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Fig. 1. One of the applications of the proposed end-to-end computational camera design paradigm is achromatic extended depth of field. When capturing an
image with a regular singlet lens (top le�), out-of-focus regions are blurry and chromatic aberrations further degrade the image quality. With our framework,
we optimize the profile of a refractive optical element that achieves both depth and chromatic invariance. This element is fabricated using diamond turning
(right) or using photolithography. A�er processing an image recorded with this optical element using a simple Wiener deconvolution, we obtain an all-in-focus
image with li�le chromatic aberrations (top center). Point spread functions for both the regular lens and the optimized optical element are shown in the
bo�om. In this paper, we explore several applications that demonstrate the e�icacy of our novel approach to domain-specific computational camera design.

In typical cameras the optical system is designed �rst; once it is �xed, the
parameters in the image processing algorithm are tuned to get good image
reproduction. In contrast to this sequential design approach, we consider
joint optimization of an optical system (for example, the physical shape of the
lens) together with the parameters of the reconstruction algorithm. We build
a fully-di�erentiable simulation model that maps the true source image to the
reconstructed one. The model includes di�ractive light propagation, depth
and wavelength-dependent e�ects, noise and nonlinearities, and the image
post-processing. We jointly optimize the optical parameters and the image
processing algorithm parameters so as to minimize the deviation between the
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true and reconstructed image, over a large set of images. We implement our
joint optimization method using autodi�erentiation to e�ciently compute
parameter gradients in a stochastic optimization algorithm. We demonstrate
the e�cacy of this approach by applying it to achromatic extended depth of
�eld and snapshot super-resolution imaging.
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1 INTRODUCTION
The visual systems of animals are often highly adapted to their
environments [Land and Nielsson 2002]. In spite of being used for
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a diverse range of applications, digital imaging systems, on the
other hand, have been engineered to mimic only one of these sys-
tems: the human eye. While such a general-purpose approach to
imaging is sometimes successful, it leaves an important question
unanswered:What is the optimal camera design for a given task?To
address this question, domain-speci�c computational cameras have
emerged over the last two decades [Nayar 2006]. By co-designing
camera optics and image processing algorithms, computational cam-
eras have the potential to optimize task-speci�c performance over
conventional, general-purpose imaging systems in a wide range of
applications.

To date, computational cameras have demonstrated new imag-
ing capabilities, such as extended depth of �eld [Cossairt and Na-
yar 2010; Cossairt et al. 2010; Dowski and Cathey 1995], super-
resolution [Ben-Ezra et al. 2004], and high dynamic range [De-
bevec and Malik 1997; Mann et al. 1995] imaging. Optical elements
have also been optimized, for example to localize microscopic point
emitters in a 3D volume via point spread function (PSF) engineer-
ing [Pavani et al. 2009; Shechtman et al. 2014] or to optimize the
focusing performance of a di�ractive optical element across the
color spectrum [Peng et al. 2016]. Yet, all of these approaches are
either heuristic or use some proxy metric on the PSF rather than
considering the image quality after post-processing. Without a true
end-to-end approach for jointly optimizing parameters of the image-
forming optics and the algorithm processing the data, being able
to �nd an optimal computational camera for a given task remains
elusive.

What does optimizing a domain-speci�c computational camera
entail? First, the task has to be de�ned and appropriate quality
metrics devised to assess a camera's performance. Generative im-
age processing tasks include denoising, deconvolution, or other
forms of image reconstruction; their quality is often measured as
peak signal-to-noise-ratio (PSNR). Discriminative tasks, on the other
hand, would use a very di�erent quality metric, such as classi�ca-
tion accuracy for image classi�cation. Second, it may be helpful to
characterize the input data for a speci�c task. Natural images, for
example, follow certain statistics that can be exploited as priors for
generative tasks. But it may not always be obvious what good priors
for domain-speci�c datasets actually are. Third, post-processing
algorithms may vary drastically between di�erent tasks or even for
the same task, but in di�erent settings. Conventional approaches to
computational camera design, such as PSF engineering, do not o�er
the �exibility of addressing all of these challenges simultaneously.

In this paper, we introduce a new paradigm for computational
camera design: end-to-end optimization of a refractive or di�rac-
tive optical element with respect to the output of a reconstruc-
tion algorithm, using stochastic gradient methods. We build a fully-
di�erentiable wave optics image formation model that is used to
jointly optimize the optical parameters and the image processing
algorithm parameters for domain-speci�c computational cameras.

Speci�cally, our contributions are

� We introduce a framework for end-to-end optimization of an
optical element with respect to the output of a reconstruction
algorithm, using stochastic gradient methods. The framework
includes a wave optics image formation model, object depth

and wavelength-dependent e�ects, sensor noise and nonlin-
earities, and the image processing. The source code is publicly
available1.

� We validate this framework in simulation for the applications
of achromatic extended depth of �eld and snapshot super-
resolution imaging.

� We fabricate the optimized optical elements, using photolithog-
raphy for di�ractive elements and diamond turning for re-
fractive lenses, and verify that experimental results from a
prototype camera setup match the simulations.

Scope.In principle, the proposed framework for end-to-end op-
timization of optics and image processing generalizes to various
low-level and high-level algorithms. Deep convolutional neural net-
works, for example, could be used to optimize the lens of a camera
tailored to image classi�cation or other high-level tasks. Exploring
this large space of application- and domain-speci�c computational
cameras is an exciting vision towards which we take �rst steps in
this paper. We believe that the insights provided by our work on
developing fully-di�erentiable wave optics image formation models,
inverting them robustly with tools like TensorFlow, and actually
fabricating the optimized optical elements are invaluable for the
emerging �eld of computational optics.

2 RELATED WORK
Computational Cameras.Much work on computational photogra-

phy has focused on improving basic capabilities of a camera, such as
depth of �eld [Cossairt and Nayar 2010; Cossairt et al. 2010; Dowski
and Cathey 1995], dynamic range [Debevec and Malik 1997; Mann
et al. 1995; Reinhard et al. 2005; Rouf et al. 2011], and image reso-
lution [Ben-Ezra et al. 2004; Brady et al. 2012; Cossairt et al. 2011].
Computational photography has also been used for tasks as diverse
as motion deblurring [Raskar et al. 2006], defocus deblurring [Zhou
et al. 2009; Zhou and Nayar 2009], depth estimation [Levin et al.
2007, 2009], multispectral imaging [Wagadarikar et al. 2008], light
�eld imaging [Marwah et al. 2013; Ng et al. 2005; Veeraraghavan
et al. 2007], and lensless imaging [Antipa et al. 2016; Asif et al. 2017].
Many of these approaches use either optical coding, multiplexing,
burst photography [Hasino� et al. 2016], or multi-shot approaches
to capture high-dimensional visual data [Wetzstein et al. 2011].

The proposed end-to-end optimization framework could be ap-
plied to many of these applications, as it introduces a general design
paradigm for computational cameras that optimizes directly for the
post-processed output with respect to a chosen quality metric and
domain-speci�c dataset.

Deep Computational Photography.In computer vision, natural
language processing, and many other �elds, the emergence of deep
learning has lead to rapid progress in a number of challenging tasks
and state-of-the-art results for well-established problems. The com-
putational photography community too is at the cusp of adopting
tools from the deep learning community, such as convolutional neu-
ral networks. For example, high dynamic range image estimation
from a single low dynamic range photograph was recently demon-
strated to achieve unprecedented image quality [Eilertsen et al. 2017;

1https://vsitzmann.github.io/deepoptics
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Kalantari and Ramamoorthi 2017; Zhang and Lalonde 2017]. The
task of super-resolving a single image has also been approached
via deep learning [Dong et al. 2016b; Shi et al. 2016]. Finally, it was
recently shown that it is possible to learn the mapping from a single
image to a light �eld [Srinivasan et al. 2017] and to produce light
�eld video clips from a hybrid camera [Wang et al. 2017].

All of these approaches have demonstrated state-of-the-art results
for various computational photography applications. Yet, most of
them only consider the algorithm processing the data. We go one
step further and ask whether it is possible to optimize the co-design
of optics and image processing for domain-speci�c computational
cameras in an end-to-end fashion. Although we demonstrate the
e�cacy of our approach with applications that rely on relatively
simple reconstruction algorithms, in principle, our approach could
also be used to optimize optical elements leveraging more advanced
deep computational photography algorithms.

Optimizing Optical Elements.Optimizing the parameters of opti-
cal elements andpoint spread function engineeringare well-known
techniques in the computational optics and visual computing com-
munities. Optimized optical system parameters have proven useful
for extended depth of �eld [Dowski and Cathey 1995; Flores et al.
2004; Liu 2007], motion [Raskar et al. 2006] and defocus [Zhou and
Nayar 2009] deblurring, 4D light �eld imaging [Marwah et al. 2013],
super-resolved localization microscopy [Pavani et al. 2009; Shecht-
man et al.2014], and full-color imaging with di�ractive optics [Heide
et al. 2016; Peng et al. 2016]. Optimization of optical models has also
been proposed for multi-element systems to either arrive at novel
arrangements of o�-the-shelf lenses [Sun et al. 2015] or to allow
precise calibration of models [Shih et al. 2012] of these systems.
Two observations remain. First, previously-proposed optimization
approaches of optical elements are mainly based on heuristic cost
functions applied to the PSFs, which may be a feasible approach
for image deconvolution but it remains unclear how the PSF of a
camera a�ects higher-level computer vision tasks such as image
classi�cation; second, although image processing is applied to the
recorded images to remove residual aberrations or perform some
inference tasks, the post-processing algorithm is usually indepen-
dent of the optics design and fails to provide signi�cant insights to
guide it.

We also optimize the point spread function of an optical sys-
tem, but do so in an end-to-end manner using a data-driven ap-
proach that applies a cost function on the reconstructed image,
not on the PSF. Our approach is motivated by recent advances in
hardware, autodi�erentiation tools, and optimization algorithms
for deep learning. While some recent work investigates joint opti-
mization of either binary masks or color �lter arrays with neural
network post-processing for video compressed sensing or demo-
saicking [Chakrabarti 2016; Iliadis et al. 2016], they do not con-
sider the optimization of phase-modulating optical elements such as
lenses and do not consider di�raction in their forward model. With
this work, we thus take �rst steps towards utilizing the full potential
of end-to-end optimization for computational camera design.

Achromatic Extended Depth of Field.Extended depth of �eld (EDOF)
is a classic application of computational imaging. An extension is
the design of a single optical element that combines EDOF with

achromaticity, yielding all-in-focus images with minimal chromatic
aberrations. Depth and wavelength are closely coupled in the im-
age formation, such that the seminal wavefront-coding approach
to EDOF, the cubic phase plate [Dowski and Cathey 1995], dis-
plays increased achromaticity, and achromatic elements, such as the
di�ractive achromat [Peng et al. 2016], display some extended depth
of �eld. However, this duality breaks down at the extremes of either
wavelength or depth. One possible solution are metalenses, which
have recently enabled the fabrication of single ultrathin optical ele-
ments that encode wavelength-dependent phase patterns onto the
incoming light, thereby achieving physical achromaticity without
the need for post-processing [Chen et al. 2018; Yang et al. 2017]
and, in combination with a digital �lter, achromatic EDOF [Colburn
et al. 2018]. However, metalenses are currently di�cult and costly
to fabricate, and usually only support small numerical apertures
with low light e�ciency. While compound systems are well-known
for their ability to correct chromatic aberrations, they increase the
device footprint. Hybrid elements for achromatic EDOF have been
proposed [Flores et al. 2004; Liu 2007] as a compromise that reduces
chromatic aberrations by combining a single di�ractive and a single
refractive optical element, but add complexity to the manufacturing
process.

With this work, we propose a novel perspective of joint optimiza-
tion of a single di�ractive or refractive element with a deconvolu-
tion post-processing step, a�ording achromatic EDOF with standard
diamond-turning or lithography manufacturing techniques, with-
out increasing device footprint, and with no hand-crafted losses
applied to the PSF. We note that this approach does not preclude
more sophisticated optical elements which may o�er more degrees
of freedom in the optics design. Future work may thus extend the
proposed end-to-end optimization framework to other optical ele-
ments.

3 END-TO-END OPTIMIZATION OF OPTICS AND
RECONSTRUCTION

In the following, we derive a wave-based image formation model
that accounts for di�raction and wavelength-dependent e�ects
when imaging natural scenes. We assume spatially incoherent light,
meaning that light re�ected from an object point interferes with
other light re�ected from that same point along a di�erent path, but
that it does not interfere with light from other points in the scene.
The image formation model is based on Fourier optics [Goodman
2017], and we show how to e�ciently integrate it into the work�ow
of modern deep learning tools.

3.1 Image Formation Model
3.1.1 Wave-based Point Spread Function Model.Consider a sin-

gle refractive or di�ractive optical element, such as a thin lens. This
element delays the phase of a complex-valued wave �eld propor-
tionally to its thicknessh

�
�
x0;y0� =

2� � n
�

h
�
x0;y0� : (1)

Here,� is the wavelength and� n is the refractive index di�erence
between air and the material of the optical element.
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Fig. 6. Experimental results for achromatic extended depth of field imaging with DOEs. Le�: an image captured through a Fresnel lens. Center, right: an
image captured through a di�ractive optical element (DOE) optimized with the proposed framework without (center) and with (right) Wiener deconvolution
as a post-processing step. Over the scene depth range of0:5 mto 2 m, the Fresnel lens displays significant out-of-focus blur at the extremes of the depth range
and further su�ers from significant chromatic aberrations. In contrast, the proposed optical element succeeds in focusing a wide range of depths for all three
color channels, leading to an all-in-focus scene with li�le chromatic aberrations.

best, as the di�ractive element still su�ers from some degree of
residual chromatic aberrations that are typical for di�raction-based
elements. Nevertheless, the di�ractive element also signi�cantly
outperforms baseline approaches. Generally, the PSFs found by the
optimization were (approximately) invertible but not necessarily
focused. This is intuitive because the cost function we optimized
only considers the �nal reconstructed image, not the PSFs or images
formed on the sensor.

In addition to these qualitative results, we also show a detailed
quantitative evaluation implemented on the 100 test images of the
BSDS500 dataset [Martin et al. 2001] in Table 1. For this purpose,
we average the mean squared error (MSE) of reconstructions over
all �ve target depths and three target wavelengths for each indi-
vidual scene. Table 1 outlines peak signal-to-noise ratios (PSNR)
computed on the average MSE per scene for the two examples of
Figure 5 and also the average PSNR of all 100 test scenes. All simu-
lated sensor images include 0.2% Gaussian noise and the deconvolu-
tion for all methods is performed with the respective wavelength-
dependent PSF calibrated at 1 m. Our method signi�cantly outper-
forms other approaches for the task of simultaneous depth and
wavelength-invariant imaging with a single optical element. Simi-
larly, our method outperforms all baselines for intermediate depths
(0.585, 0.835, 1.5 and 3 m) that were not explicitly optimized for, as
well as for a higher noise level of 2%. Additional sensor images,
deconvolved results, PSFs for all settings, as well as the quantitative
results for the higher noise level of 2% and intermediate depths are
shown in the Supplemental Information.

4.2 Experimental Results
To demonstrate the practical viability of the proposed, end-to-end
optimized optics, we fabricate an optimized di�ractive optical ele-
ment and also a reference Fresnel lens with 4-layer photolithography
and another refractive element using diamond turning. Figure 1 com-
pares an image taken through a conventional refractive lens to an
image taken through the optimized diamond-turned element, which
is subsequently deconvolved using Wiener deconvolution. The scene
covers a depth range from0:5 m(the elephant sculpture) to1:5 m
(the textbook). Both optical elements share the same f-number. The
bene�ts of the proposed optical design are clearly visible, with the

Scene 1 (vase) Scene 2 (wolf) Avg. 100 scenes
Fresnel 23.87 20.40 17.95
MFL 24.22 20.73 18.32
CPP 24.38 20.70 18.33
DA 26.74 22.31 20.20
Hybrid 25.50 21.07 18.92
End-to-end withh 29.57 24.70 22.69
End-to-end withZ 31.13 26.40 24.30
Table 1. �antitative comparison of achromatic extended depth of field.
We report PSNR values in dB for a Fresnel lens, a multi-focal lens (MFL),
the cubic phase plate combined with the phase of a focusing lens (CPP),
a di�ractive achromat (DA), the di�ractive-refractive hybrid lens (Hybrid),
and the proposed method optimized for a height maph or for a Zernike
basis representationZ . The proposed method outperforms the best alter-
native approach by a large margin, on average 4.1 dB for the Zernike basis
representation.

whole scene perfectly sharp, where the conventional lens displays
signi�cant blurring for all but its focus plane of 1 m.

Figure 6 compares an image captured through a di�ractive Fres-
nel lens with the optimized DOE. Again, the scene depth ranges
from 0:5 m (the cherries) to2:0 m. The optimized DOE succeeds
in displaying the complete image in-focus, where the Fresnel lens
displays signi�cant blur at the extremes of the depth range. Further-
more, the Fresnel lens displays signi�cant chromatic aberrations
(being only optimized for a single wavelength), while the proposed
design was optimized for three wavelengths of the visible spectrum
and thus signi�cantly reduces chromatic aberrations. We also show
a demonstration of video-rate processing of the optimized refractive
element over a continuous depth range in the supplemental video.

5 SNAPSHOT SUPER-RESOLUTION IMAGING
Optical zoom in cameras is typically achieved by increasing the
distance between lens and sensor to magnify the recorded image. In
many scenarios, such as cell phone cameras, it may be impossible to
further increase the device form factor of the camera, making optical
zoom impractical. Digital zoom is an alternative, but this approach
uses either simple upsampling methods in software or deep learning-
based single-image super-resolution methods to hallucinate image
details that were not actually recorded. Another approach is the
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Fig. 7. Optimized phase profile of di�ractive optical element (le�) for super-
resolution. The phase profile appears to create three interleaved lens profiles;
one of these is shown in the closeup 3D rendering (center top). Note that
the middle portion of the DOE is not perfectly flat (center bo�om). These
variations are minute and can be considered noise in the optimization that
gets blurred out in the point spread function. We also show a photograph
of the manufactured DOE with a caustic that shows the three peaks, which
create multiple image copies on the sensor (right, with PSF inset, blurred to
increase peak radius for be�er visibility).

addition of extra camera modules or a single sensor with multiple
subapertures. However, this makes the camera more costly, bulky, or
decreases the di�raction-limited resolution. We ask whether it may
be possible to design a single lens that maintains a constant physical
footprint while facilitating image super-resolution. In this scenario,
the standard non-zoom lens is swapped laterally with an optimized
ultrathin lens. Post-processing then achieves computational zoom,
while the sensor-lens distance remains constant.

To investigate this possibility, we use the proposed end-to-end
optimization framework to design a di�ractive lens that optically
encodes information in a sensor image that may make it possible
to recover a 2� super-resolved image by solving Equation 7. We
assume a monochromatic sensor and single wavelength images
with � = 550 nm, located at optical in�nity. While the framework
generalizes to multiple wavelengths in a straight-forward manner,
we choose a monochromatic sensor to simplify analysis of experi-
mental results. We sample images from a dataset of 30 images [Xu
et al. 2014], converted from RGB to monochrome. The simulated
optical setup matches that of our prototype (see Section 6) and
entails an aperture diameter of5 mmand a propagation distance
of z = 35:5 mmbetween optical element and sensor. We use 5 it-
erations of the conjugate gradient method for the reconstruction
(which is not closed form due to pixel integration, cf. Eq. 6). We
�x the regularization 
 = 2 � 10� 4 and optimize for a Fourier coef-
�cient representation of the height maph. Detailed optimization
parameters can be found in Appendix A.2.

5.1 Evaluation in simulation
The optimized optical height pro�le along with a photograph of
the fabricated element casting caustic patterns that resemble the
PSF are shown in Figure 7. We observe that the optimized element
resembles the shape of three separate lenses, which is veri�ed by
the caustic patterns consisting of several strong peaks. Such a PSF,
when convolved with an image, results in several optical copies
of the input image on the sensor, as seen in Figure 9 (top right)
for an experimentally captured image. It is intuitive that the opti-
mization could result in such a PSF, because it is well-known from

early work on super-resolution [Ben-Ezra et al. 2004] that multiple
sub-pixel-shifted images can be used to recover a super-resolved
image. The proposed end-to-end optimization achieves the same
result in a single shot by multiplexing these sub-pixel-shifted image
copies on the sensor. We note that while the optimized phase pro�le
is intuitive, the optimization determined shape, number, and place-
ment of these sub-PSFs without supervision, in a manner that would
minimize interference of the three sub-PSFs as well as respecting
manufacturing constraints, while optimizing for the �delity of the �-
nal, reconstructed image. These would traditionally be hand-crafted
parameters in a large design space.

Even the simple conjugate gradient based reconstruction method
in the framework is capable of recovering the target image very well,
as shown in Table 2 and Figure 8. Note that our simulations assume
that only a part of the sensor image is used for conventional imaging,
whereas the PSF optimization has su�cient degrees of freedom to
spread the recorded signal out over a larger area on the sensor, thus
creating non-overlapping copies of the image. The image resolution
in these simulations are also limited by the pixel size of the sensor,
not the di�raction limit. Sub-di�raction limited imaging is not pos-
sible with the proposed approach; although image copies could also
be created with a di�raction-limited optical system, the respective
copies would contain the exact same image information. Similar
to previous super-resolution methods [Ben-Ezra et al. 2004], our
method relies on aliasing in these optical copies, which is created
by sub-pixel shifts.

For the simulated result shown in Figure 8, we downsample the
target image by a factor of 2 in each dimension using area interpo-
lation. Bicubic upsampling is not capable of restoring �ne image
details. We also apply a state-of-the art deep learning approach for
single-image super-resolution [Lai et al. 2017] to the low-resolution
image. This method hallucinates high-frequency details, but it is not
capable of adequately restoring image details, which our method
is able to recover. We verify that these results generalize to other
images with the extensive quantitative evaluation summarized in
Table 2. Values for peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) of all approaches other than ours are adopted
from Lai et al. [2017]. We also show additional qualitative compar-
isons of these methods, as well as an additional comparison with a
naive multiplexing baseline, in the Supplemental Information. The
optimized di�ractive optical system outperforms the state-of-the-art
in SSIM on all datasets, and on PSNR for the Set14 and BSDS100
datasets. Deep learning-based super-resolution approaches achieve
higher PSNR on the Urban100 dataset, which features many images
with regular texture that can be easily interpolated using learned
image priors.

5.2 Experimental Results
To verify that we can achieve super-resolution in practice, we fabri-
cated the di�ractive optical element (DOE) shown in Figure 7 using
photolithography. Details on the fabrication process are found in
Section 6 and in the Supplement. An image captured through this
DOE is shown in Figure 9 (top right). This photograph clearly shows
the individual image copies, as well as a slight haze due to imper-
fections in the fabrication and limited di�raction e�ciency of the
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Ground Truth Bicubic LapSRN Optimized DOE

Fig. 8. �alitative comparison of 2 � super-resolution imaging in simulation.
We downsample a target image (le�) by a factor of 2 in each dimension.
Neither bicubic upsampling nor the state-of-the-art single-image super-
resolution method proposed by Lai et al. [2017] (LapSRN) achieve a high
image quality for the reconstruction. Similar to other single-image super-
resolution methods, LapSRN hallucinates high-frequency content and, in
the process, introduces aliasing. Our approach optimizes a di�ractive opti-
cal element (DOE) that, together with a simple conjugate gradient solver,
recovers a super-resolved image with a high quality.

Set14 BSDS100 Urban100
PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic 30.34/0.870 29.56/0.844 26.88/0.841
A+ [Timofte et al. 2014] 32.40/0.906 31.22/0.887 29.23/0.894
SRCNN [Dong et al. 2016b] 32.29/0.903 31.36/0.888 29.52/0.895
FSRCNN [Dong et al. 2016a] 32.73/0.909 31.51/0.891 29.87/0.901
SelfExSR [Huang et al. 2015] 32.44/0.906 31.18/0.886 29.54/0.897
RFL [Schulter et al. 2015] 32.36/0.905 31.16/0.885 29.13/0.891
SCN [Wang et al. 2015] 32.42/0.904 31.24/0.884 29.50/0.896
VDSR [Kim et al. 2016a] 32.97/0.913 31.90/0.89630.77/0.914
DRCN [Kim et al. 2016b] 32.98/0.913 31.85/0.894 30.76/0.913
LapSRN [Lai et al. 2017] 33.08/0.913 31.80/0.895 30.41/0.910
Optimized DOE 33.88/0.933 32.84 /0.933 30.39/0.919

Table 2. �antitative comparison of 2� super-resolution methods. Peak
signal-to-noise ratio (PSNR) and structural similarity index (SSIM) values
comparing a number of di�erent approaches for several datasets are adopted
from Lai et al. [2017]. Our end-to-end optics and image reconstruction
approach outperforms all of these methods in SSIM. Deep digital zoom
methods achieve higher PSNR for the Urban100 dataset by exploiting image
priors to interpolate textured regions.

DOE, which limits the contrast of our measurements compared to
a conventional lens (Figure 9, top left). Due to the fact that our
method relies on aliasing in these copies, which are e�ects that are
smaller than a single pixel, any deviations of the optical PSF from
the simulated PSF make this a very challenging experiment. Yet, as
shown in Figure 9, the proposed DOE and reconstruction restores
image detail that is lost with digital zoom techniques such as bicubic
upsampling or a state-of-the-art LapSRN super-resolution network.

6 FABRICATING CUSTOM OPTICS
We have employed two fabrication methods to manufacture our
optimized lenses. The resulting products are noted asdi�ractive
optical elementsandfreeform lensesin the following.

Fabricating Di�ractive Optical Elements (DOEs).We repeatedly ap-
ply 4 rounds (i.e. 16-phase-level structures) of photolithography and
reactive iron etching techniques [Morgan et al. 2004] to fabricate op-
tics that are optimized with Fourier coe�cient parameterizations of
the discretized height map. The substrate is a0:5 mmthick, fused sil-
ica wafer with a refractive index of 1.459 at the principle wavelength
of 550 nm. We use 2� phase modulation to wrap the height map
to a uniform maximum height. Please refer to the supplement for
details of the fabrication procedure as well as microscope images of
our lenses. We note that this kind of micro-fabrication technique in-
volves repeated procedures at micrometer level alignment accuracy.
Such precise alignment makes the fabrication procedure relatively
complex, but opens up a large design space by allowing many small
features and high-frequency detail on the DOE [Peng et al. 2016].

Fabricating Refractive Freeform Lenses.In addition, we use a CNC
machining platform that supports 5-axis single point diamond turn-
ing (Nanotech 350FG), similar to [Damberg and Heidrich 2015;
Schwartzburg et al. 2014; Wu et al. 2013], to fabricate lenses that are
parameterized using a Zernike polynomial basis. The substrate is
polymethyl methacrylate (PMMA) with a refractive index of 1.493
at the principle wavelength of550 nm. The downside of freeform
lenses relative to DOEs manufactured with photolithography is a
larger form factor and less design freedom due to the need for a
smooth surface to mill, but the upside is that the freeform lens has
less inherent color dispersion, much higher light e�ciency, and
much lower production cost.

System Integration.We use two sensors, one chromatic sensor
(FLIR GS3-23S6C-C) that has 1,920� 1,200 pixels with a pixel pitch of
5:86 µm, and one monochromatic sensor (FLIR GS3-91S6M-C) that
has 3,376� 2,704 pixels with a pixel pitch of3:69 µmin our experi-
ments. The former is used for AEDOF imaging (Section 4) while the
latter is used for snapshot super-resolution imaging (Section 5). The
focal distance of the AEDOF and superresolution optical elements is
35:5 mmwith an aperture size of5 mm. This yields an f-number of
f /7.1. As discussed in Section 3, our non-blind image reconstruction
method requires us to calibrate the PSF in advance. Accordingly, we
use a white LED light source with a35 µmpinhole attached in front
to calibrate the PSFs of our custom lenses.

7 DISCUSSION
In summary, we demonstrate that the co-design of camera optics
and reconstruction is feasible using a fully-di�erentiable pipeline
that includes a wave optics model for the image formation and a
regularized least-squares image reconstruction. We explore di�er-
ent parameterizations for the optimized optical elements, including
height maps or Zernike polynomials, and we verify the principle
of operation of our optimized elements with fabricated optical el-
ements. We demonstrate state-of-the-art results of the proposed
framework for applications in achromatic extended depth of �eld
and snapshot super-resolution imaging.
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The primary bene�t of the proposed methodology is that optical
elements can be jointly optimized with post-processing algorithms
to minimize di�erentiable losses that only consider the performance
of the joint model, with no optimization of intermediate steps such
as point spread function engineering. The proposed framework
takes advantage of hardware, tools and algorithms developed in
the deep learning community, allowing easy customization and
pro�ting from hardware and software progress in that �eld.

There are several limitations of our current approach. First, the
algorithms we used for image reconstructions are simple. We ei-
ther use a Wiener �lter or a truncated set of conjugate gradient
iterations. While this is adequate for the presented applications, it
seems insu�cient for more advanced tasks, such as high dynamic
range imaging, depth from defocus, image classi�cation, semantic
segmentation, etc. Second, we currently approximate the tolerances
of the respective fabrication methods by simply optimizing the op-
tical elements in one of two basis representations, a Fourier basis or
a Zernike basis. These tolerances should be better quanti�ed and
modeled as constraints in the optimization. Third, even though our
image formation model includes depth variation, it does not handle
occlusion boundaries between objects at di�erent depths appropri-
ately. We optimize the extended depth of �eld phase pro�les by
randomly sampling depth values of the planar input images during
optimization. A more precise image formation model, such as ray
tracing, may further improve results and enable new applications.

Future Work.In future work, we would like to explore more so-
phisticated di�erentiable reconstruction methods, such as convolu-
tional neural networks. Advanced computational camera designs,
for example tailored to higher-level vision tasks, likely require deep
algorithmic frameworks. We would also like to explore otherwise
inaccessible parts of the camera design spectrum, for example by
minimizing the device form factor or overcoming fundamental limits
of conventional cameras. Finally, designing multiple sensors jointly
could open new research directions as the proposed end-to-end
framework naturally extends to such systems with an appropriate
image formation model.

8 CONCLUSION
End-to-end optimization is an emerging design paradigm for com-
putational cameras. Although the idea of jointly optimizing camera
optics, sensing, and algorithms has been at the heart of the com-
putational photography community for years, leveraging modern
tools of the deep learning community for this problem opens new
research directions and has the potential to make unprecedented
camera designs possible. With our work, we demonstrate the e�-
cacy of the end-to-end computational camera design paradigm for
addressing challenging imaging problems. These results encourage
the exploration of more advanced end-to-end frameworks, for exam-
ple using convolutional neural networks, in future computational
cameras.
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A OPTIMIZATION PARAMETERS
In the following, we describe the exact parameters used to optimize
the optical elements described in this work.

A.1 Achromatic Extended Depth of Field
A.1.1 Zernike parameterization.We simulate a sensor with a

pixel size of3:69 µmand a resolution of 1;356� 1;356 pixels. We
consider the �rst 350 Zernike coe�cients in Noll notation. The
optical element is initialized as a standard collimator lens, with the
fourth Zernike coe�cient (the defocus term) initialized such that the
lens has a focal length of35:5 mm. The optical element is discretized
with a 3:69 µmfeature size on a 1; 356� 1; 356 grid. In the learning
phase, which includes optimizing the optical element and �nding
the optimal regularization parameter
 for the reconstruction, we
use the Adadelta optimizer with a step size of 1. The optimization
phase is run for 8 epochs, which takes approximately 6 hours on a
single NVIDIA TITAN X Pascal GPU.

A.1.2 Fourier coe�icient parameterization.We simulate a sensor
with a pixel size of4 µmand a resolution of 1;248� 1;248 pixels.
We set the 37.5% highest frequencies to zero as a smoothness prior.
All Fourier coe�cients are initialized to zero at the beginning of
the optimization. The optical element is discretized with a2 µm
feature size on a 2;496� 2;496 grid. In the learning phase, which
includes optimizing the optical element and �nding the optimal
regularization parameter
 for the reconstruction, we use a step
size of5 � 10� 1 with a stochastic gradient descent solver using a
Nesterov momentum term of 0.5. The optimization phase is run for
64 epochs, which takes approximately 4 hours on a single NVIDIA
TITAN X Pascal GPU.

A.2 Snapshot Super-Resolution Imaging
We simulate a sensor with a pixel size of3:69 µmand a resolution of
1; 356� 1; 356 pixels, which we downsample by a factor of 2� using
area interpolation to simulate larger pixels. The optical element is
discretized with a2:46 µmfeature size on a 2; 034� 2; 034 grid. The
PSF is subsequently downsampled to a3:69 µmresolution following
Fresnel propagation for computational e�ciency. We set the 37.5%
highest frequency Fourier coe�cients to zero as a smoothness prior.
All Fourier coe�cients are initialized to zero at the beginning of
the optimization. We use Adadelta with a step size of 1 to optimize
the model. The optimization phase is run for 50,000 iterations with
batch size 1, which takes approximately 20 hours on a single NVIDIA
TITAN X Pascal GPU.
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