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(a) Itot PSNR = 47.45 (b) DoLP PSNR = 39.44 (e) Itot PSNR = 46.16 (f) DoLP PSNR = 35.81

(c) AoLP PSNR = 27.98 (d) visualization zoom (g) AoLP PSNR = 30.99 (h) visualization zoom

Figure 1: Left (a)-(d): Monochrome polarization demosaicking results for total intensity, DoLP, AoLP, and visualization with unpolarized
illumination. Right (e)-(h): Color polarization demosaicking results for total intensity, DoLP, AoLP, and visualization with polarized illumi-
nation. Our proposed algorithm outperforms state-of-the-art for both monochrome and color polarization focal plane arrays.

Abstract
Division-of-focal-plane (DoFP) polarization image sensors allow for snapshot imaging of linear polarization effects with inex-
pensive and straightforward setups. However, conventional interpolation based image reconstruction methods for such sensors
produce unreliable and noisy estimates of quantities such as degree of linear polarization (DoLP) or angle of linear polariza-
tion (AoLP). In this paper, we propose a polarization demosaicking algorithm by inverting the polarization image formation
model for both monochrome and color DoFP cameras. Compared to previous interpolation methods, our approach can signif-
icantly reduce noise induced artifacts and drastically increase the accuracy in estimating polarization states. We evaluate and
demonstrate the performance of the methods on a new high-resolution color polarization dataset. Simulation and experimental
results show that the proposed reconstruction and analysis tools offer an effective solution to polarization imaging.

Keywords: polarization demosaicking, monochrome and color images, polarization camera, visualization
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1. Introduction
Polarization is an important property of light in addition to its am-
plitude and phase. Polarization imaging has found uses in vari-
ous disciplines and applications such as object inspection to de-
tect stress, scratch recognition, shape detection for transparent ob-
jects. Other potential applications include 3D image reconstruction
in microscopy, ranging in remote sensing. In nature, many diverse
species have polarization sensitive vision systems, e.g., honeybees,
mantis shrimps, etc. [Hor14]. Unfortunately, human are incapable

of discerning polarization effects with the naked eye. To utilize po-
larization information in our daily life, a variety of polarization
imaging, a.k.a imaging polarimetry techniques have been devel-
oped with the aid of various polarizing optical elements over the
past few decades [TGCS06, AK02]. Nonetheless, high-resolution
snapshot polarization imaging remains a significant challenge.

Recently a class of division-of-focal-plane (DoFP) image sen-
sors have been developed, featuring compactness, non-moving
parts, and a snapshot capture mode. In such cameras, a micro-

c� 2021 The Author(s)
Computer Graphics Forum c� 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-0809-0093
https://orcid.org/0000-0001-6395-8521
https://orcid.org/0000-0003-3112-2820
https://orcid.org/0000-0002-4227-8508


S. Qiu, Q. Fu, C. Wang, W. Heidrich / Polarization Demosaicking

polarizer array with four polarization measurements is integrated
into the pixels of the focal plane array sensor, similar to the way
Bayer filters are integrated into color cameras [YMU⇤16,GEM⇤17,
GDB⇤18,HMB⇤14]. Both monochrome and color versions of such
DoFP polarization cameras are now commercially available. How-
ever, effective polarization reconstruction for such sensors remains
a largely uninvestigated problem. As pointed out by Tibbs et
al. [TDBR17, TDRB18], noise in the measurement may lead to
significant artifacts and incorrect conclusions. We show a simple
example in Figure 2 (b), where Gaussian noise with a standard de-
viation of 2 out of 255 is added in the measurement, and apparent
artifacts arise on the edges in the Degree of Linear Polarization
(DoLP) estimation by bilinear interpolation. This problem is even
more severe for color polarization cameras since both polarization
and color information need to be interpolated simultaneously and
from sparser measurements.

!90 !45
!135 !0(a) (b) (c)

(d)

Figure 2: Noise induced artifacts in DoLP for bilinear interpola-
tion in a color polarization camera. (a) Ground truth DoLP. (b)
Reconstructed DoLP corrupted by noise (2 out of 255). The zoom
regions (c) and (d) illustrate severe artifacts occurring at the edges
using bilinear interpolation. The small figure in (a) is a micro-
polarizer and Bayer filter layout for a color polarization camera.

To tackle polarization demosaicking problems, various in-
terpolation methods have been proposed, e.g., bilinear, bicu-
bic, cubic spline interpolation [GG11], Fourier domain de-
mosaicking [TLR09], Intensity Correlation among Polarization
Channels [ZLHC16], Sparse Representation-based Demosaic-
ing [ZLL⇤18], Newton’s Polynomial Interpolation [LZPK19], and
End-to-end Fully-Convolutional Neural Network [ZLZY19]. We
refer to the above methods for a complete summary. However,
existing methods are tailored for monochrome polarization im-
ages, and distinct edge artifacts are prominent. Therefore, accu-
rate numerical reconstruction from raw measurements for both
monochrome and color polarization cameras other than the inter-
polation method is a must in practical applications.

This article is an extended version of [QFWH19], presented at
VMV 2019. We present a high-quality reconstruction algorithm
suitable for both monochrome and color polarization images at
DOI: 10.5281/zenodo.4483248. A comprehensive image formation
model by taking into account the Stokes vector conversion, micro-
polarizer mosaicking, and noise model (Section 2) has been con-
sidered. We obtain significantly improved estimates of the inten-
sity, Degree of Linear Polarization (DoLP), and Angle of Linear
Polarization (AoLP) for monochromatic and color polarization im-
ages by solving an inverse problem within the alternating direction
method of multipliers (ADMM) framework. Considering a high-

quality large polarization image dataset is lacking in this area, we
construct a new dataset with 40 scenes (Section 3), including both
unpolarized and polarized background illumination cases. This
carefully captured high-resolution dataset covers a variety of po-
larization scenarios that are commonly seen in the real world, and
we make it public for future research at DOI:10.25781/KAUST-
2VA2X.

In addition to these contributions, in this article we ex-
tend [QFWH19] by providing new visualization methods for repre-
senting high-dimensional color+polarization imagery (Section 4).
It is essential to visualize DoLP and AoLP individually as well
as the polarization states as an entirety, and we present four vi-
sualization methods to complement conventional visualization ap-
proaches. We evaluate our algorithm on the polarization dataset and
show numerical comparisons against the latest monochromatic and
color polarization demosaicking methods. Experimental are carried
out on real and simulated data to show that the proposed reconstruc-
tion method offers an effective solution to polarization imaging.

2. Polarization Demosaicking
2.1. Polarization Model
The Stokes vector describes the polarization states for incoherent
illumination. In the case of linear polarization, we only consider
the first three components of the Stokes vector, which are defined
as
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where Itot is the total intensity, P is DoLP and f is AoLP. The
Stokes parameters S0, S1, and S2 are measured by four intensities
I0, I45, I90 and I135 with linear polarizers oriented at 0�,45�,90�

and 135� respectively. DoLP and AoLP are defined as
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The polarization state of light can be changed by introducing po-
larizing optical elements,e.g. polarizers and retarders into the opti-
cal path. This process can be written in matrix-vector form as

S0 = MS =
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where M 2 R3⇥3 is a Müller matrix for the polarizing optical ele-
ment. The Müller matrix for a linear polarizer oriented at an angle
of q with respect to horizon can be expressed as Eq. (4). In reality,
fabrication artifacts lead to imperfections on the polarizer. So we
should add k1 as the transmittance (major) parallel to the orienta-
tion angle and k2 as the transmittance (minor) perpendicular to the
orientation angle, where 0 6 k1,k2 6 1 (see Appendix A).

2.2. Image Formation Model
The essential quantities of polarization analysis are Itot, DoLP, and
AoLP. Since the Stokes vector as well as the DoLP and AoLP are
highly non-linear functions of the raw sensor data, any noise gets
amplified in the estimates for DoLP and AoLP. On the other hand,
the formulas for the DoLP and AoLP (Eq. (2)) are also non-convex,
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making it difficult to directly demosaic these channels. Instead, we
propose to solve the Stokes vectors by modeling the physical image
formation from Stokes to intensity. With a better estimation of the
Stokes vector, higher accuracy in DoLP and AoLP can be obtained.

Most image sensors directly measure intensity values, which are
just the first component of the Stokes vector. With polarization im-
age sensors, there are however, four different types of pixels, which
have polarization filters for 0�,45�,90� and 135�, respectively. We
can describe the measured raw values of such a sensor by a 4⇥ 3
matrix C, in which each row corresponds to the first row of the
Müller matrix for the corresponding polarization filter (Eq. (4)):
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The captured color image is a mosaic of intensities filtered by
the micro-polarizers, and also by Bayer filters in the color case. The
color-polarization DoFP sensor we used has a 2⇥ 2 pixels (repre-
senting polarization at 4 angles) in each color channel according
to the Bayer pattern (see inset in Fig. 2a), thus combining a set
of 4⇥ 4 super-pixel, which is different from regular color sensor.
However, in the monochrome case, only 2⇥2 pixels form a super-
pixel, which only contains the 4 polarization angles. This can be
represented by pixel-wise multiplications by the respective mosaic
masks. Therefore, the polarization image formation model can be
expressed as

y = BKAs+n, (6)

where s 2 R3cN is the vector form of stacked unknown Stokes pa-
rameters for each pixel in each color channel c. For monochrome
cameras, c = 1, and for RGB cameras, c = 3. The total number
of sensor pixels is N. We first create a three-block diagonal ma-
trix A 2 R4cN⇥3cN that converts the unknown Stokes vectors to
measured intensities at four degrees for each color channel, and
each block matrix in A is a C matrix. Second, we construct a se-
lection matrix K 2 RcN⇥4cN . K picks specific vector components
according to the specific 2⇥2 intensity pixel pattern for each color
channel. Then we applied a selection matrix B 2 RN⇥cN to formu-
late a Bayer pattern according to the set of 4⇥ 4 super-pixel. For
the monochrome camera, the Bayer filter diminishes, so B = I be-
comes an identity matrix. Finally, we add Gaussian noise n 2 RN ,
and formulated a captured raw data y 2 RN .

2.3. Inverse Problem
To recover the unknown Stokes vectors, we solve a constrained
optimization problem within the ADMM framework. This frame-
work has been very successful in many image reconstruction tasks,
including color image demosaicking [HST⇤14], especially when
combined with sophisticated regularization terms such as a cross-
channel prior [HRH⇤13], or BM3D denoising [DFKE07]. How-

ever, our experiments (see Sec. 5) show that many of these regu-
larizers do not significantly improve reconstruction results for po-
larization images, and can in fact be detrimental to reconstruction
quality. In other words, priors developed for color images do not
necessarily hold for polarization images. Instead, our proposed po-
larization demosaicking method takes the simpler form
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where the first term in Eq. (7) is a data fitting term, and the sec-
ond and third terms are the regularizers, which represent Huber
penalties on the derivatives of the Stokes vectors (D1s = r1s,
D2s =r2

2s). The Huber penalty [Hub64] is
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where d is a parameter that determines the transition points. We
adopt Huber penalty here because it overcomes the penalization of
small gradients inherent to total variation (TV), and therefore im-
proves the reconstruction of image gradients while still maintaining
sharp edges. The constraints in Eq. (7) enforce physical proper-
ties of the individual components of the Stokes vector s: assuming
that the individual polarization measurements are normalized to the
range [0 . . .1], then the total intensity s0 falls in the range [0 . . .2],
while s1 and s2 range from �1 to 1. Also, the absolute value of s1
and s2 are always less than or equal to s0. These physical properties
can be seen directly from the definition of the Stokes vector (1) and
the DoLP/AoLP (2). Sensor noise and interpolation artefacts could
result in violations of these physical constraints, so that explicit en-
forcement in the optimization method becomes necessary in order
to avoid artefacts in the derived quantities DoLP and AoLP.

Within the ADMM framework, the problem is split into two sub-
problems and solved separately. We introduce two slack variables
z1 = D1s and z2 = D2s. In the s-problem, we solve

minimize
s
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Eq. (9) is transformed into an unconstrained problem
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Therefore, the individual update rules for sn+1, zn+1, and un+1 are
as follows:
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For solving optimal value of sn+1 in Eq. (11), we first calculate
its derivative
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After derivation, the updated sn+1 then is solved efficiently by
a Conjugate Gradient solver, and the Sd is the well-known soft
shrinkage:
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3. Polarization Image Dataset
Systematic evaluation of our demosaicking method and compet-
ing techniques requires a realistic, high quality test dataset with
ground truth results. To the best of our knowledge, existing po-
larization image datasets are monochromatic, and consist of only
a few scenes [LGFB18, TDRB18]. High-resolution polarization
images with color, are lacking for research. Therefore, we con-
struct a polarization image dataset containing 40 carefully cali-
brated ground truth images with a wide range of scenes. We try
to cover as many naturally occurring polarization effects as pos-
sible. We capture different scenes with various shapes, materials,
and lighting conditions. In particular, polarized illumination is an
essential and useful phenomenon in artifact diagnosis and indus-
trial inspection. We include such images by capturing transparent
objects in front of a highly polarized monitor. Figure 3 is a gallery
of our polarization image datasets.

The dataset is captured by the division-of-time (DoT) strategy.
We use a FLIR Grasshopper3 GS3-U3-41C6C color camera. The
sensor is a CMOSIS CMV4000-3E5 CMOS, with 2048⇥2048 pix-
els. Each pixel is 5.5µm⇥5.5µm. A Canon EF50mm f/1.8 II lens is
used at its maximum aperture size. We mount a linear wire grid po-
larizer (WP25M-VIS, Thorlabs) on a high-resolution rotary stage
(T-RSW60A, Zaber), and place it in front of the camera. The lin-
ear polarizer has more than 800 : 1 extinction ratio over the visible
spectrum from 420nm to 700nm. For each scene, we capture four
groups of raw images at 0�, 45�, 90� and 135� with the same ex-
posure time. Each group has 100 images captured consecutively.
We take the average of these 100 images to suppress noise. We also
do a 2⇥ 2 pixel binning in the averaged image to further increase

Figure 3: Gallery of our polarization image dataset. Only intensity
components are shown here. The complete dataset is available at
DOI:10.25781/KAUST-2VA2X.

the signal-to-noise ratio. With such pre-processing, we can gener-
ate high-quality ground truth data for Itot, DoLP, and AoLP.

4. Color Polarization Image Visualization

Intensity DoLP AoLP 9D Zoom

Figure 4: We show the intensity component, DoLP in sRGB color
space, AoLP, and 9D polarization visualization.

In addition to providing quantitative numerical results for experi-
ments, it is also useful to visually analyze image results. In the case
of color polarization images, this is made complicated by the high
dimensionality of the data, with a total of 9 channels. Representing
this data in a single image is a challenging task. We therefore ex-
plore both individual visualizations of DoLP and AoLP as well as
an integrated visualization of all polarization states in their entirety.
We proposed the following visualization methods to complement
existing approaches. Figure 4 shows our visualization results for
two typical scenarios. The top row is a natural scene with indoor
illumination. The bottom scene with highly linear polarization illu-
mination in the background.

4.1. Degree of Linear Polarization
A straightforward way to visualize the DoLPs for each color chan-
nel is to map the DoLP values to a color map and display the false
color image separately, with a color bar indicating the values in
DoLPs. Figure 5 shows this method for the above two scenes. Here
we adopt the viridis color map. While this method presents all the
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Figure 5: Visualization of DoLP by false color images. DoLP val-
ues are projected to a false color image.

relevant data, it is very hard to visually make out any color depen-
dencies in the polarization state.

Since the valid data for DoLP is linear in the range between 0
and 1, we can concatenate the respective DoLPs in its correspond-
ing color channel, and convert it to a color image in the sRGB color
space, as shown in the second column in Figure 4. If there is no dif-
ference of DoLPs between color channels, the color would appear
gray and the level of gray indicates the values of DoLPs. Percep-
tually, a white in this DoLP image indicates complete linear polar-
ization, while black corresponds to a complete lack of polarization.
The plant scene in Figure 4 illustrates this effect. The background
is nearly unpolarized, so it appears dark. Reflection induced polar-
ization on parts of the leaves has higher DoLP, and looks brighter
than others. There is little DoLP difference between color channels,
hence the overall DoLP image looks gray.

For the bottom row of Figure 4, the background illumination
from a computer monitor is strongly linearly polarized, so it ap-
pears much brighter. Significant differences in DoLP across color
channels lead to color fringes in the plastic wafer carriers because
of internal stress. The appearance of color reflects which color
channel(s) has larger DoLP values. For example, red means the
DoLP is larger than those in the green and blue channels. Such
effects can hardly be seen in the corresponding intensity image.

4.2. Angle of Linear Polarization
The valid range for AoLP is [0�,180�], but the cyclic nature of an-
gles leads to a wraparound at 180�, which is essentially the same
as 0�. Direct mapping from angle values to gray levels, as shown
in the third column in Figure 4, may lead to misinterpretation for
AoLPs that are close to 0� or 180�. Usually the noisy patterns oc-
cur in the AoLPs when there is a large difference between color
channels due to angle wraparounds. Thereby it is more reasonable
to look at the difference of AoLPs by considering the wraparound.
We propose to take the AoLP in green channel as a reference, and
calculate the absolute difference in blue and red channels with re-
spect to green. To compensate the angle wraparounds, we calculate
the AoLP difference in the following way

Dfi = min
�
| fi �fref |,180�� | fi �fref |

�
, (16)

where i is either blue or red, and the reference here is green.
We show various visualizations of AoLP in Figure 6 for the
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Figure 6: Visualization of AoLP in three ways. From left to right.

above two scenes. The first and third rows are the conventional
way to display AoLP in false color with a color bar. We adopt the
cmocean “balance” color map here. The second and fourth rows
show our visualization methods in three ways. The first way is to
cast normalized AoLP values into their corresponding color chan-
nels. This is shown in the third column in Figure 4 as well as in
the first column in Figure 6. The gray levels indicate the values
of AoLP. If there is significant difference of AoLPs among color
channels, color fringes show up, and the color indicates which color
channel(s) has larger AoLP values. The second visualization is to
show difference AoLP (diffAoLP) as a color image. We take the
green channel as a reference, because the sensor response in green
is higher than the other two, and hence the AoLP is more reliable in
this channel. The absolute difference AoLP values are cast into red
and blue channels accordingly. The larger the relative difference,
the more prominent the color in the corresponding channel(s) in the
diffAoLP image. The third approach is to mitigate the fact that in
some cases where diffAoLP is rather small and hardly visible. We
set the green AoLP values as a transparency a channel to make it
more visible, as shown in the third columns in Figure 6. Compared
with the direct mapping visualization of AoLP in the first columns,
the diffAoLP and diffAoLP a images reveal more comprehensive
information. The paper, we use diffAoLP a for AoLP visualization.

4.3. Visualization in 9D
Although the above individual visualizations of DoLP and AoLP
reflect the fine details of different aspects of polarization states,
visualizing polarization as an entirety would be more helpful to
interpret the whole picture of polarization states. This is particu-
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larly reasonable when DoLP is rather small, since then the AoLP
becomes arbitrary, and hence meaningless. The complete visualiza-
tion of polarization states for color polarization images requires to
show 9D data at the same time. In analogy to a vector field within a
unit circle, the magnitude links to the value of DoLP, and the direc-
tion represents AoLP. Since the wraparound of AoLP happens at
180�, the upper and lower halves of the unit circle are centrosym-
metric. Therefore, we can calculate the vector field as

(u,v) = (P cos(2f) ,P sin(2f)) . (17)

We propose to overlay the above vector fields on top of the total
intensity component, which is essentially a color image. As shown
in the fourth and fifth columns in Figure 4, we denote the vector
fields with short lines in different colors. The length of the line re-
flects DoLP, and the orientation of the line indicates AoLP. The
color scheme of the lines are chosen in order not to interfere with
the original color, but still approximating it. We choose cyan for
the blue channel, yellow for green, and white for red. This color
scheme keeps the original color of the image very well, and “pops
up” the regions with strong polarization. For small DoLPs, the vec-
tor field becomes a small dot, and hence negligible in area. The
length and orientation differences among the vector fields indicate
a noticeable difference of polarization states among color channels.
In the glass and plastic scene, the vector fields exhibit different
lengths and orientations among three color channels.

4.4. Virtual Polarizer
The above methods are developed for static images. In an interac-
tive exploration tool, of course more options exist. Since the com-
plete polarization information has been stored in total intensity,
DoLP and AoLP, we can synthesize new intensity images with a
temporally changing “virtual” polarizer as if the images were taken
under the same physical conditions. A virtual linear polarizer can
be fully modeled by the Müller matrix. Figure 7 shows intensity
images with an ideal virtual linear polarizer oriented at different
yet arbitrary angles. Note the slight brightness changes in the shiny
areas on the plant leaves. The effect gets more obvious for the
glass and plastic scene for the drastic changes of polarization states
among color channels. For static images the effect is rather sub-
tle, even in side-by side images, which prompted the development
of the methods described above. Please refer to the Supplementary
Video for a better experience of the virtual polarizer method. For a
thorough review of the both conventional and proposed visualiza-
tion methods, we show an unpolarized illumination of Figure 8.

5. Results
We first evaluate our algorithm by simulation on our polarization
image dataset and then by real experiments to demonstrate the real
performance. In the simulation, we compare our algorithm against
state-of-the-art polarization demosaicking algorithms. The recon-
struction quality is evaluated in terms of peak signal-to-noise ratio
(PSNR) on three quantities: total intensity, DoLP, and AoLP.

5.1. Monochromatic Simulation Results
Conventional polarization demosaicking algorithms focus mainly
on monochromatic images [MLB18]. State-of-the-art algorithms
include bilinear, bicubic, bicubic spline interpolations [GG11],

50� 98� 173�

17� 114� 165�

Figure 7: Synthetic intensity images: New intensity images are ob-
tained by multiplying the known Stokes vectors by the Müller matrix
and extract the new S0 component.

Itot R G B

DoLP R G B 0.68

0

di�AoLP↵ R G B ⇡

0

9D “zoom” red “zoom” green “zoom” blue

Figure 8: blackstuff scene: First row shows the false color
image in HSV space. The second and third row show DoLP and
AoLP in false color, and diffAoLP with transparency channel.

Fourier domain demosaicking [TLR09], Intensity Correla-
tion among Polarization Channels (ICPC) [ZLHC16], Sparse
Representation-based Demosaicing (SR) [ZLL⇤18], Newton’s
Polynomial Interpolation (Newton) [LZPK19], and End-to-end
Fully-Convolutional Neural Network (E2E) [ZLZY19]. Therefore,
we compare against these methods in the monochrome case. We
take the green channel from our color polarization image dataset
as the ground truth monochrome polarization data, because it has a
better signal to noise ratio than the other two channels.

We show two exemplary results in Figure 9, a ball scene with
unpolarized background illumination and a containers scene
with polarized illumination. In both cases, we add Gaussian noise
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Figure 9: Monochromatic polarization demosaicking: The upper part is a ball scene with unpolarized illumination, and the low part is a
containers scene with polarized illumination. The reconstruction quality is presented in PSNR for all the methods for comparison.

with standard deviation s = 2. For conventional methods, there ex-
ist distinct edge artifacts because of interpolation, e.g., around the
border between black and white patches on the ball. They tend to
overestimate DoLP, while our method can suppress these artifacts.
We quantitatively compare PSNRs for all the methods on the in-
tensity, DoLP and AoLP. The results show our method performs
significantly better in all the three polarization components.

The ICPC [ZLHC16] method claims to achieve better visual re-
sults than simpler interpolation methods, and the DoLP and inten-
sity have lower root-mean-square error (RMSE) than bilinear, bicu-
bic, and bicubic spline interpolation. However, running the ICPC
method on our full dataset, we observe that although the intensity
results of ICPC are almost always better than the other competi-
tors, the DoLP results are not always higher than simple filtering.
In particular, for the scenes with polarized illumination the recon-
structed DoLP is quite low, as shown in the lower part of Figure 9.

In addition, ICPC does not account for AoLP in the reconstruc-
tion, resulting in poor AoLP results. Another competitive method,
Fourier domain demosaicking [TLR09] is robust, but the DoLP is
sometimes lower than bilinear and ICPC but overall higher than the
other methods. The AoLP of Fourier domain demosaicking has the
same situation with DoLP. In total, our method has better recon-
struction quality.

It is worth noting that the range of DoLP is [0,1]. However, ex-
isting methods tend to overestimate DoLP, so in dark regions these
methods could have DoLP values larger than 1, which is physically
impossible. This has been pointed out by Tibbs et al. [TDRB18].

Sparse Representation (SR) [ZLL⇤18] proposed by Zhang et al.
is one of the representative approach for solving monochrome po-
larization demosaicking. However, the deficiency of this method
is quite obvious on both Figures and PSNR results. In Figure 9
fifth column, there are missing pixels for each recovery parame-
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Table 1: Average PSNR results through the whole dataset for monochromatic polarization demosaicking (s = 2).

Average PSNR Bilinear Bicubic Bicubic Spline Fourier ICPC SR Newton E2E Ours (Huber2d)

Unpolarized
illumination

Itot 42.85 43.46 40.57 41.63 45.07 34.03 44.16 27.96 47.91
DoLP 32.45 30.71 29.94 31.64 29.38 34.21 36.68 40.00 40.43
AoLP 19.83 18.72 18.31 18.07 10.82 21.51 17.20 7.57 25.46

Polarized
illumination

Itot 45.89 45.58 43.04 45.04 47.19 37.38 35.22 47.31 46.34
DoLP 33.99 32.92 29.53 32.38 5.42 32.87 22.47 32.10 34.63
AoLP 30.02 29.47 28.54 29.37 15.99 22.67 17.80 1.69 31.37

ter, and the PSNR for total intensities in Table 1 are lower than
almost all the comparison methods. Another prevalent method is
Newton’s polynomial interpolation (Newton) [LZPK19]. This ap-
proach is very efficiency and has excellent results on the unpo-
larized illumination scenes except for AoLP recovery. However,
as shown in the polarized illumination, the recovery resolution is
not comparable. An end-to-end fully-convolutional neural network
(E2E) [ZLZY19] just published recently. We applied their best
model with correct DoFP sensor pattern and test it on our proposed
dataset. As shown in Figure 9, it is evident that AoLP approxima-
tion is not accurate, especially in polarized illumination. That may
because the original training dataset from E2E [ZLZY19] fail to
include polarized illumination scenes. However, for total intensity
and DoLP recovery, polarized illumination has distinctive improve-
ment, which are even better than our proposed method in con-
tainers scene. We run E2E method through our entire dataset
and calculate the average PSNR results for three parameters. Their
total intensity recovery in polarized scene is slightly better than
ours. Although training data from E2E are purely unpolarized illu-
mination, the reconstruction results for all the parameters are still
lower than ours. Considering that various factors could affect po-
larization states, we run the comparison for all the methods on our
entire dataset. The average PSNR results in Table 1, demonstrates
the effectiveness and robustness of our method.

5.2. Color Simulation Results
Since both color and polarization information offers even more in-
formation about the scene, our work puts more focus on testing our
algorithm on color polarization demosaicking. This brings much
more challenges for the interpolation methods, because color and
polarization are independent properties of light, and joint demo-
saicking of the two is difficult to reconstruct in the sense of inter-
polation. There are few algorithms for this purpose in the literature,
so instead of comparing with interpolation based methods, we com-
pare different priors/regularizers in our optimization framework.

Specifically, we consider candidate image priors commonly used
in image reconstruction, including total variation on first order
derivatives (TV), total variation on both first and second order
derivatives (TV+2d), Huber loss penalty on first order derivatives
(Huber), Huber loss penalty on first and second order derivatives
(Huber+2d), Huber penalty on 1st and 2nd order derivatives com-
bined with BM3D prior [DFKE07] (BM3D), and Huber penalty
on 1st and 2nd order derivatives combined with BM3D and cross-
channel priors [HRH⇤13] (BM3D+CC). For the cross-channel
prior, we implement it between color channels, as well as between
Stokes vector components. We show in Figure 10 the results for

two typical scenarios. The first is a fruit scene with unpolar-
ized indoor illumination (upper part). The second is the cell-
phonecases scene with polarized illumination (lower part). In
each case, we add Gaussian noise with s = 2. Among all the pri-
ors, Huber penalty on both first and second order derivatives out-
performs the other three candidates for all the polarization compo-
nents. As the results show, the BM3D prior and cross-channel prior,
which proved to be effective for color images, are not helpful for
color polarization image reconstruction. This indicates that, due to
the very different statistics of Stokes vectors compared with con-
ventional color images, Huber penalty on the first and second order
derivatives are the most effective priors for polarization images. We
also compared with interpolation methods, and all our optimization
based methods have better results than the interpolation method. In
addition, we run our algorithm throughout our dataset. The average
PSNR results are shown in Table 2. To consider different noise lev-
els, we compare the result with noise s = 2 and s = 3 respectively.
The results indicate that our proposed method with Huber penalty
on both first and second order derivatives works better than other
candidate priors. We also include the results for bilinear interpola-
tion for a baseline comparison. The bilinear interpolation is applied
in the four intensity images after color demosaicking.

In the monochromatic case, we divide the dataset scenes into two
parts according to the illumination conditions. For the two cases,
we use different regularization weights for the priors, but we fix
the weights for all the images in the same illumination conditions.
This is because in the polarized illumination, the brightness of the
four captured intensities under the micro-polarizers could drop or
increase drastically for orthogonal polarization angles. In the unpo-
larized illumination, such variation is much less.

For the performance of our framework, we implemented the
method in both a Matlab (CPU) and a CUDA (desktop GPU) ver-
sion. The CPU implementation of the overall computation cost
looks high, however, a short convergence with a good starting point
is close to the converged result and provides high-resolution quality
and shorter runtime. The GPU version takes about 5.5 seconds per
frame, but has further potential for optimization.

5.3. Experimental Results
In real experiments, we use a monochrome polarization camera
PHX050S-P and a color polarization camera PHX050S-Q from Lu-
cid Vision Labs. Both polarization sensors are shipped with Sony
IMX250MYR CMOS with 2048⇥ 2448 pixels. Each pixel size is
3.45µm⇥ 3.45µm. In the monochrome case, each 2⇥ 2 pixels are
a group. In the color case, every 4⇥ 4 pixels form a super pixel to
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Figure 10: Color polarization demosaicking: A fruit scene with unpolarized illumination, and a cellphonecases scene with polarized
illumination.Comparison of optimization based methods with different priors.

Table 2: Average PSNR results for joint color and polarization demosaicking.

Average PSNR Bilinear TV Huber TV2d Huber2d
+BM3D

Huber2d
+BM3D+CC

Ours
Huber2d

Unpolarized
illumination

s = 2

Itot 41.52 38.39 40.28 40.32 40.01 40.02 40.18
DoLP 31.13 32.40 37.22 34.12 37.29 37.28 37.34
AoLP 18.82 22.23 22.80 22.80 22.39 22.38 24.09

Unpolarized
illumination

s = 3

Itot 40.77 38.01 39.73 39.48 39.80 39.82 39.97
DoLP 29.58 33.68 36.11 33.65 36.47 36.46 37.03
AoLP 17.36 20.32 21.51 21.35 21.41 21.40 22.85

Polarized
illumination

s = 2

Itot 44.22 44.18 43.14 44.51 42.75 42.73 44.82
DoLP 32.68 32.50 32.15 32.74 31.02 30.99 33.64
AoLP 30.24 30.30 31.00 29.99 28.41 28.39 31.05

Polarized
illumination

s = 3

Itot 43.13 43.02 41.74 43.31 41.76 41.75 43.22
DoLP 31.14 31.62 30.93 31.67 29.68 29.67 31.75
AoLP 29.54 29.82 30.22 29.53 27.84 27.84 30.11
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sample both polarization and color. We use a Canon EF 50mm f/1.8
II lens operating at the maximum aperture for all the results.

Both color calibration and polarization calibration are necessary
before processing. We adopt the method proposed by Akkaynak
et al. [ATX⇤14] to calibrate color correction with a Macbeth color
checker. To minimize the influence of polarization, we use unpolar-
ized light for illumination. We find that the Macbeth color checker
itself exhibits negligible polarization effects. For simplicity, we
only apply white balancing for all the results.

Polarization calibration aims at characterizing the conversion
matrix from the Stokes vector to intensities for the micro-polarizers
in eachcolor channel. Following the calibration method proposed
by York and Gruev [YG12], we mount a high extinction ratio linear
polarizer (WP25M-VIS, Thorlabs) on a rotary stage (T-RSW60A,
Zaber). A white light source (HPLS245, Thorlabs) is first colli-
mated and then enters the linear polarizer. The exiting light be-
comes linearly polarized in this way. We rotate the linear polarizer
to change the incident angle of polarization. The polarization sen-
sor measures the intensities for different rotation angles. We sweep
the rotation angles from 0� to 179� with a 1� step. We take 100
images for each angle and average them to suppress noise. We fit
the intensity changing curves and obtain the respective coefficients
to construct the conversion matrix.

We show real experimental results in Figure 11 for both
monochrome and color polarization cameras with the proposed op-
timization method. For each camera, we show two arbitrarily cap-
tured scenes. Since our method deals with the color/polarization
demosaicking simultaneously in an optimization framework, the
edges can be handled more properly. This means our method is
more conservative such that we do not “create” artificial polariza-
tion effects, especially on the boundaries in the scenes.

6. Discussion and Conclusion
Polarization imaging is an effective analytical tool across many
disciplines. An improved resolution of polarization imaging is of
interest, especially for analyzing internal stress of glass and plas-
tics that are not detectable from conventional imaging approaches.
Another crucial application includes highlighting the imperfections
and scratches of transparent objects, especially those fabricated
from plastic. In order to improve the reconstruction quality of the
color and polarization information, we have demonstrated an ef-
fective algorithm to combat imperfect issues by inverting the un-
known Stokes vectors from a single captured mosaic image within
the ADMM framework. The resulting intensity, DoLP, and AoLP
outperforms interpolation based methods, and offer more accurate
measurements for the high dimensional color polarization informa-
tion. Our self-constructed high-resolution color polarization image
dataset covers as many polarization scenarios as possible that occur
in the natural world, offering a large database for algorithm evalu-
ation and polarization analysis. With the aid of our high-resolution
color polarized illumination images, the surface scratches, and in-
ternal stress characteristics of the objects are quite distinct. We en-
vision the methods presented in this paper will enable many more
applications in machine vision, biomedical imaging, remote sens-
ing, marine science, etc. for both research and industry.
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Appendix A: Müller Matrix
The polarization property of an optical element is characterized by
its Müller matrix. In general, the Müller matrix for an ideal linear
polarizer oriented q with respect to horizon is

Mq =
1
2

2

4
1 cos(2q) sin(2q)

cos(2q) cos2(2q) sin(2q)cos(2q)
sin(2q) sin(2q)cos(2q) sin2(2q)

3

5 . (18)

So the Müller matrices for 0�, 45�, 90� and 135� polarizers are
8
>>>>>>><

>>>>>>>:
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1 0 �1
0 0 0
�1 0 1

3

5 .

(19)

An ideal polarizer can transmit all the light parallel to its ori-
entation angle, and block light completely in the perpendicular di-
rection. In reality, fabrication artifacts lead to imperfections on the
polarizer. The parallel and perpendicular transmittance become k1
and k2. Diattenuation is D = (k1 + k2)/(k1 � k2) and extinction ra-
tio is ER = k1/k2 = (D+1)/(D�1).

The Müller matrices for the above polarizers are now
8
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Since the sensor can only measure the intensity, for each super
pixel in the polarization sensor, the captured intensities for 0�, 45�,
90� and 135� can be obtained from the Stokes vector as follows

2
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I135

3

775=
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2

2
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3

5 . (21)

On the other hand, the conversion from the four intensities to Stokes
vector can also be written in the matrix-vector product form by
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3
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Appendix B: Calibration
For calibration, we rotate an external polarizer with a high ex-
tinction ratio in front of the polarization sensor, and can there-

fore assume the input light is perfectly linearly polarized at
a specific angle. The reference frames for the polarizer rota-
tion angle and the sensor polarization angle are usually not the
same, and we denote the difference as b. So the Stokes vec-
tor for the incident polarized light at rotation angle a is Sin =⇥
1,cos

�
2(a+b)

�
,sin

�
2(a+b)

�⇤T
.

Due to fabrication tolerances, the orientation angles for the mi-
cropolarizers may be slightly different from their nominal values.
The real orientation angle can be expressed as q+Dq, where Dq
is the orientation angle error. According to Eq. (21), the intensity
received on the sensor is

Iq =
⇣

kq
1 + kq

2

⌘
+
⇣

kq
1 � kq

2

⌘
cos(2(q+Dq�a�b)) . (23)

We sweep the rotation angle from 0� to 179� with a 1� step,
and observe the intensity changes for the 0�, 45�, 90� and 135�

micropolarizers. The curves for each color channel are shown in
Figure 12. We fit the curves using the following equation

f (a) = a0 +a1 cos(2(q�a�b)) . (24)

The unknown value of b is part of the fitting process. Dq is then
calculated as Dq = q� b̄. The final the calibration matrices for our
polarization camera are as follows:
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