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This supplementary document consists of three parts:
I.) A more in-depth discussion of fundamental principles
of Latent Space Imaging, including a discussion of the re-
lationship to biological vision, and of alternative optical en-
coding schemes. II.) Additional implementation details of
the current system, including the hardware prototype and
training details. III.) Additional experimental results and
ablation studies.

A Part I: Foundations of LSI

A.1 Relationship to Biological Vision

As mentioned in the main text, LSI is strongly inspired
by biological vision, in particular the human visual sys-
tem (HVS). Specifically, in the HVS, photoreceptors sense
the spatial distribution of light, and retinal ganglion cells
(RGCs) encode these spatial distributions into a compressed
latent space transmitted over the optic nerve. Finally the
visual cortex decodes and processes the information. The
compression ratio between the number of photoreceptors
and the number of axions in the optic nerve is about 100:1,
and is enabled by the inherently non-linear processing of
the RGCs.

LSI can be seen as analogous to this process: in our sin-
gle pixel camera setup, the pixels of the spatial light modu-
lator take on the role of the photoreceptors – they define the
spatial resolution of the sensed image. The optical codes
shown on the SLM, combined with the digital encoder take
on the role of the RGCs, and both encode and compress this
information, while the StyleGANXL takes on the role of the
visual cortex.

The encoding module is therefore composed of a combi-
nation of a (linear) optical computing part and a non-linear
digital encoder. The digital encoder is needed since opti-
cal computing [25] is in practice limited to linear opera-
tors. Critically, the most compressed representation is the
intermediate latent space between the optical and the digital

encoder, which enables highly compressed, low-bandwidth
sampling hardware. We show that, with this two stage en-
coding, very high compression ratios can be achieved for
the specific domain of facial images: ratios of 1:100 to
1:1000 for full image reconstruction, and even higher ratios
for simpler tasks such as landmark detection or segmenta-
tion.

The principle of LSI can be applied to the latent space
of any generative model, however the achievable compres-
sion ratios will depend on the complexity of the domain. To
match the performance of the HVS on general vision tasks
with a compression ration of 1:1000, we will need both a
general AI generative model as well as a way to optically
implement non-linear encodings.

A.2 Alternative Physical Implementations

In our prototype, we showcase the physical implementation
using binary structural masking with a Digital Micromirror
Device (DMD), where the light source is a monitor project-
ing the images. The SPI framework is an established plat-
form for prototyping and testing different compressed imag-
ing approaches, since the DMD acts as a programmable en-
coding element, making it easy to experimentally validate
different code patterns and compression ratios.

However, SPI also has several downsides that limit its
practicality for real-world imaging systems, including its
form factor, and, most notably, its difficulty in dealing with
moving scenes. However, the recent efforts in optical com-
puting [25] have resulted in a range of alternative options
for implementing the required linear optical encoding layer.

For example diffractive optical elements have been used
to implement both convolutional [1] and fully connected
linear layers [14], and meta-surfaces have been demon-
strated for shift variant convolution kernels [24]. Due to the
linear nature of light, all these methods are currently lim-
ited to linear operators. However, as we show with the SPI
setup, linear optical encoders are sufficient for achieving
high compression rates when combined with a small digital
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encoder. As such, any of the recently proposed optical com-
pute frameworks could be used instead of the SPI frame-
work, although typically this would require “freezing” the
optical encoder into hardware. Nonetheless, for special pur-
pose imaging systems, such an approach presents a practi-
cal avenue for developing real-world, snapshot-capable LSI
systems.

In the longer term, LSI may be able to benefit from on-
going research efforts to develop non-linear optical com-
puting hardware, for example based on non-linear optical
materials, quantum effects, polarization, or other non-linear
effects. Eventually, this may enable more powerful optical
encoders, thereby reducing or even eliminating the need for
the digital encoder module.

B Part II: Implementation Details

B.1 Digital Encoder Architecture

After acquiring the measurements J from the co-optimized
optical encoder O, we employ a digital encoder network
Dθ. The objective of this model is to match the intermediate
latent space produced by the measurements with the actual
latent able to reproduce the image of interest I.

The original StyleGANXL implementation receives a
random noise vector and utilizes a mapping network to
project this to different levels of details, result in L ∈
R512×l, l may vary depending the desired image resolution
that the generative models was trained to generate. In the
case of face images, l is equal to 18, finally we want O to
map J ∈ Rd to L ∈ R512×18. d corresponds to our mea-
surement count, therefore, going from 512 to 4.

As depicted by Fig. 1, the intermediate latent goes first
through 3 different set of blocks from left to right. The first
one produces the first 3 elements of L out of 18, each one of
them only take into account the initial J. The middle block,
besides J, it also takes the concatenation of L1,L2 and L3

through the MIX module, as input, outputting L4 to L7. Fi-
nally, the last block follows the same idea, it concatenates
the output of the middle one and pass through another MIX
block, the output of this is summed together with the orig-
inal measurement and it passes through the block to finally
result in L8 to L18. The idea here is to make the optical-
aware inversion network match the multi-level structure of
StyleGANXL, following a coarse-to-fine approach.

In the end, the latents from all detail levels pass through
the MIX block. The purpose of the MIX blocks is to facili-
tate interactions and learn a weighted mixture across multi-
ple detail levels. The model incorporates the spatial gating
unit proposed in [15]. Within the MIX block (see Fig.1), the
features are projected to a higher dimension, after which the
resulting tensor x is split into two parts, u and v, along the
channel dimension. This division allows for separate pro-

cessing paths within the block. v is normalized and linearly
projected using a weights matrix and bias vector to capture
interactions in a static manner, as the weights matrix re-
mains unchanged after training because it does not depend
on the input. The final element-wise multiplication of u and
the projected v modulates the information flow, controlling
which parts of u are allowed to pass through—similar to a
gating mechanism. Finally, this gated output is merged with
the input through a residual connection, preserving the orig-
inal information and enhancing gradient flow during back-
propagation.

B.2 Loss Functions and Training Details

In this work, we trained the optical O and digital Dθ en-
coders while keeping the generative model, StyleGANXL,
frozen. To jointly optimize these components, we trained an
off-the-shelf inversion network pre-trained to invert images
to the latent space of a specific domain [19]. This network
is used to compute a latent similarity loss function (Llat),
making the output of the Dθ similar to the latent space
approximated by this model. This process is described in
Equation 3 of the main text.

Additionally, we aim to match the image quality at the
pixel level and enforce identity similarity. For this task,
we used the identity loss (Lid), which computes the cosine
distance between feature maps extracted by ArcFace [6],
a facial recognition network. We also utilized the ℓ2 norm
(Ll2) and DINO/LPIPs features loss(Lp) [28, 31] to enforce
pixel-wise and perceptual similarities, respectively. The de-
tails of DINO feature extraction are provided in [31].

The total loss function during training can be summa-
rized as follows:

Ltotal = λlatLlat + λidLid + λpLp + λl2Ll2 (1)

After convergence, we added an additional loss term
(λenergyLenergy) to account for the intensity diversity
among the masks.

Lenergy = 1
d

∑d
j |
∑mn

i Oi,j − ϵj | (2)

Here, ϵ represents the ground-truth energy level, heuristi-
cally designed to correspond to a certain percentage of pix-
els set to one. This percentage increases incrementally from
10% to 90%, with a step of 1%. For strong compression
from 1:1024 to 1:16384 the min and max energy boundaries
move closer to 50% accordingly. The patterns are shuffled
to avoid any undesired structure. As demonstrated in Fig. 2,
with the energy loss applied, the pixel occupancy histogram
showcases a broad spectrum of occupancies, reflecting a
high diversity of patterns. In contrast, without this modi-
fication, the patterns are more uniform in their occupancy
levels, exhibiting less variability.
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Figure 1. (Top) Overview of all the blocks involved in the digital encoder architecture. The three steps capture coarse, middle, and fine
details, with each step depending on the output of the previous one. (Bottom) Illustration of the MIX process. The latent vector is statically
projected to capture interactions among different levels of detail.

Figure 2. Shows the histogram of pixel occupancy, comparing sce-
narios where the energy loss function is and is not utilized. The
use of energy modeling enhances the dynamic range of the mea-
surements captured by the single sensor.

To optimize O and Dθ, we employ distinct optimizers:
Lion [2] for O and Ranger (combination of Lookahead [27]
and the Rectified Adam [16]) for Dθ, each with a learning
rate of 10−4. The weighting coefficients λ for each loss
function are set at 1, 0.5, 0.8, and 1, in the respective or-
der that they appear in Equation 1. Additionally, for the
energy loss component, we set λ to 3. Regarding batch
sizes, we typically use 32 for face datasets. However, for
the AFHQ [3] dataset, as discussed in Sec. 3, the batch size

is reduced to 8 due to the limited number of images avail-
able. For all experiments we utilize a single NVIDIA A100.

B.3 Optical Encoder Optimization Details

In the O optimization process, in order to deal with the
quantized patterns, we employ the straight-through estima-
tor (STE) [10], a technique also favored by VQ-VAEs [17,
18, 21]. During the forward pass, values are quantized and
constrained before computing J. However, during back-
propagation, gradients are allowed to flow through the non-
quantized version, facilitating weight updates. Importantly,
we ensure that the entries of O remain positive and are
bounded between [0, 1]. Although using complementary
patterns [26] allows for the inclusion of negative values, em-
pirical experiments have shown that this approach does not
yield significant improvements and necessitates double the
measurements.

Initially, masks are generated from a uniform distribution
and are then binarized through a quantization process. This
process results in binary patterns that achieve an even total
counting of 0s and 1s, theoretically maximizing bit entropy
and steering the system towards an optimal solution [13].
This distribution presumes the sensor is sensitive enough to
discern very fine differences, a demanding prerequisite as
each pattern will have similar total intensity. This issue was
addressed using the energy loss mechanism.
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Figure 3. Experiment setup. An objective lens collects light from
monitor and relays it to the DMD, which modulates the light with
reflecting patterns. A relay lens directs the modulated light to the
photodiode, and the PC records the measurements. Yellow arrows
denote the light path.

B.4 Experimental setup

Our experimental setup utilizes a single-pixel imaging con-
figuration as follows: Face images are displayed on a
high-dynamic-range Eizo CG3145 monitor. These images
are then focused onto the DMD of the Texas Instruments
DLPLCR4500EVM evaluation board using a Canon EF
35mm f/2 IS USM objective lens. We interpolate our
learned 256×256 patterns to optimally fill the largest possi-
ble area, adjusting the scale to compensate for the diamond-
shaped micromirror grid of the DMD. This adjustment en-
sures full utilization of the height within a central square
region. The DMD spatially modulates the image by reflect-
ing patterns according to an optimized encoding matrix (O).
The resultant patterned light is captured by a photodiode
(PDA100A2) through a Canon EF 85mm f/1.8 USM relay
lens. An analog-to-digital converter (NI 6001) converts the
received analog signals into digital form. The digital data
are then received by a connected PC, which is also respon-
sible for synchronizing all components involved in the ex-
perimental setup.

To enhance the congruence between our measurements
and simulations, we employed a white image to determine
a global scaling deviation and applied a correction factor.
This approach effectively reduces the gap between simula-
tion and measurement, yet some inherent challenges per-
sist due to non-linear behaviors, minor deviations in DMD
reflection angles, and sensor noise, which complicate the
precise replication of simulated conditions. However, lever-
aging the controlled environment of our experimental setup,
we are able to systematically gather real-world training data

and fine-tune Dθ.
The fine-tuning process involves selecting a subset of

200 training images and measuring their outputs using our
configured setup. We employ the loss functions specified
in Equation 1, while reducing the learning rate to 10−5, to
optimize performance and accuracy in real-world applica-
tions.

C Part III: Additional Results
We present additional LSI results encompassing a diverse
set of images, along with the range of compression levels.

Figures 7, 8, and 9 demonstrate a consistent retention of
facial details, particularly as compression increases, high-
lighting the effectiveness of our approach at higher com-
pression rates. By targeting the latent space, our method ad-
dresses the over-smoothing often observed with aggressive
sub-sampling strategies, preserving textures and producing
realistic reconstructions instead of flat, featureless outputs.
Notably, key facial features such as eyebrow shape, beards,
and smiles are well reconstructed, emphasizing the persis-
tence of facial expressions. In contrast, competitor models
fail to achieve similar results.

For the downstream tasks, Fig. 6 presents additional re-
sults from the experimental setup for attribute classifica-
tion. To further evaluate and enhance the assessment of our
method, we include an extensive set of qualitative compar-
isons (see Figs. 10, 11, 12, 13, 14, and 15) against other
methods. These comparisons focus on simulated results for
face segmentation and landmark detection.

Table 1 quantitatively summarizes our results, highlight-
ing the overall superiority of our method in reconstruction
and downstream tasks, particularly in high-compression se-
tups.

Additional domains were explored in Fig. 4, we utilize
our simulated pipeline with 512 (1:128) measurements to
reconstruct cats and dogs images from AFHQ dataset [3].
These datasets imposed additional challenge because they
are very small compared with FFHQ, with only 5000 train-
ing images. However, LSI is capable to faithfully recon-
struct such domain pictures with a correspondingly trained
encoder.

C.1 Out-of-Distribution Cases and Limita-
tions

As our focus is on faces, and our underlying generative
model is primarily trained on frontal-centered faces under
typical daily lighting conditions, significant deviations from
these conditions are not well-modeled and often result in
noticeable hallucinations. Fig. 5 illustrates several out-of-
domain scenarios. For instance, providing a non-facial in-
put, such as a cat, to the face generative model results in a
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Ground-truth Reconstruction Ground-truth Reconstruction

Figure 4. Illustrates another set of reconstructions from our sim-
ulated results, highlighting the versatility of our methods across
various domains, such as cats and dogs. For this dataset we uti-
lized StyleGAN2 instead XL, also showing the versatility of our
method utilizing different generative models.

LSIInput

Figure 5. Illustrates the conditions where LSI fails to reproduce the
scene since the target scene is out of distribution of the generative
model.

hallucinated face that aligns with the characteristics of the
given input signal. Similarly, accessories like hats or heavy
makeup cannot be accurately modeled, as such data lies out-
side the model’s training distribution.

C.2 Qualitative and Quantitative Compar-
isons

We evaluated a diverse set of representative models en-
compassing various approaches, including block-based
sensing matrices, unfolding networks, single-pixel imaging
techniques, and deep learning-driven single-pixel frame-
works. Additionally, we incorporated optimization-based
methods that leverage generative models as priors. To
provide a broader perspective, we introduced a variant of
our pipeline, referred to as non-latent, which replaces
the generative model and latent representation with a
state-of-the-art reconstruction network and a conventional
signal recovery method. Further details on this model are
provided below.

Preliminary notes on comparisons:

• All methods were retrained on the same dataset and eval-
uated on the same testing dataset as LSI.

• SAUNet, FSI-DL, and Non-latent LSI utilize a quantized
(binary) sensing matrix, similar to LSI. In contrast, the
sensing matrices of other methods can represent any float
value, giving them an (unrealistic!) advantage.

• SAUNet, OCTUF [20], and TCS-Net [8] are trained to
reproduce luminance only, as proposed in their original
papers. During inference, chrominance components were
added using ground-truth values. Other methods, how-
ever, consider color images, modeling them either implic-
itly (via latent space) or explicitly (via demosaicking).

• For comparison purposes, downstream applications for
all competitors were evaluated using FaRL [30], based
on their reconstructed images, as they lack the inherent
capability to perform these tasks. Because of low recon-
struction quality, some competitor methods may fail the
downstream tasks, we discard such data points only for
the specific method. Notably, for LSI, these results were
achieved through a simple linear projection, entirely elim-
inating the need for a separate, complex model tailored to
each specific task.

AuSamNet and FSI-DL [9] Both are Fourier basis meth-
ods with deep learning reconstruction algorithms; the first
optimizes the mask, and the second utilizes a fixed heuristi-
cally designed circular mask. The patterns Pϕ are generated
using the ideal proposed by [29]

Pϕ(x, y; fx, fy) = a+ b cos(2πfxx+ 2πfyy + ϕ), (3)
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1:512 1:2048 1:512 1:2048

Figure 6. Additional attribute visualizations from the experimental validation are presented. The leftmost column displays the original
faces as shown on the monitor, followed by reconstructed images at compression ratios of 1:512 and 1:2048, which correspond to 128 and
32 measurements, respectively.

where (x, y) represents the 2D Cartesian coordinates
in the scene, a symbolizes the average intensity distribu-
tion, b stands for the amplitude of the Fourier basis pattern,
and (fx, fy) indicates the non-zero spatial frequency points
within the optimized mask. Furthermore, ϕ denotes the ini-
tial phase, adopting three steps phase shifting of 0, 2π/3,
and 4π/3.

This work also utilizes a color filter array (CFA) and de-
mosaic process to reduce the number of measurements nec-
essary to retrieve color images, computing the Fourier trans-
form of the CFA and multiplying it with the mask.

When evaluating under our heavily compressed setting,
AuSamNet cannot optimize the mask, leading to unstable
results. FSI-DL is capable of reconstructing the images but
produces low-quality results as demonstrated by Figures 7,
8, 9.

SAUNet [23] This approach proposes a 2D measurement
system and an unfolding network as a reconstruction algo-
rithm. Their measurement can be defined by the equation
Y = HXWT , where H and W are learned during the opti-
mization process, and X is the input. To enable a fair com-
parison, we clamped and then quantize their measurement
matrix during training to be binary, following the same pro-
cedure adopted by our methods. We add a normalization
layer after utilizing H and W to avoid exploding gradients

and instability.

OCTUF [20] and TCS-Net [8] Both methods uti-
lize transformer-based reconstruction techniques integrated
with block-based image compressed sensing for measure-
ments, where the image is divided into smaller patches.
However, the sensing matrices used are not restricted to val-
ues below 1, making their physical implementation unfeasi-
ble. The methods were trained using the original code with-
out any modifications, apart from adjustments to the com-
pression ratios. Finally, they benefit from an unbounded
sensing matrix and similar to SAUNet [23], they do not
model color, only learning the luminance.

Optimization-Based (CSGM [11]) leverages a genera-
tive model as a prior to reconstruct compressed signals.
However, its measurement matrix is neither bounded nor
quantized, making it unsuitable for physical deployment.
Additionally, it requires multiple iterations and cannot
achieve reconstruction with a single forward pass.

Non-Latent LSI We further evaluate our approach by im-
plementing a version of LSI that does not utilize the latent
space. In this configuration, the 2D image ∈ R256×256 is re-
constructed directly from the measurements using Differen-
tial Ghost Imaging (DGI) [7], followed by a state-of-the-art
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Method Comp. Ratio VGGFace↑ DLib↑ FID↓ Acc.↑ F1↑ NMEdg↓

LSI

1:128 91.97% 92.74% 27.38 89.07% 70.00% 1.48
1:256 90.98% 92.68% 26.62 89.15% 70.94% 1.43
1:512 89.61% 91.67% 28.66 89.20% 70.25% 1.48

1:1024 81.12% 87.44% 28.79 88.74% 69.18% 1.52

SAUNet

1:128 39.47% 64.12% 58.96 83.05% 74.15% 1.36
1:256 17.84% 50.12% 75.53 82.66% 71.32% 1.59
1:512 5.52% 31.42% 104.23 81.08% 66.79% 1.99

1:1024 2.86% 16.59% 107.35 79.98% 62.37% 2.20

FSI-DL

1:128 15.28% 32.60% 107.48 81.66% 62.20% 2.00
1:256 3.30% 13.16% 118.79 79.43% 53.38% 3.20
1:512 1.82% 1.93% 134.40 76.72% 41.45% 5.06

1:1024 0.85% 2.05% 173.71 75.96% 34.95% 6.06

OCTUF

1:128 54.99% 63.54% 70.83 83.93% 75.78% 1.31
1:256 59.27% 73.09% 77.16 83.99% 74.78% 1.26
1:512 16.63% 43.31% 96.17 82.33% 69.92% 1.73

1:1024 5.83% 26.62% 99.85 81.13% 66.18% 1.99

TCS-Net

1:128 25.15% 49.69% 119.42 82.21% 66.00% 1.71
1:256 1.32% 5.50% 248.60 77.71% 52.11% 3.31
1:512 1.07% 2.62% 296.48 75.19% N/A 7.43

1:1024 0.11% 1.62% 333.34 74.05% N/A 15.07

CSGM

1:128 20.04% 51.85% 44.46 82.17% 62.20% 1.89
1:256 13.66% 39.16% 46.30 81.28% 56.96% 2.36
1:512 5.87% 21.96% 53.12 78.68% 46.07% 3.29

1:1024 2.00% 10.23% 63.70 76.16% 38.31% 4.15

Non-Latent

1:128 94.22% 94.84% 72.96 84.47% 77.47% 1.07
1:256 87.52% 91.49% 75.62 83.71% 74.59% 1.26
1:512 71.82% 82.98% 81.87 83.08% 70.10% 1.53

1:1024 41.47% 68.22% 89.04 82.09% 64.73% 1.90

Table 1. Latent Space Imaging (LSI) and competing methods were quantitatively evaluated on simulated results across various downstream
tasks, with compression ratios ranging from 1:128 to 1:1024. The results emphasize the superior performance of LSI, particularly in highly
compressed scenarios. For the image reconstruction task, evaluations were conducted using the VGGFace [5] and DLib [12] image
recognition pipelines. Metrics assessed include Fréchet Inception Distance (FID), classification accuracy, F1-mean score for segmentation,
and Normalized Mean Error (NME), normalized by the diagonal of the face bounding box. Bold numbers highlight the best model for each
metric and setting.

image reconstruction model [4], similar to the methodology
described by [22]. This replaces the latent space representa-
tion and generative model entirely with a direct reconstruc-
tion pipeline. The training process, including perceptual
and identity loss functions, Optical Encoder (O) optimiza-
tion, and other parameters, remain unchanged. While this
version performs well for lower compression ratios (1:128),
it is consistently outperformed by LSI, particularly at higher
compression levels such as 1:512 and 1:1024 (see Table 1),
underscoring the critical role of latent space representation.

VGGFace↑ Dlib↑ FID↓
LSI Random 48.9% 71.7% 37.20
LSI 90.98% 92.68% 26.62

Table 2. Quantitative comparison between LSI and LSI with fixed
random patterns (akin to classical Compressed Sensing), empha-
sizing the critical role of jointly optimizing the optical encoder for
enhancing the performance. Compression ratio of 1:256.

C.3 Background Discussion

To emphasize facial features, we mask out the background
to prevent our already highly compressed signal from being
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used on non-facial information. It is worth noting, how-
ever, that our method remains effective even when trained
on faces with uncontrolled backgrounds, achieving identity
classification accuracies of 86.26% and 86.88% with VG-
GFace and DLib, respectively. Ablation study conducted
for a compression ratio of 1:256.

C.4 Optical Encoding vs. Fixed Random En-
coding

Optimizing the optical encoding plays a critical role in im-
age reconstruction. This is evident in Table 2, which shows
a significant performance drop when LSI is trained using
fixed random patterns instead optimized encoding towards
the latent space.
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David AB Miller, and Demetri Psaltis. Inference in artifi-
cial intelligence with deep optics and photonics. Nature, 588
(7836):39–47, 2020. 1

8



LSI

1:128

Non-Latent

1:256
1:512

1:1024

GT FSI-DL OCTUF SAUNet CSGMTCS-Net

1:128
1:256

1:512
1:1024

Figure 7. Different methods compared for facial reconstruction quality.

[26] Yibo Xu, Liyang Lu, Vishwanath Saragadam, and Kevin F
Kelly. A compressive hyperspectral video imaging system
using a single-pixel detector. Nat. Commun., 15(1):1456,
2024. 3

[27] Michael Zhang, James Lucas, Jimmy Ba, and Geoffrey E
Hinton. Lookahead optimizer: k steps forward, 1 step back.

In Adv. Neural Inform. Process. Syst. Curran Associates,
Inc., 2019. 3

[28] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 586–595, 2018. 2

9



LSI

1:128

Non-Latent

1:256
1:512

1:1024

GT FSI-DL OCTUF SAUNet CSGMTCS-Net

1:128
1:256

1:512
1:1024

Figure 8. Different methods compared for facial reconstruction quality.

[29] Zibang Zhang, Xiao Ma, and Jingang Zhong. Single-pixel
imaging by means of fourier spectrum acquisition. Nat.
Commun., 6(1):6225, 2015. 5

[30] Yinglin Zheng, Hao Yang, Ting Zhang, Jianmin Bao,
Dongdong Chen, Yangyu Huang, Lu Yuan, Dong Chen,
Ming Zeng, and Fang Wen. General facial representation

learning in a visual-linguistic manner. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 18697–18709, 2022. 5

[31] Yang Zhou, Zichong Chen, and Hui Huang. Deformable one-
shot face stylization via dino semantic guidance. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and

10



LSI

1:128

Non-Latent

1:256
1:512

1:1024

GT FSI-DL OCTUF SAUNet CSGMTCS-Net

1:128
1:256

1:512
1:1024

Figure 9. Different methods compared for facial reconstruction quality.
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Figure 10. Facial segmentation comparison among different methods.
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Figure 11. Facial segmentation comparison among different methods.
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Figure 12. Facial segmentation comparison among different methods.
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Figure 13. Landmarks detection comparison among different methods.
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Figure 14. Landmarks detection comparison among different methods.
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Figure 15. Landmarks detection comparison among different methods.
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