natural hand-held camera shakes
within the exposure time of interest [9].

Finally, we also note that there is an interesting sub-
set of RSMB images captured under medium to long focal
lengths, where the contribution of in-plane rotation (p3(t))
is, in fact, so small that it does not result in a noticeable

2http://webdav.is.mpg.de/pixel/
benchmark4camerashake/src_files/Trajectories6D/
500Frames.zip

http://webdav.is.mpg.de/pixel/benchmark4camerashake/src_files/Trajectories6D/500Frames.zip
http://webdav.is.mpg.de/pixel/benchmark4camerashake/src_files/Trajectories6D/500Frames.zip
http://webdav.is.mpg.de/pixel/benchmark4camerashake/src_files/Trajectories6D/500Frames.zip


blur – Figure 3 (right) shows an example of the maximal
blur caused by in-plane rotation in a full-HD image for an
assumed focal length of 50mm. In this example, the blur
just due to in-plane rotation is below one pixel even in the
corner of the image. Similar results are obtained for other
motions from Kohler et al.’s database. We therefore neglect
in-plane rotation in this work, and reduce Eq. (6) to a 2D
yaw/pitch space instead of a full 3D rotational pose space
for the rest of this paper.

RSMB modeling in trajectory coefficients. With the
trajectory model defined in Eq. (6), the convolution matrix
K in Eq. (5) becomes a function of θ

b = K(θ)l + n, (7)

where K(θ) is determined by rewriting Eq. (3,4) in θ ac-
cordingly.

4. Deblurring RSMB Image

Having the forward RSMB model defined in the form of
a camera motion model, the latent image l can be recovered
from b by solving an inverse problem. An overview of our
blind RSMD approach is summarized in Algorithm 1 and
we will describe it in details in this section.

4.1. Objective

Our objective function for RSMD is given by

min
l,θ

1

2
‖b−K(θ)l‖22 + µ‖∇l‖1, (8)

which is composed of a data error term based on Eq. (5) and
a sparsity prior on the latent image gradient ∇l, weighted
by a scalar µ. Since the camera motion and kernel normal-
ization [12] are inherently implemented in K, no additional
prior for K(θ) is required in the objective, which differen-
tiates our method from [7, 18].

Similar to conventional blind deblurring algorithms, we
update l and θ in an alternating fashion. We initialize µ
with a relative large value µ0, thus in the early iterations
only the most salient structure in l will be preserved which
will guide the refinement of kernel coefficients θ, given that
θ estimates are not yet accurate. As the optimization pro-
gresses, we decrease µ by a factor of τ after each iteration to
preserve more details in l. Intermediate outputs are shown
in Fig. 5 and the supplemental material.

4.2. Update of Trajectory Coefficients

The objective for updating θ is given by

θk+1 = arg min
θ

M∑
i=0

N∑
j=0

rij(θ)2, (9)

Algorithm 1 RSMD algorithm overview.
INPUT: RSMB image b, initial weight µ0

Obtain the trajectory initialization θ0 (Sec. 4.2.2).
for k = 1 to n do

Update l (Eq. 15)
Update θ (Eq. 9)
Decrease µ by τ

end for
OUTPUT: Deblurred image l, trajectory coefficients θ

where rij(θ) is the residual at x that depends on θ

rij(θ) = bij −
1

|Ti|
∑
t∈Ti

ΓLk(w(x; tθ)). (10)

Here Lk is the latent image estimated from the previous
iteration k. Solving Eq. (9) is a non-linear optimization task
since pixel values in L are, in general, non-linear in θ.

4.2.1 Gauss-Newton Method

Motivated by image registration, i.e. the Lucas-Kanade al-
gorithm [2], we adopt Gauss-Newton method for this non-
linear least square problem. In each iteration, Gauss-
Newton updates θ by

θk+1 = θk + ∆θ, (11)

where ∆θ is the solution for the linear system

JTr Jr vec(∆θ) = JTr r. (12)

Here r is the residual vector, and Jr is the Jacobian of
the residual, both evaluated at θk.

The calculation of Jr is carried out as follows by apply-
ing the chain rule on Eq. (10)

∇rij(θ)|θ=θk = − 1

|Ti|
∑
t

JΓ
Lk

(w)Jw(p)Jp(θ), (13)

where JΓ
Lk

(w) is the gradient of image Lk at w(x; tθk).
We find Conjugate Gradients efficient for calculating ∆θ in
Eq. 12.

4.2.2 Initialization of Trajectory Coefficients

A good initial estimate of θ is essential for the conver-
gence of Gauss-Newton. We approach this problem by
solving blind deconvolution problems for blocks of several
scanlines over which the PSF is assumed to be approxi-
mately constant for initialization purposes only. The recov-
ered PSFs for each block are then back-projected into pose
space, and initial trajectory estimates are fit. An illustration
of this process is also given in Fig. 4.
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Figure 4: Pipeline of θ0 initialization. (a) RSMB image; (b) Locally estimated latent patches and blur kernels; (c) Blur
kernels after thinning operation; (d) Polynomial fitting of the traced time-stamped data from (c), shown in units of both pixels
and degrees.

Local blur kernel estimation. Given a RSMB im-
age (Fig. 4a), we first divide it into several horizontal re-
gions.Inside each region a first estimation of the kernel is
recovered with a conventional blind deblurring algorithm

min
k,l

1

2
‖k ∗ l− b‖22 + ω1‖∇l‖1 +

ω2

2
‖k‖22, (14)

where k is the blur kernel and b is the blurry input for a
horizontal region of B. ω1 and ω2 are weights that balance
the trade-off between the data term and priors on the in-
trinsic image and blur kernel. This blind deconvolution in
Eq. 14 itself is a non-convex optimization problem, and a
multi-scale strategy is adopted for avoiding local minima.
We show examples of the estimated l and k in Fig. 4b.

The blur kernel estimated from the previous step is usu-
ally noisy. We extract its skeleton by applying morpholog-
ical thinning. To preserve the temporal information indi-
cated by intensities, we convolve the initial blur kernel in
Fig. 4b with a normalized all-one kernel (e.g. 3 × 3), and
then assign the corresponding intensities to its thinned ver-
sion. Results of this step are shown in Fig. 4c.

Back-projection and tracing. Back-projecting local
blur kernels to the camera pose space is trivial for the yaw-
pitch only case, but in order to reconstruct the motion tra-
jectory a time stamp needs to be assigned to each camera
pose. We achieve this by tracing the curves in Fig. 4c from
one end to the other while assigning the time stamps as the
accumulated intensity value along the way to each pixel. To
avoid outliers when fitting in the next step we also assign a
confidence value to the traced data that is proportional to its
intensity. Fig. 4d plots the traced result in scattered dots,
where the horizontal axis is the time and the vertical axis
is the traced pixel locations. The tracing direction is deter-
mined by enumerating all possible directions and picking
the one with the least fitting residual.

Polynomial fitting. θ0 can be at last estimated by poly-
nomial fitting the aligned time stamped data from the previ-
ous step. We show the fitted curve in Fig. 4d as well.

4.3. Latent Image Update

Fixing θk, we solve the latent image update subproblem

lk+1 = arg min
l

1

2
‖K(θk)l− b‖22 + µ‖∇l‖1. (15)

We use the alternating direction method of multipliers
(ADMM) algorithm outlined in Algorithm 2 to address the
presence of L1 norm in the objective.

Algorithm 2 ADMM algorithm
1: lk+1 = arg minl Lρ(l, jk, λk)
2: jk+1 = arg minj Lρ(lk+1, j, λk)

3: λk+1 = λk + ρ(Dlk+1 − jk+1)

Here we derive the optimization. We first rewrite the
problem as

lopt = arg min
l

G(l) + F (j)

subject to Dl = j,
(16)

where G(l) = (1/2µ)‖Kl− b‖22, F (j) = ‖∇l‖1. This can
be expressed as an augmented Lagrangian

Lρ(l, j, λ) =G(l) + F (j)+

λT (Dl− j) +
ρ

2
‖Dl− j‖22

(17)

This is now a standard problem that can be solved effi-
ciently with ADMM. Please refer to [3] for more details.

5. Experiments and Results
We perform a series of experiments on both synthetic and

real RSMB images, and conduct quantitative and qualitative
comparison with conventional blind deblurring work, see
Figs. 6-8. To further demonstrate the power of our method,
we also compare against a strategy of first rectifying the
rolling shutter wobble from videos containing the specific
frames before applying conventional blind deblurring algo-
rithms.
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Figure 5: Intermediate results when processing a RSMB image. Left: input image; Middle: intrinsic image updates; Right:
camera motion trajectory coefficients θ updates (visualized as blur kernel). Columns in the intermediate steps represent the
first, middle and final iterations, as well as the ground truth values.
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Figure 6: Two sets of test images, Clock and Fish, synthetically blurred with two typical kinds of camera motion. Zoomed in
comparisons shown next to the RSMB images are, from left to right, cropped regions of the blurred image, output from [6]
which assumes uniform motion, output from [18] which assumes non-uniform model, and our RSMD output highlighted in
green. Please refer to the supplemental material for full-size comparisons and kernel estimations.

5.1. Synthetic Images

The synthetic RSMB images are obtained by simulating
a RS sensor with tr = 1/50Ms and te = 1/50s, which is
one of the standard settings in conventional CMOS sensor
cameras when capturing still images or video frames. For
synthesizing the camera motion, we selected two segments
of the motion trajectory from Kohler et al. [9] that is of the
length of our specified te and tr, and applied the motion
blur to two images, Fish and Clock. This gives us 4 sets
of RSMB images as shown in Fig. 6 along with the ground
truth.

Although both RS and MB deformations exist simultane-
ously for all kinds of camera motions, the two specific cam-
era motions in the experiment here were selected to high-

light specific behaviors. The first motion is highly curved,
which means that different regions in the RS image are
blurred along different directions, thus emphasizing the spa-
tial variation of the blur kernel. The second blur kernel is
predominantly linear, such that the blur kernel is similar for
different image regions, although they are displaced by dif-
ferent amounts. This results in geometric distortions known
as rolling shutter wobble.

On the first motion, both the uniform [6] and non-
uniform [18] methods fail to address the sequential expo-
sure mechanism of rolling shutter. As a result, ringing ar-
tifacts are unavoidable because of the incorrect kernel esti-
mation, even though a relatively large weight on the image
prior was used to obtain the results. Because our model



0

5

10

15

20

25

30

35

21.77
23.75 23.08

31.02

22.02
23.27 23.63

31.91

23.53 24.22
26.21

28.14

23.63 24.02 24.44

30.29

Fish (kernel 1)

PS
N

R 
(d

B)

 

Blurred
Cho [6]
Xu [18]
Ours

Fish (kernel 2)Clock (kernel 2)Clock (kernel 1)

Figure 7: PSNR of the synthetic results.

takes temporal information into account and optimizes the
global camera motion trajectory, instead of the discrete
camera poses, a better kernel estimation and thus sharper
latent image can be estimated.

With the second kind of blur, the resulting distor-
tion/wobble could in the past only be addressed non-blindly
with multiple sharp frames. Previous work [6, 18] success-
fully approximates the dominant blur kernel in this case, but
leaves geometric distortions unaddressed due to the lack of
global motion trajectory modeling within the exposure of
the image.

To perform a quantitative evaluation we adopt the met-
ric described in [9], where a minimization problem was first
solved to find the optimal scale and translation between the
ground truth and the output image from each algorithm. We
give the PSNR in Fig. 7, where our method outperformed
previous works. Notice that although the geometric mis-
alignment (due to wobble) contributes to part of the PSNR
loss in previous methods, their deblurred outputs also con-
tain significant artifacts.

5.2. Real Images

To collect the real RSMB images we captured a short
footage in a handheld setting using a Canon 70D DSLR
camera mounted with a 50mm lens. A single frame was
then extracted from the video which was shot at 24fps and
an exposure time of 1/50s for each frame. With a sequence
of RSMB images in hand we are able to perform our blind
RSMD on each frame to test our joint RS and MB recov-
ery. The footage also provides a necessary input for conven-
tional RS rectification/video stabilization algorithms. We
chose a DSLR over a cell-phone because it gives us access
to specific values for te and tr, as needed by our method.
We adopted the method in [4] to obtain the value of tr,
which is determined by the frame rate and the total num-
ber of scanlines per frame.

We show our results in comparison to those of [6, 18] in
Fig. 8. The insets clearly demonstrate the details recovered
by our method. Please see the supplemental material for
full-sized comparisons.

We compare our single image method with those fol-
lowed by RS-rectification-and-then-blind-deblurring proce-

Figure 9: Left: Results of applying blind deblurring on
the rolling shutter rectified images; Right: Results of the
deblur-and-stitch strategy.

dure in Fig. 9 (left). The entire video was processed with
the rolling shutter correction feature included in Adobe Af-
ter Effects CS6, before applying the conventional blind de-
blurring algorithm [17] to the rectified frame. This method
still does not delivers comparable results to ours. This is due
to the fact that conventional rolling shutter/video stabiliza-
tion work is incapable of dealing with motion blur. Even
after correctly rectifying the image, the blur kernel inside
the frame is still difficult to model using traditional GSMD
techniques.

In Fig. 9 (right) we put the results of the stitched image of
multiple deblurred blocks from the RSMB input. With this
method, there is a tradeoff in quality between large blocks
with potentially non-uniform kernel, and small blocks with
potentially insufficient detail. The global trajectory model
in our method inherently addresses this problem.

5.3. Parameters and Computational Performance

On an 8GB, 4 core computer our un-optimized MAT-
LAB implementation takes about 1 minute for θ initial-
ization, 15 minutes for greyscale kernel estimation, and
2 minutes for the final deblurring on each channel of the
800 × 450 sized color image. The majority of the time is
spent on the Jacobian matrix and sparse convolution matrix
computations. We note that due to the spatial variation in
the blur kernels we are inherently limited to methods that
don’t solve the deconvolution problem in the Fourier do-
main. This is an property not just of our solution, but of the
RSMD problem in general.

In all of our experiments we set K as 30 which achieves
good discretization-efficiency balance. µ is initialized as
1e-2, which decreases by τ = 0.7 after each iteration until
it reaches 1e-3 to output the final θ estimation. The µ for
computing the final color image is set as 7e-4. We provide
an analysis of the GN and overall alternating optimization
algorithms in the supplemental material.

6. Discussion and Future Work
We presented an approach for rolling shutter motion de-

blurring by alternating between optimizing the intrinsic im-
age and optimizing the camera motion trajectory in pose
space. One limitation of our work is that it depends on the



(a) Blurred. (b) Cho et al. [6]. (c) Xu et al. [18]. (d) Ours.

Figure 8: Comparison of our methods with state-of-art (b) uniform [6] and (c) non-uniform blind deblurring [18] algorithms.

imperfect blur kernel estimation from uniform deblurring at
multiple regions for trajectory initialization. Another lim-
itation is that non-negligible in-plane rotation commonly
exist in wide angle images. In the future, it would be in-
teresting to extend our method to this general case by fitting
a full 3D rotational pose trajectory. The key technical chal-
lenge here is to solve the initialization problem (Sec. 4.2.2)
for kernels that are no longer shift invariant even within a
horizontal region of the image, and how to backproject the
resulting kernels into the 3D pose space.

We also realize that even though a polynomial function
is sufficient to describe human camera shake within the ex-

posure time of interest, RSMB also widely exists in images
captured by drones, street view cars, etc., when the cam-
era motion trajectory is likely to be more irregular. In these
cases, a non-blind gyroscope assisted method could be a
better choice.
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