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Fig. 1. Proposed method and results of aerial path planning. We first compute an optimal aerial flight trajectory from an initially reconstructed nadir capture.
A safe airspace (everything outside the purple region) in the lower left subfigure is created to allow the flight trajectory to descend much closer without
collision. In the middle column we show the dense reconstruction of one of the field tests and on the right close ups of two of the reconstructed townhouses.

Small unmanned aerial vehicles (UAVs) are ideal capturing devices for
high-resolution urban 3D reconstructions using multi-view stereo. Neverthe-
less, practical considerations such as safety usually mean that access to the
scan target is often only available for a short amount of time, especially in
urban environments. It therefore becomes crucial to perform both view and
path planning to minimize flight time while ensuring complete and accurate
reconstructions.

In this work, we address the challenge of automatic view and path plan-
ning for UAV-based aerial imaging with the goal of urban reconstruction
from multi-view stereo. To this end, we develop a novel continuous opti-
mization approach using heuristics for multi-view stereo reconstruction
quality and apply it to the problem of path planning. Even for large scan
areas, our method generates paths in only a few minutes, and is therefore
ideally suited for deployment in the field.

To evaluate our method, we introduce and describe a detailed benchmark
dataset for UAV path planning in urban environments which can also be used
to evaluate future research efforts on this topic. Using this dataset and both
synthetic and real data, we demonstrate survey-grade urban reconstructions
with ground resolutions of 1 cm or better on large areas (30 000 m?).

CCS Concepts: « Computing methodologies — Motion path planning;
Vision for robotics; 3D imaging; Reconstruction;

Additional Key Words and Phrases: UAV Path Planning, 3D Scanning, Urban
Scene Reconstruction

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3272127.3275010.

ACM Reference format:

Neil Smith, Nils Moehrle, Michael Goesele, and Wolfgang Heidrich. 2018.
Aerial Path Planning for Urban Scene Reconstruction: A Continuous Op-
timization Method and Benchmark. ACM Trans. Graph. 37, 6, Article 183
(November 2018), 15 pages.

https://doi.org/10.1145/3272127.3275010

1 INTRODUCTION

Ongoing advancements in unmanned aerial vehicles (UAVs) coupled
with large-scale scene reconstruction are pushing the boundaries
of what is possible in photogrammetric surveying and mapping.
Compared to manned planes or satellite imagery, UAVs are much
more affordable, easy to deploy, agile, and able to fly at low altitudes,
giving them the ability to capture complex environments with both
higher resolution and denser coverage than ever before.

In order to sufficiently capture large scene reconstructions, we
find it necessary to improve on the state-of-art approaches in flight
trajectory planning. Most UAV-based 3D scanning is currently per-
formed either under manual control, or using simple, pre-program-
med flight paths with the camera pointing in a fixed direction, mak-
ing it hard to achieve complete and dense coverage over large urban
environments. Capturing the many vertical faces of architectural
buildings requires multiple passes of the UAV with the camera set
to an oblique angle. Given the complexity of urban environments,
capturing with a single oblique camera angle along a given flight
path may not even be sufficient. Once holes or undersampled areas
are discovered after hours of processing, it is often not possible to
revisit the site and to conduct additional flights. Finally, performing
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a (hopefully) exhaustive approach with multiple passes at different
angles is typically not possible for practical reasons during capture
(e.g., disruption of residents, cost of time in the field) or reconstruc-
tion (long processing times). We present an optimized camera path
and view planning system that minimizes flight time while achiev-
ing complete and dense coverage (see Figure 1). Beyond following
best practices in aerial capture and overlap (see, e.g. [Roberts et al.
2017]), we develop a novel reconstruction heuristic that takes into
consideration criteria such as visibility, sample density, and oblique-
ness of views. We capture a nadir flyover at high altitude (100m) in
only a couple minutes and extract from the small sample of images
a geometric scene proxy and flyable airspace. We create an initial
camera network of uniformly distributed views over the geometric
scene proxy and then continuously optimize the views towards a
predefined minimal reconstructability for all samples, yielding more
accurate and complete reconstructions using significantly fewer im-
ages. The reconstruction metric is GPU accelerated allowing for fast
iteration to an optimized flight trajectory that can even be performed
in the field where time for flight is very limited. Our approach is
able to scale path planning for survey-grade urban reconstruction
with ground resolutions of 1 cm or better on large areas (30 000 m?).

We perform extensive qualitative evaluations of our path plan-
ning approach using real UAVs in urban environments. In order to
quantitatively evaluate our continuous optimization method, we
design a new synthetic benchmark for image based reconstruction
of large urban scenes. Although many benchmarks exist to examine
SfM/MVS pipelines, they are either focused on indoor environments,
or on those parts of exterior environments that are accessible to
terrestrial laser scanning. In our work, we focus on full aerial cap-
ture of large urban or residential scenes. In these environments, it is
usually not legally possible to perform repeated experiments with
different flight paths, and even if this were possible, we would not
have ground truth geometry to compare the reconstruction results
for different flight paths. We instead propose using highly detailed
3D building models based off real-world locations and rendering
textured images as input to the pipelines. Multiple geometrically
complex buildings can be placed within an urban scene allowing
for complex flight trajectories to be examined.

In this paper, we introduce a novel approach to flight trajectory
planning validated using both a new benchmark and extensive real-
world flight experiments. We provide the benchmark as a tool for
experimentation and further development along with all the tools
to generate new flights, reconstructions, and evaluation of flight
trajectory performance. Our contributions are:

o an efficient and effective reconstructability heuristic and con-
tinuous GPU-accelerated optimization for view and path plan-
ning, which is fast enough for deployment in the field;

e an overall reconstruction approach validated with extensive
synthetic and real-world tests that can achieve accurate and
complete reconstruction using significantly fewer images;

e and a benchmark for evaluating image based reconstruction
of geometrically complex and high variety urban and residen-
tial building scenes.
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2 RELATED WORK
2.1 View Selection

The selection of optimal views for image-based scene reconstruction
has been studied in different scenarios within the visual comput-
ing, photogrammetry, and robotics communities. A majority of this
work within visual computing has primarily focused on heuristics
to determine minimum view sets as well as best views for achieving
a full reconstruction at high computational efficiency [Beder and
Steffen 2006; Furukawa et al. 2010; Goesele et al. 2007; Mendez et al.
2016; Moreels and Perona 2007; Rumpler et al. 2011, 2016; Snavely
et al. 2008]. Recently, Mendez et al. [2016] showed the importance
of view selection by achieving state-of-the-art 3D reconstruction re-
sults in the Middlebury benchmark [Seitz et al. 2006] with a fraction
of the images by incrementally choosing views with a good rela-
tion between baseline and convergence (absolute parallax). Fan et
al. [2016] show advantages of path planning for table top 3D scan-
ning and Wu et al. [2014] use NBV to improve 3D scanning using
mobile robots (see also [Liu et al. 2018]). Goesele et al. [2007] select
views based on the parallax angle between shared features, however,
their heuristic further considers scale differences and they refine
the selection on a per pixel level based on both triangulation angle
and image content.

The robotics community has studied online exploration and re-
construction using UAVS with mounted cameras. This work focuses
on sparse reconstruction of environments in real-time with next best
view (NBV) planning as part of simultaneous localization and map-
ping (SLAM) [Dunn and Frahm 2009; Forster et al. 2014; Hepp et al.
2017; Leonard and Durrant-Whyte 1991; Liu et al. 2018; Mostegel
et al. 2016; Vasquez-Gomez et al. 2014; Wenhardt et al. 2007]. Since
these approaches rely on low resolution, high frame rate or RGBD
cameras they must be close-range to achieve acceptable ground
sample distance (GSD) and still are plagued with high noise in their
reconstructions.

Photogrammetry traditionally approaches optimal view selection
in an offline scenario with prior scene knowledge (view planning)
[Alsadik et al. 2013; Hoppe et al. 2012; Olague and Mohr 2002; Pfeifer
et al. 2012; Schmid et al. 2012]. In recent years UAVs have been more
extensively used [Mostegel et al. 2016; Wendel et al. 2012]. A main
focus has been on optimization of UAV videography [Galvane et al.
2017; Gebhardt et al. 2018; Roberts and Hanrahan 2016; Xie et al.
2018].

There are also several closely related works in aerial path plan-
ning for 3D scanning. Schmid et al. [2012], Hepp et al. [2017] and
Roberts et al. [2017] calculate a surface of the scene after an initial
capture, then generate candidate views that look along the surface
normals. They take slightly different approaches to select next best
views that increase coverage and exhibit a novel perspective (i.e. a
different observation angle). Hoppe et al. [2012] capture a coarse
mesh, then create a candidate view for each triangle that is fronto-
parallel to the triangle and at the desired GSD. They iteratively
select the view that observes the most triangles at a novel angle.
Their approach models matchability by considering angles with
respect to the surface but not directly with respect to other views.
Improving on this early work, Hepp et al. [2017] and Roberts et
al. [2017] employ submodularity to candidate view selection. They
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Fig. 2. CA-1 Dataset with natural looking colored textures and detailed close-ups of underlying geometry.

achieve a greater reward than traditional next best view and p-SPIEL
Orienteering [Singh et al. 2009] implementations, and in less time.
Similar to our work, Roberts et al. [2017] consider the parallax angle
to determine the novelty of a view but unlike our approach not the
matchability. Huang et al.’s [2017] approach is the first to recon-
struct an online coarse proxy mesh from which a NBV path can
be constructed. Below we compare our path planning approach to
Roberts et al. [2017] and other NBV algorithms.

2.2 Scene Reconstruction Benchmarks

Several existing benchmarks evaluate image based scene recon-
struction [Aanges et al. 2016; Dai et al. 2017; Knapitsch et al. 2017;
Merrell et al. 2007; Richter et al. 2017; Schops et al. 2017; Seitz et al.
2006; Strecha et al. 2008; Treible et al. 2017; Waechter et al. 2017].
Most similar to this work are the EPFL benchmark [Strecha et al.
2008], UNC dataset [Merrell et al. 2007], ICL-NUIM dataset [Handa
et al. 2014] and Tanks and Temples Benchmark [Knapitsch et al.
2017]. Knapitsch et al’s [2017] benchmark is the most extensive
providing complete indoor and outdoor scenes. Ground-truth is
acquired through LiDAR scanning and images or video are pro-
vided for testing. In particular, the Lighthouse, Temple and Palace
are currently the only complete outdoor scenes of richly detailed
buildings available to the research community. In general there are,
however, currently no ground-truth datasets available that provide
full urban or residential scenes for image based scene reconstruc-
tion. Since there is no way to generate new image positions from
these benchmarks, their applicability to flight trajectory evaluation
is limited. The need for much larger-scale scenes is apparent and
well demonstrated by early work by Snavely et al. [2006; 2008] and
their later work on BigSfM!. Game engines such as Unity and UE4
are also starting to be used to provide large-scale synthetic scenes
for computer vision problems such as image based reconstruction,
segmentation and depth estimation [Battaglia et al. 2013; Dosovit-
skiy et al. 2017; Gaidon et al. 2016; Hepp et al. 2017; Mueller et al.
2016; Miller et al. 2018; Papon and Schoeler 2015; Qiu et al. 2017;
Richter et al. 2017; Roberts et al. 2017; Ros et al. 2016; Shah et al.

http://www.cs.cornell.edu/projects/bigsfm/

2017]. In particular, Roberts et al. [2017] and Hepp et al. [2017] in-
dependently use scenes from the the Grasslands fantasy level in the
Unreal Engine 4 (UE4) to generate synthetic images for evaluating
their trajectory optimization. Although exporting models from the
UE4 editor is possible, these models are not water-tight and have
many intersecting faces, overlapping meshes, and generally a low
polygon count. These drawbacks make geometric validation of re-
constructions difficult. To the best of our knowledge, the currently
proposed benchmark is the first to provide complete datasets of
urban and residential scenes that allow full exploration of image
based scene reconstruction.

3 METRICS FOR UAV PATH PLANNING

In the following, we will discuss metrics for evaluating the quality
of UAV flight paths for the purpose of dense geometry reconstruc-
tion. These metrics will inform both the path planning algorithm
(Section 4) as well as the synthetic benchmark (Section 5).

3.1 Reconstruction Quality Measures

One way of evaluating flight paths for 3D reconstruction is to per-
form a 3D reconstruction from all images captured along the full
flight path, and compare the resulting models to some ground truth
model. This approach measures the performance of the full pipeline,
including not just path planning but also bundle adjustment, re-
construction with structure-from-motion or multi-view stereo, and
post-processing. This can be both a blessing and a curse — on the one
hand we obtain realistic estimates of overall system performance,
but on the other hand we lose the ability to attribute performance
differences to the path planning as opposed to other system com-
ponents. This concern can be alleviated with careful design of the
benchmark dataset, as discussed in Section 5.

Given a reconstruction and a ground truth model, we apply a
quantitative approach for measuring both accuracy and complete-
ness of the reconstruction. First, to compute the geometric accuracy
we determine the closest point on the ground truth model’s surface
for each of the reconstruction’s vertices and report the result for the
90% and 95 % threshold (95 % of the points have a distance of less
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than x m). In contrast to Middlebury [Seitz et al. 2006] our ground
truth has been modeled, not scanned, resulting in a very clean mesh
with large differences in triangle size. However, the reconstruction
pipelines still create much denser reconstructions (>20M triangles).
Therefore, we uniformly sample points on the ground truth surface
and determine the coverage for each of these samples (using as
many samples as the reconstruction has vertices). We then report
the completeness at a 0.075 m threshold. The second measure allows
us to determine how much of the area was reconstructed within
various degrees of accuracy.

3.2 Reconstructability Heuristics

In addition to the above quality metrics, we introduce a recon-
structability heuristic for predicting reconstruction quality using
only a simple proxy geometry. The heuristic ensures that the image
positions and angles used for the image based reconstruction are
sufficient to accurately reconstruct the model. This same heuristic
allows us to produce optimized flight plans that ensure complete cov-
erage of the real-world models. To efficiently predict if and how well
a point can be reconstructed given a camera network, we develop a
heuristics based on distance, observation angle and pairwise paral-
lax angle using the following principles that apply independently
of the specific MVS algorithm used:

(1) Triangulation error increases with distance and decreasing
parallax,

(2) The ability to triangulate points by stereo matching (“matcha-
bility”) of images decreases for shallower observation angles
and larger parallax,

(3) Any surface needs to be seen by at least two views in order
to be reconstructable.

Principles 1 and 2 can also be more formally related since the depth
error €, is related to the matching or disparity error €4 in baseline
stereo via
€z = 2/(bf) - €q, 1)
with baseline b, focal length f and depth z [Gallup et al. 2008].
We use these principles as motivation for our reconstructability
heuristic which consists of several independent terms that each
depend on two views and determine its parameters empirically.
More specifically, we model the pairwise view contribution of views
(V1, V2) to the reconstructability of a sample s (position and normal)
as
c(s, V1, V2) = wi(a)wa(d)ws(a) cos 6. @)
As shown in Figure 3, « is the parallax angle between the views
and 6 is the shallower of both observation angles. The distance
d = max(||sV4 ||, |[sVz]|) is the larger of the two distances between s
and the views.
wi () models the parallax dependency of the triangulation error
from Principle 1 as

wi(a) = (1 +exp (—ki - (@ — 1)) " 3)

To model the shape of wy, we use a logistic function. wy also contains
an implicit distance component since « decreases with increasing d.
The distance also contributes to

WZ(d) =1-min (d/dmaxv 1) > (4)
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Fig. 3. Two views observing a surface point s and the corresponding input
measures for the heuristics.
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Fig.4. Combining our parallax weighting functions results in a shape similar
to the function proposed by Furukawa et al. [2010].

which favors closeup views and thus also handles sample scale as
addressed by typical MVS algorithms such as MVE [Goesele et al.
2007]. The parameter dmax has to be chosen based on the desired
GSD.

The parallax dependency of the matchability from Principle 2 is

modeled as

wi(@) = 1= (1 +exp (ks - (e —a3) 7", ®)
again using a logistic function. In addition, the observation angle is
directly contained in Equation 2 as cos 6.

We determine the parameters for the reconstructability and the
depth reconstruction error after extensive experimentation using
MVE and SMVS on the Strecha benchmark. Specifically, we constrain
w1(0) = 0, w3(0) ~ 1, and evaluate results as described in Section 5.5
yielding the parameters k; = 32, a1 = ¢, k3 = 8 and a3 = §. These
parameters are then fixed for all experiments. Interestingly, this
yields a dependency of w; - w3 on the parallax angle « that is very
similar to the corresponding function postulated by Furukawa et
al. [2010] (see Figure 4). We compared both weighting functions on
the Strecha benchmark but found none to be superior to the other.

The last component of our heuristic is a binary visibility function
u(s, V) that evaluates the visibility of sample s in view V based on
the scene approximation. Using the pairwise view contributions
c(s, V1, Vo) and the visibility function v(s, V) we then define our
heuristic as

h(s, V)= )" (s, Vi)ols, V))e(s, Vi, V), ©)
=1 |V
J=i V]
following Principle 3 with the summation of pairwise view contri-
butions.



4 PATH PLANNING APPROACH

Our approach is based on a two-stage scanning concept that follows
a similar high-level structure as Schmid et al. [2012]: We first capture
the area of interest using a standard grid pattern with nadir views
and use the captured data to reconstruct an approximation of the
scene geometry, which we call the “proxy” in the following. Based
on the proxy, we perform a view and path planning step, yielding a
series of 5D camera poses at which we would like to capture images
during the production flight. We finally use a standard image-based
3D reconstruction pipeline to reconstruct detailed scene geometry.

4.1 Geometric Scene Proxy

The proxy is an important scene representation used for two pur-
poses: planning optimal view parameters and determining safe
airspace for the UAV flight path (see Figure 1). Therefore, we ac-
quire an initial nadir grid pattern with 80/80 image overlap, which
consistently produces a complete nadir capture. We then use MVE
[Fuhrmann et al. 2015] to reconstruct a full 3D scene from the nadir
images. Since it is only captured from nadir viewpoints, sides of
buildings, inset windows, and other unseen features are only par-
tially reconstructed. We use a height map from the 3D reconstruction
to better fill these gaps while preserving reconstruction geometry
compared to simply meshing using Poisson Surface Reconstruction
(which creates inaccurate geometry around gaps). We extract the
height map by aligning the z axis with the gravity vector and cal-
culating the maximum z value for the discretized (x, y) plane using
a pixel size of two times the median GSD. We apply a 3x3 median
filter to remove outliers and fill holes by iteratively assigning each
invalid pixel with more than two valid neighbors the median of its
neighbors. To extract a closed surface mesh we compute an auxiliary
point cloud consisting of one sample (3D position and normal) per
height map pixel as well as samples at height discontinuities. The
samples on height discontinuities are spaced equally with the same
resolution as the depth map with horizontal normals oriented to-
wards the depth map gradient. We extract the surface using Floating
Scale Surface Reconstruction [Fuhrmann and Goesele 2014] with a
uniform scale (height map pixel width).

To estimate the safe airspace we use the same approach as for
noise removal, but replace the median filter with a dilation operator.
The dilation of the height map uses a maximum kernel in combi-
nation with a ball structuring element [Schmid et al. 2012], whose
radius is the desired minimum distance. This creates a closed surface
boundary between safe and potentially dangerous airspace.

4.2 Camera Network Optimization

Given a scene approximation we first create an initial camera net-
work with a given and fixed number of uniformly distributed views.
We then discretize the scene approximation’s surface with a set of
uniformly distributed samples S and optimize their reconstructabil-
ity through incremental improvements of the view parameters (Fig-
ure 5). Specifically, we minimize the objective function O using

argmin O = argmin A|U| +Z (max(hmax — (s, V),0))%. (7)
v v sES\U

U c S is the set of samples s that are not visible in any view. The
first term encourages exploration of unseen samples with a factor A
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(a) Initialization: Calculate the observation ray list per sample point
and evaluate the reconstructability scores. Then select a view for opti-
mization.
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(b) Optimization: Left: First remove all observation rays originating from
the view to optimize and update the reconstructability scores. Right:
Then evaluate the vertices of the view’s simplex (Avgviv2), project
the worst one (vy) across the hyperplane of the others and select the
best position and orientation from the new simplex (Av1, vz, p) — in
this case vy. The convolved spherical contribution histograms used
to determine the best orientation for a position are visualized as arcs
around the vertices.
A
A A A A A A

T — LS

(c) Update: Add the new observation rays for the optimized view. This
concludes one iteration, the next iteration starts by selecting another
random view (Section 4.2) for optimization.

Fig. 5. Visualization of our algorithm on a 2D slice of the dataset. The colors
encode reconstructability of the samples.

(we use A = 1 in all our experiments). The second term maximizes
the samples’ reconstructability heuristics. It is clamped at Amayx since
adding views will typically not improve the ability to reconstruct a
given surface once h(s, V) reaches a certain threshold.

The complexity of the objective function is O(|S||V|?), since
evaluating the heuristic for each sample involves pairwise view
terms, but more importantly it requires O(|S||V|) evaluations of
the visibility function (assuming that we cache each combination of
sample and view), which is computationally the most expensive part.
However, it is possible to efficiently calculate the change of O for a
single view in O(|S||V|) with O(|S|) visibility function evaluations
by caching observations as described in the implementation section.
On larger scenes this is even possible for multiple views, because the
influence of a view is spatially limited (see Equation 4). We call a set
of such views independent and optimize them in parallel. For each
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view, we treat the optimization of viewing position and orientation
separately as follows:

For a fixed viewing position, the orientation has only a binary
influence on the reconstructability of a sample since it only affects
visibility. We can thus collect per sample improvements in a spheri-
cal histogram for each view, convolve these spherical histograms
with a kernel that represents the viewing frustum and determine
the orientation that maximizes the contribution. The kernel size
depends on the field of view of the camera. For a full frame camera
with 35 mm focal length the kernel size is ca. 15% of a sphere’s sur-
face. The convolved spherical histograms are thus smooth, relaxing
the requirements for the input histogram resolution.

Although occlusions and a limited field of view introduce dis-
continuities, the objective function is relatively smooth in practice
due to the smooth weighting functions of the heuristics and the
large number of samples visible in each view. We therefore use the
downbhill simplex method to optimize the view position. To do this,
we first create randomly oriented simplices around the uniformly
distributed initial views and initialize with nadir view orientation.
We then iteratively select random sets of mutually independent
views and optimize their position and orientation in parallel. For the
optimization of a specific simplex, we first reevaluate the change
of O for all of its vertices since they may have changed due to up-
dates of other views. When evaluating the change of O for a new
candidate position of a vertex, we first determine the optimal view
direction for the candidate position as above. All other details follow
a standard downhill simplex optimization approach.

The downhill simplex method adjusts its step size depending
on the success of a move. The simplex expands if a better posi-
tion has been found and shrinks if the new position is worse than
the previously known positions. The objective function potentially
changes in between iterations, because we optimize other views. It
is therefore important to maintain an appropriate simplex size. We
encourage a regular update of the simplex size by increasing the
selection probability for views that have been optimized less often
than others before. We ensure that each view stays within the flyable
airspace by penalizing vertices that get close to its boundary and
prohibiting simplex expansions if a vertex would leave the airspace.
Finally, we terminate the optimization once the improvement in the
last 100 iterations falls below a certain threshold.

4.3 Implementation Details

We use stratified sampling on the triangle mesh of the geometry
proxy to reach an average sampling density of 25 samples per square
meter and exploit the parallel nature of our per sample heuristic
through the extensive use of GPU computing. The evaluation of the
objective function as well as the computation and convolution of
spherical histograms is implemented in CUDA. We spawn multiple
threads with separate streams when working with larger scenes to
optimize multiple views simultaneously. Figure 5 visualizes our al-
gorithm in 2D on a slice through the dataset. We do not illustrate the
step size adjustments of the simplex downhill method for simplicity.

The evaluation of our heuristic requires the distance and obser-
vation direction of each view that observes a sample point as well
as the sample point’s normal (to determine the observation angle).
This information can be stored as a list of observation rays, that
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have been rotated to a local coordinate system based on the sample’s
normal. We only compute these lists completely in a single step at
the beginning of our optimization and maintain them through up-
dates: We remove all observation rays of a view before we optimize
it and add the new observation rays after it has been optimized.

We use spherical coordinates to parameterize orientations with a
resolution of 2.5° (the accuracy of a typical camera gimbal used on
UAVs is approximately 1°) and the vertices of a subdivided icosahe-
dron (three subdivisions) to calculate spherical histograms.

We determine visibility via ray casting using a bounding volume
hierarchy based on axis-aligned bounding boxes and constructed us-
ing the surface area heuristic (SAH) [Wald 2007]. We reduce the field
of view by 1° when performing visibility tests during optimization
to compensate for orientation and, to some extent, position errors
during capturing as well as approximation errors of our spherical
histograms.

4.4  Trajectory

The final step of our algorithm is the extraction of an optimized
flight trajectory from the camera network. We first find a short path
through all view positions by solving the corresponding traveling
salesman problem with a random restart 2-opt algorithm. This algo-
rithm is suitable for the GPU [O’'Neil et al. 2011] but we are currently
running a CPU version. We convert this into a smooth path using the
global interpolation method for B-spline curves generating a knot
vector based on the chord length method [Shene 1998]. Although
we ensure that all views are reachable from the flyable airspace
the spline could theoretically violate the safety margin. Through
the planning of the spatial trajectory we can detect and manually
reroute in such cases.

5 BENCHMARK DATASET

To allow for quantitative evaluations of our flight paths as well as
enable comparisons with future work on this topic, we developed a
new synthetic benchmark dataset specifically tailored towards the
UAV path planning problem in urban environments.

5.1 Building Scenes

The urban and residential scenes in the benchmark are made from
a large asset library of buildings, walls, bridges and streets. The
models start as highly detailed polygonal meshes produced by pro-
fessional modelers. They are visually realistic when rendered. Since
the models are polygonal and not solids or NURBS they quite often
have interior, duplicated or intersecting faces, which can affect the
reconstruction score during evaluation. Each model is examined
and cleaned. As a final step we re-topologize the model so that the
visual appearance when rendered reflects the underlying geometry.

The assets are arranged to create urban scenes to be used in the
benchmark. Since there is full control over the buildings we can re-
configure many of the attributes to create a large diversity of scenes
for evaluation. In total, we use 34 buildings to make four urban
scenes each reflecting different architectural styles (see Table 1). We
also design one large urban scene with 60 less complex buildings to
examine large-scale flight planning. Each final scene is exported as a
single water-tight triangular mesh. The multi-building urban scenes
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Fig. 6. Datasets with natural looking colored textures and close-ups of underlying geometry. Top: Scene NY-1, Middle: Scene UK-1, Bottom: Scene GOTH-1.
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Table 1. Key statistics of the scenes in the synthetic benchmark datasets:
area, number of buildings, maximum building height, and number of trian-
gles, as well as number of images and flight distance for our flight plan.

A[m?] #Bldg Ht[m] #Tri  #Img Dist [m]

NY-1 4,674 10 2450 123k 433 2807.6
GOTH-1 12,255 5 46.50 594k 588 4213.2
CA-1 6,490 11 16.00 3048k 743 3939.3
UK-1 27,565 8 41.00 624k 923 7819.2
Old-City 28,896 60 34.00 5k 587 6017.2
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Fig. 7. Rendered camera image used in reconstruction from Goth-1 Dataset,
textured using Perlin Noise (left) and natural looking colored textures (right).

provide a new ground truth benchmark at a scale and complexity
larger than past datasets (see Supplementary Material for detailed
description and figures of each urban scene).

5.2 Texturing and Image Extraction

Homogeneous surface texture is problematic for any image based
reconstruction pipeline and additional views will not help 3D re-
construction algorithms deal better with textureless regions. Since
we are interested specifically in benchmarking the path planning
aspect of the system, we try to isolate this aspect and ensure that
the dataset has rich texture everywhere. Under these idealized cir-
cumstances, most SEM/MVS pipelines have similar performance (see
Section 6, Table 4).

For analysis we create two textured variants of the benchmark:
one with random noise texture and the second with naturally look-
ing texture (see Figure 7). By texturing the mesh with simplex noise
[Perlin 2002], we are able to provide a detailed and easy to recon-
struct texture with constant resolution. Using this texturing tech-
nique, we prevent bias and the introduction of non-geometric arti-
facts that would affect adversely the reconstruction accuracy. We
next import the datasets into Unreal Engine 4 to take advantage
of its high quality real-time rendering engine. The random noise
texture model is imported as is and is set to not cast shadows or
reflections. For the naturally looking textured variant we re-apply
physical based materials [Karis and Games 2013], which allow for a
more accurate shading model and typically provide a more natural
looking appearance to all the surfaces of each dataset. Multiple light
sources and a skydome are introduced to create realistic lighting
and shadows under a noon daylight setting. The ground plane is
textured with a blended material of concrete and simplex noise to
prevent false positive matches in the reconstruction pipelines from
repeated tiling of the concrete texture over large surface areas. All
rendering is done in UE4 using global illumination with dynamic

ACM Transactions on Graphics, Vol. 37, No. 6, Article 183. Publication date: November 2018.

shadows, distance field ambient occlusion, and multi-pass reflections
(for further detail on texturing and lighting see the supplementary
material and video). A movable camera is setup within each scene
to a 30 mm focal length with rendering at a resolution of 6000x4000
pixels. We extract subsequent images for the two textured variants
using our plugin tool that incrementally moves a camera to a list of
waypoints and saves each image to disk.

This synthetic dataset allows us to capture synthetic views through
rendering and compare the reconstructions against the geomet-
ric model itself. In the results section we compare how SIM/MVS
pipelines perform differently using these two approaches.

5.3 Alignment

We evaluate the reconstruction quality using the methodology of
the Middlebury MView benchmark [Seitz et al. 2006]. Le., we must
first align the reconstruction pipeline’s dense point cloud and mesh
output to the ground truth model. We randomly select four well
distributed camera positions from the reconstruction pipeline and
use a Helmert transformation to align to their corresponding camera
positions from the computed flight trajectory. This approach allows
for an automatic and accurate alignment of the reconstruction and
is an advantage afforded by having known camera positions from
the synthetic benchmark. As a final refinement we use the iterative
closest points (ICP) approach [Besl and McKay 1992] with scaling to
ensure that a close alignment is achieved. If the input reconstruction
maintains a fair level of accuracy the final alignment is typically
below an RMS error of 0.003 m.

5.4 Benchmarking Tool for Evaluation

We setup an automated benchmarking tool to assist in conducting
the evaluations presented in this paper and for future work. We
provide for download the coarse geometry proxy for each dataset
along with original nadir images captured on a 80/80 nadir grid.
Either the proxy mesh or nadir images (once reconstructed into
a model) can be used to compute a trajectory using our approach
or others (e.g. Roberts et al. [2017]). The benchmark datasets are
packaged within a release project of UE4 that can be downloaded
and used for evaluation. Images from the computed trajectory are
generated by loading a set of camera poses into the UE4 project at
runtime (the nadir grid of images can also be generated using this
approach). The images can then be processed with any SEM/MVS
pipeline and evaluated with the downloaded benchmark tools.

5.5 Reconstruction Pipelines

In this paper, we evaluate several image based open-source and
commercial structure-from-motion pipelines. The open-source soft-
ware systems include MVE [Fuhrmann et al. 2015], and COLMAP
[Schonberger and Frahm 2016]; Pix4D [Strecha et al. 2008] allows
for comparison to commercial applications. The benchmark pre-
sented here provides new challenges to all the pipelines: primarily
in large-scene completion, repetitive structures and high camera
angle disparity. In contrast to many of the open-source work, the
commercial software is continually being improved with growing
focus on aerial capture and camera extrinsics from GPS is increasing



Fig. 8. Inputimage (top left), reconstructability (top right) and corresponding
depth maps for the Fountain-P11 dataset (cropped). Bottom rows: MVE
depthmaps (left) and SMVS depthmaps (right) reconstructed with Scale 1
(middle row) and Scale 2 (bottom row). Note that MVE struggles with weakly
textured surfaces. Completeness of the depth map improves with scale.

in importance; therefore, we provide the camera extrinsics from the
simulated GPS to all pipelines that support it.

6 EVALUATIONS

We first evaluate the reconstructability heuristics and flight planning
performance on the synthetic benchmark. The synthetic benchmark
allows for evaluation of state-of-the-art reconstruction pipelines on
large-scale urban scenes with ground truth measurements.

6.1 Reconstructability Heuristics

To evaluate the heuristics, we use two fundamentally different multi-
view stereo algorithms to reconstruct two different benchmark
scenes, Fountain-P11 and Herz-Jesu-P8 from Strecha et al. [2008].
Specifically, the two algorithms are the variational approach by
Semerjian [2014] as implemented in SMVS [Langguth et al. 2016]
(called “SMVS” in the following), and the region-growing approach
of Goesele et al. [2007] as implemented in MVE [Fuhrmann et al.
2015] (“MVE”). Both of these can be applied to differently scaled
input images. Scale n refers here to 27" times the resolution of the
input images. The examples in Figure 8 show, e.g., that MVE strug-
gles with the reconstruction of weakly textured surfaces such as
the door and that completeness of the depth map increases on the
larger scale (i.e., lower resolution images). SMVS has no issue with
these surfaces but the fact that it optimize patches is visible at depth
discontinuities (e.g. the steps).

Figure 9 plots the mean and variance of the depth error vs. the
reconstructability heuristic for the corresponding ground truth sur-
face point on the Fountain-P11 dataset. Overall, both the error and
its variance decrease with increasing values of the reconstructability
heuristics. Likewise, the fraction of unreconstructed points drops
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Fig. 9. Error statistics aggregated over all pixels and images in the datasets
(leaving out border pixels to avoid errors with patch-based algorithms). The
mean and variance of the depth error are denoted as ;1 and o, respectively.
Top: SMVS with Scale 1 on Fountain-P11, Bottom: MVE with Scale 2 on
Fountain-P11. Peaks on the right are caused by small sample counts.
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Fig. 10. Top row: Reconstructability evaluated on Initial and Optimized views
(clamped to [0, 3] and colormapped). Bottom row: Resulting reconstructions
of the MVE pipeline with 287 nadir left and optimized views right.

with increasing heuristics values. However, depth discontinuities
can pose a problem for both algorithms but are not modeled by our
heuristics. Overall, these results confirm a good correlation between
our heuristic and actual reconstruction quality for both of these
very dissimilar MVS pipelines.

6.2 View and Path Planning on Synthetic Data

We first evaluate our path planning on the largest of our synthetic
scenes, Old-City (see Figure 10), which has all faces fully exposed
with no overhangs. Using our path planning approach, the optimized
views achieve high accuracy and completeness with only a minor
increase in views compared to a nadir capture with 80% forward and
80% side overlap (visualized in Figure 10). However, it is clear that
there is a strong correlation between allotted camera views, accuracy
and completeness. We use a 30 mm focal length, set dpax = 100m
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Fig. 11. Results of our view planning in combination with the MVE pipeline
on the Old-City dataset for varying number of views and configurations.
Initial refers to a regular grid with nadir views, Oblique to a regular grid
with a mix of nadir and 45° views, and Optimized to our method.

and optimize for a hpax = 3.0. As baseline we use a regular grid with
nadir views at 75m altitude (labeled Initial). We also compare in
Figure 11 a second baseline (labeled Obligue) containing 20 % nadir
views and 20 % views pitched at 45° for the four cardinal directions.
All views are rendered at a resolution of 3000%2000 pixels.

Figure 11 of the Old-City scene shows a comparison of how differ-
ent flight trajectories with varying number of views impact accuracy
and completeness. The accuracy of the Initial and Oblique recon-
structions hardly drops under 0.1 m, while in contrast, our Optimized
solution is more than twice as accurate for the datasets with 204
and more views. Likewise, the completeness of Optimized solutions
is better than 96 % for 204 or more views whereas none of the other
methods reaches 93 % even with significantly more images. Note
that in general these last few percentage points of completeness
are particularly hard to achieve. Figure 10 shows renderings of the
reconstructability and reconstructed models. Note the improvement
in the geometry.

6.3 Algorithm Runtime and Path Efficiency

Next, we compare the run time efficiency of our path planning
approach (OURS) to Roberts et al. [2017]’s submodular approach
(SUB) and their next best view (NBV) implementation. We use the
GOTH-1 and CA-1 datasets rendered with simplex noise texture for
all comparisons (see supplemental for more results). Computation
of the proxy mesh from synthetically generated nadir images takes
ca. 30 minutes with MVE. Timing starts at provision of the proxy
mesh to the approach. Each approach is tasked to compute a single
flight plan to capture the entire area (since both GOTH-1 and CA-1
are large areas the actual UAV would require multiple flights to
complete). All images captured are combined and reconstructed
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offline using COLMAP (this last step of computing the final mesh
averages between 8-32 hours). In Table 2, we show the run-time
results for computation of the graph (only SUB and NBV), trajectory
and orientation. The amount of images computed is in brackets
next to each run. Our approach computes camera trajectory and
orientation at the same time and optimizes over the proxy mesh
directly. SUB and NBV must also first compute a visibility graph
that is computationally expensive and bound by the available cores
of the CPU and memory (see supplemental material workstation
specifications). SUB in comparison to NBV can set a solver limit. We
found for the large datasets a minimum of 7 minutes is required to
achieve a global reward above 50%. Both NBV and SUB’s full runtime
from providing a proxy mesh to results takes 2.6-4.7 hours with
the orienteering representing only the last step. In comparison, our
approach in total only takes 4-6 minutes from proxy mesh input to
final results, this is 2-2.5 times faster than just the orienteering steps
by comparison. OURS also scales much better with more complex
areas such as CA-1 where total computation time drops to only
4.14 minutes in comparison to a 54% increase in computation for
NBV and SUB. These runtimes highlight the advantages of the
parallelization and scalability on the GPU of our approach. In real
world applications our approach can be performed in the field, and
requires a total down time of less than 45 minutes between the nadir
scan and the execution of the optimized flight plan.

Table 2. Timing Results of GOTH-1 and CA-1 Dataset comparing different
methods. Timing calculated for computation of Graph nodes (Graph), Cam-
era Trajectory (Traj) and Orientation (Ori). Total travel distance is calculated
in meters (Dist) and estimated flight duration (t1) and simulated flight time
(t2) in minutes.

GOTH-1
Method(#Img) Graph Traj Ori Total Dist[m] t1 t2
NBV(607) 144.0 10.0 3.0 157.0 3817.7 20.2 28.7
NBV(761) 1440 11.0 5.0 160.0 4785.2 25.4 30.13
SUB(605) 1440 7.0 5.0 156.0 3829.8 20.2 26.4
SUB(753) 1440 7.0 6.0 157.0 4789.5 25.1 34.2
OURS(588) — 6.0 — 6.0 42132 19.6 224
CA-1
NBV(741) 264.0 11.0 5.0 280.0 3824.7 24.7 28.9
SUB(743) 2640 7.0 7.0 278.0 38345 248 305
OURS(728) — 41 — 4.1 3638.6 24.3 25.1
OURS(743) — 41 — 4.1 39393 248 257

Flight path length and time estimated to capture the dataset is
also presented in Table 2. The primary bottleneck for UAV path plan-
ning is the speed at which images can be captured and UAV battery
duration; drone physics and thrust limits are rarely taxed in image
acquisition. We assume like Roberts et al. [2017] that images are
captured at a rate of 2 seconds and total individual flight durations
are 8 minutes. This image capture rate limits the flight speed of the
UAV to a speed that will allow the camera to successfully trigger
by the time the next waypoint is reached. For shorter distances
between captures the UAV will have to fly much slower while it
may fly up to reasonable UAV flight speed of 5 m/s for further dis-
tances (still far below thrust limits of the UAV). Modern UAV flight



controllers handle this internally, incrementing speed according
to distance between waypoints. For the GOTH-1 and CA-1 dataset
we allow NBV, SUB, and OURS to calculate the optimal amount of
images if the UAV flies for a maximum of 32 minutes (4 flights). As
the global optimum scores for NBV and SUB were low for GOTH-1
we additionally ran them for 5 flights. For comparing flight dura-
tion, we take two approaches. The first is to assume average flight
duration is 2s between each image allowing the UAV to vary its
speed accordingly. Second we run the flight paths as auto missions
using the Sim4CV [Miiller et al. 2018] plugin with our setup in UE4.
The second approach better estimates the additional time required
for slowing down when cornering, ascending, or descending which
must account for inertia and other flight dynamics.

For the GOTH-1 dataset our approach requires only 588 images
but with a longer flight length of 4213.2 m. In comparison, for the
same amount of flights, NBV and SUB require slightly more images
and time to acquire the scene but at a slightly shorter flight length.
NBV has the smallest flight length and number of images but results
in the poorest reconstruction results (see Table 3). In order for NBV
and SUB to achieve improved capture accuracy and completeness,
five flights on the GOTH-1 dataset are required.

For CA-1 dataset 4 flights are calculated. All three approaches
estimate a similar number of images and travel distance to acquire
the scene. The flight simulation indicates our flight duration is
shorter, which is a product of our algorithm interpolating a smooth
continuous path after trajectory optimization (see Section 4.4). The
other approaches have many abrupt 90 degree turns and sharp
elevation changes at corners that affect UAV flight speed leading to
longer flight times.

In summary, NBV, SUB, and OURS all are highly optimized with
respect to flight path duration and length. OURS requires fewer im-
ages to achieve higher scores of reconstructibility but takes greater
liberty in flight path length to more optimally place its cameras.

6.4 Comparison to State-of-the-Art

We next compare accuracy and completeness on GOTH-1 and CA-1,
which are both medium size urban scenes (see Table 3). Our ap-
proach is able to achieve better accuracy and completeness on both
datasets compared to NBV and SUB. Our results confirm that SUB
does outperform NBV and in less computation time. The primary
limitation of graph based approaches is the requirement to select
from candidate views that are restricted to an evenly spaced voxel
grid. This limits the potential placement of the cameras and in many
cases oversampling occurs in areas while in other areas large gaps
remain. Our approach, with the same number of images (743), has
greater flexibility in camera placement dropping much lower and
closer to the scene geometry (2.5 m) allowing it to capture complex
areas such as under the arches in GOTH-1 and the balconies and
storefronts of CA-1. This allows for example in CA-1 a 21% higher
completeness score for our approach. We also run our approach
limiting camera placement to no closer than 4m to compare with
the inherent limitation of SUB and NBV for CA-1 (note for GOTH-
1 our approach did not require placing cameras closer than 4 m).
This leads to less images needed (728) and shorter flight path, while
maintaining similar if not better accuracy. Completeness drops as
would be expected but is still above both SUB and NBV.
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Fig. 12. Visual Comparison of GOTH-1’s Cathedral reconstructed by
Roberts et al. [2017] approach and Ours.

It is also important to highlight for these other methods that as
areas become larger the voxel grid becomes more expensive. For
GOTH-1 the graph node just barely fit in system memory, larger
areas would require an increase in voxel distance to remain within
memory limits further reducing potential to select optimal candidate
views and much longer computation times to search through the
nodes to select best candidates.

Table 3. Comparison of reconstruction quality for different flight paths on
the GOTH-1 dataset.

GOTH-1

Error[m] Error[m] Comp[%] Comp[%] Comp[%]

90% 95% 0.075m 0.050m 0.020 m

NBV (607) 0.027 0.051 44.41 40.50 32.51
NBV (761) 0.037 0.051 47.81 43.59 30.19
SUB (605) 0.039 0.047 49.24 44.86 31.20
SUB (753) 0.020 0.039 51.63 47.40 39.70
OURS (588) 0.019 0.028 58.09 54.05 45.70

CA-1

NBV (741) 0.027 0.081 53.06 48.25 42.10
SUB (743) 0.020 0.049 51.45 48.61 42.80
OURS (728) 0.014 0.029 57.58 54.32 48.65
OURS (743) 0.014 0.032 64.92 62.29 56.36

Next, we evaluate performance of the reconstruction pipelines
on the two versions (simplex noise and color) of all four urban
scenes using our computed flight trajectories. For each scene, we
set an initial target of 1.0cm GSD with a resolution of 6000x4000
pixels and 30mm focal length that matches the drone camera (Sony
NEX-7). The airspace limit is set to 2.5m which still allows descent
below most canopies and arches but prevents potential collision.
The number of calculated initial images starts with these estimates
and nadir overlap of 80/80 and image count is only increased based
on the evaluation of the reconstruction heuristic (see above and
Figure 10). The majority of view points maintain an altitude below
the limit of 50 m but safely above the buildings to achieve a large
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Table 4. Results of synthetic benchmark detailing reconstruction error and completeness measures

MVE+FSSR COLMAP Pix4D

Error[m] Error[m] Comp[%] Error[m] Error[m] Comp[%] Error[m] Error[m] Comp[%]

90% 95% 0.075m 90% 95% 0.075m 90% 95% 0.075m

NY-1 (Noise) 0.019 0.033 51.00 0.024 0.047 44.62 0.837 1.541 35.57
GOTH-1 (Noise) 0.010 0.017 59.49 0.021 0.028 58.08 0.953 1.676 59.85
CA-1 (Noise) 0.024 0.048 63.65 0.014 0.032 64.92 1.109 1.478 65.04
UK-1 (Noise) 0.030 0.119 37.52 0.032 0.046 37.90 2.304 4.185 42.03
Mean 0.021 0.054 52.92 0.023 0.038 51.38 1.30 2.220 50.62
NY-1 (Color) 0.025 0.052 44.28 0.029 0.054 47.87 0.803 1.642 45.90
GOTH-1 (Color) 0.021 0.028 50.36 0.026 0.043 55.82 0.679 1.202 54.06
CA-1 (Color) 0.035 0.079 40.44 0.065 0.190 51.70 2.982 10.95 46.29
UK-1 (Color) 0.035 0.088 35.06 0.106 0.138 32.82 2.815 8.182 24.58
Mean 0.029 0.062 42.53 0.056 0.106 47.05 1.820 5.494 42.71

GOTH-1

MVE (Error=0.019 m) Pix4D (Error=0.953 m) COLMAP (Error=0.014 m) COLMAP (Error=0.032m)

0 Icm 2cm 3cm

Fig. 13. Quantitative results of large synthetic scene reconstructions. Top Row: input synthetic models with textured Simplex noise, Second Row: reconstruction
of the naturally textured models from the SfM pipelines, Third Row: reconstruction of the Simplex noise textured models from the SfM pipelines, Fourth Row:
error relative to ground truth point cloud.

area coverage at the desired GSD. A small percentage of cameras scene and the correlating number of images required to achieve
ascend higher to capture roof tops or descend lower to capture high accuracy and completeness. It can be seen that more images
below balconies or overhangs. In Table 1 we note the size of each are required for smaller areas with higher building density.
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Table 5. Real test datasets with total area size, targeted ground sample
distance (GSD), max allowable altitude of the UAV (Max Alt.), number of
images acquired, and shutter speed of the camera.

Area  GSD Max Alt. #Img Shutter

[10°m®] [em] (m] [s]
Housing 5.4 1.0 25 390  1/1250
Apartments 12.3 1.0 30 637  1/1250
School 32.0 1.5 40 724 1/1250
Stadium 51.9 2.0 100 183 1/1000

A summary of the benchmark performance for each reconstruc-
tion pipeline is presented in Table 4. To compute the accuracy we
determine the closest point on the ground truth model for each of
the reconstructed vertices and report the minimum error for the
90 % and 95 % thresholds (i.e. 90 % of the points have a distance of
less than x m). We report the completeness for a 0.075 m threshold.
In contrast to Middlebury datasets, our benchmark consists of full
scale buildings that are measured in meters and abut each other
with many faces that cannot be seen due to occlusion and the flight
limitations we impose on the UAV flyable airspace; therefore, the
overall accuracy and completeness score threshold is lower across
the board. Our ground truth has also been modeled, not scanned,
resulting in a very clean mesh with large differences in triangle size,
in order to compensate for this we uniformly sample points on the
ground truth’s surface and determine the coverage for each of these
samples (using as many samples as the reconstruction has vertices).

We note that MVE tends to produce the lowest error, while
COLMAP performs very well in terms of completeness. Overall,
the results for the noise texture are more similar than for the natural
texture. This indicates that indeed the noise texture is effective at
suppressing differences due to reconstruction algorithms, and is
therefore more suitable for comparing path planning methods in iso-
lation (for a detailed discussion of the performance of the different
pipelines please see the supplementary material).

Figure 13 shows the input textured models, reconstructions of
several of the scenes sampled by different reconstruction pipelines
and their accuracy score colormap. The optimized flight trajectory
allows for the drone to fly much lower and closer to the mesh and
capture hard to observe areas that are not possible if flying at a fixed
altitude. This is apparent in CA-1 with many low canopies (ca. 25),
GOTH-1’s bridge tunnel and arches and NY-1’s fire escapes. These
are all captured efficiently using our approach.

6.5 Field-Test

We select four large, real-world scenes to evaluate the path plan-
ning approach in the field. The real-world tests have multiple tall
buildings in non-uniform orientations and heights with challenging
overhangs, balconies and inset doorways. For each scene we first
capture the encompassing area in a nadir flight at an altitude of
100 m (= 0.025 m GSD) and copy the images to a field laptop. Typi-
cally less than 50 images are needed to capture the area allowing for
reconstruction using Colmap/Pix4D in less than thirty minutes. It
requires less than seven minutes to then generate a geometric scene
proxy, flyable airspace and compute the optimal flight trajectory (see
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Table 2 for timings). In Table 5, we list the size and images captured
for each scene along with camera setup for the UAVs. Similar to the
example in Figure 10, we can visualize the reconstructibility of the
scene to get an immediate insight on the potential success of a flight
trajectory prior to testing in the field. From the computed 5D flight
trajectory, we are able to generate detailed waypoint missions that
include continuous updates on camera pitch, roll, and yaw. Images
are captured once the UAV reaches a waypoint. The multi-rotor
has a limited flight time of 12 minutes and averages 150-250 im-
ages a flight. The trajectory is automatically broken into multiple
flight missions, uploaded to a cloud server and then synced from a
tablet to the UAV. Since the trajectory is optimized to not overlap, it
would be possible in future work to split the total capture between
multiple UAVs at the same time rather than running the missions
sequentially.

We present qualitative results of the real-world tests in Figure 14.
There are several clear advantages to the optimized flight trajectory
noticeable in the results of the field test. First, in comparison to
the nadir flights, vertical surfaces are well constructed and dense.
Second, significantly fewer flights are required to capture these
complex areas while still maintaining consistent GSD. The optimized
flight trajectory allows the capture of ground surfaces at proper
distances while also compensating for building roofs by ascending
to much higher altitudes. At the same time, the vertical faces of
buildings are captured much closer allowing much higher GSD to
be achieved then capturing oblique images at only one fixed height.
Similar to the synthetic benchmark, the path planning is flexible
including descent close to ground level to capture hard to reach
faces.

The current limitations of field capture are primarily related to
the sensitivity of the reconstruction pipelines to photometric ap-
pearance. Different methods have different amounts of tolerance for
appearance issues such as non-uniformity of shading and lack of
texture. All the buildings captured primarily have a stucco texture
that appears homogeneous at a GSD of more than 1 cm. In addition,
direct sunlight on the surface of these buildings leads to washed
out images. Finally, the dark shadowed inset walls as seen in the
Apartment dataset are poorly reconstructed despite camera angles
directly viewing these areas. All of these problems are also seen in
our colored versions of the benchmark.

There are also hardware based limitations to the field acquisition
that impact reconstruction. For example, desired camera positions
cannot be reached with an accuracy of more than 1 m to 2 m unless
differential GPS is used, although this is not critical at larger capture
distances. Second, even though absolute angles are used for camera
angles, drift on the gimbal and the magnetometer compass is appar-
ent even over short flight durations of 10 min. These are issues we
plan to address in future work as we focus more on integration of
our approach in regular field operations.

Despite these limitations, the optimized flight trajectories allow
us to capture the desired area in significantly less time and with less
images. Moreover, the quality of the reconstruction is higher with
fewer artifacts from improperly computed point positions.
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Fig. 14. Reconstruction results of our field tests, the four areas and their optimal flight trajectories Top Row, the result of nadir capture Middle Row, and
optimal trajectory result Bottom Row.

6.6 Limitations and Future Work

Our approach starts with a nadir capture and reconstructs the scene
proxy as a 2.5D surface from a height map. This means that our
scene approximation cannot represent overhanging structures such
as under bridges, canopies, or store fronts. Similarly, the flyable
airspace which assumes a margin of GPS error restricts the UAV from
approaching tight spaces such as narrow alleys and may not properly
represent small light posts or hanging wires not reconstructed from
the nadir capture. In the future, we would like to complement the
offline planning with simulation of online UAV path planning using
the synthetic benchmark in UE4. The simulation will allow us to
explore methods to focus capture on the hard to reach areas which
cannot be fully approximated using a height map or safely flown
using only gps-guided UAVs.

Another limitation of our current implementation we hope to
address in the future is its inability to adapt the number of views. For
example, removing views with negligible contributions or splitting
views that observe multiple optima where minimum reconstructibil-
ity is not reached.

Finally, as seen in the real-world scenes and colored variant of the
benchmark, the ground sample distance from architectural buildings,
dynamic lighting, and shadows impact the amount of features that
can be detected, especially on homogeneously colored surfaces,
which ultimately leads to lower overall reconstruction accuracy
and completeness. In future work, we hope to introduce into path
planning a consideration of varying surface texture and lighting,
which we can accomplish using the synthetic benchmark where full
control over texture and lighting can be evaluated.

7 CONCLUSION

We introduce a novel view and path planning approach of large
urban scenes for multi-rotor UAVs. In order to achieve this, we
develop a new reconstructability heuristic to formulate the capture
planning as a continuous optimization problem. Our optimization
combines a search over view orientations with an optimization
of view positions in a parallel approach, yielding more accurate
and complete reconstructions using significantly fewer images. We
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evaluate the efficacy of our approach on synthetic and real world
scenes.

In order to quantitatively evaluate path planning, we present
a new synthetic benchmark for image-based reconstruction tech-
niques on large urban scenes. The benchmark addresses the current
lack of large ground truth urban scenes for quantitative analysis.
A major advantage of the benchmark is the ability to provide an
environment to evaluate path planning and how camera position,
orientation and distance from complex architectural features impact
reconstruction performance. We make the benchmark available
for the research community to explore new techniques in plan-
ning and image-based reconstruction with the synthetic benchmark
(https://vccimaging.org/Publications/Smith2018UAVPathPlanning).
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