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(a) Itot PSNR = 47.45 (b) DoLP PSNR = 39.44 (e) Itot PSNR = 46.16 (f) DoLP PSNR = 35.81

(c) AoLP PSNR = 27.98 (d) visualization zoom (g) AoLP PSNR = 30.99 (h) visualization zoom

Figure 1: Left (a)-(d): Monochrome polarization demosaicking results for total intensity, DoLP, AoLP and visualization with unpolarized
illumination. Right (e)-(h): Color polarization demosaicking results for total intensity, DoLP, AoLP and visualization with polarized illumi-
nation. Our proposed algorithm outperforms state of the art for both monochrome and color polarization focal plane arrays.

Abstract
Division-of-focal-plane (DoFP) polarization image sensors allow for snapshot imaging of linear polarization effects with inex-
pensive and straightforward setups. However, conventional interpolation based image reconstruction methods for such sensors
produce unreliable and noisy estimates of quantities such as degree of linear polarization (DoLP) or angle of linear polariza-
tion (AoLP). In this paper, we propose a polarization demosaicking algorithm by inverting the polarization image formation
model for both monochrome and color DoFP cameras. Compared to previous interpolation methods, our approach can signif-
icantly reduce noise induced artifacts and drastically increase the accuracy in estimating polarization states. We evaluate and
demonstrate the performance of the methods on a new high-resolution color polarization dataset. Simulation and experimental
results show that the proposed reconstruction and analysis tools offer an effective solution to polarization imaging.

CCS Concepts
• Computing methodologies → Computational photography;

1. Introduction
Polarization is an important property of light in addition to its am-
plitude and phase. Polarization imaging has found uses in various
disciplines and applications such as inspection of objects to de-
tect stress, scratch recognition, transparent objects shape detection
when the low-contrast environment appears. For future perspec-
tives, it can be applied in microscopy to 3D image reconstruction
and ranging from remote sensing. In nature, many diverse species
have polarization sensitive vision systems, e.g., honeybees, mantis
shrimps, cephalopods, etc. [Hor14]. Unfortunately, human beings
are incapable of discerning polarization effects with the naked eye.

To facilitate polarization in our daily life, a variety of polarization
imaging, a.k.a imaging polarimetry techniques have been devel-
oped with the aid of various polarizing optical elements over the
past few decades [TGCS06, AK02]. Nonetheless, high-resolution
snapshot polarization imaging remains a significant challenge.

Recently a class of division-of-focal-plane (DoFP) image sen-
sors have been developed, featuring compactness, non-moving
parts, and a snapshot capture mode. In such cameras, a micro-
polarizer array with four polarization measurements is integrated
into the pixels of the focal plane array sensor, similar to the way
Bayer filters are integrated into color cameras [YMU∗16,GEM∗17,

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

https://orcid.org/0000-0002-0809-0093
https://orcid.org/0000-0001-6395-8521
https://orcid.org/0000-0003-3112-2820
https://orcid.org/0000-0002-4227-8508


S. Qiu, Q. Fu, C. Wang, W. Heidrich / Polarization Demosaicking

GDB∗18,HMB∗14]. Both monochrome and color versions of such
DoFP polarization cameras are now commercially available. How-
ever, effective polarization reconstruction for such sensors remains
a largely uninvestigated problem. As pointed out by Tibbs et
al. [TDBR17,TDRB18], noise in the measurement may lead to sig-
nificant artifacts or even incorrect conclusions. We show a simple
example in Fig. 2 (b), where Gaussian noise with a standard devi-
ation of 2 out of 255 is added in the measurement, and apparent
artifacts arise on the edges in the Degree of Linear Polarization
(DoLP) estimation by bilinear interpolation. This problem is even
more severe for a color polarization camera since both polarization
and color demosaicking should be taken into account.

(a) (b) (c)

(d)

Figure 2: Noise induced artifacts in DoLP for bilinear interpola-
tion in a color polarization camera. (a) Ground truth DoLP. (b)
Reconstructed DoLP corrupted by noise (2 out of 255). The zoom
regions (c) and (d) illustrate severe artifacts occurring at the edges
using bilinear interpolation. The small figure in (a) is a micro-
polarizer and Bayer filter layout for a color polarization camera.

To tackle polarization demosaicking problems, various inter-
polation methods have been proposed, e.g., bilinear, bicubic,
cubic spline interpolation [GG11], Fourier domain demosaick-
ing [TLR09], and Intensity Correlation among Polarization Chan-
nels [ZLHC16]. A recent thorough survey [MLB18] for a complete
summary. However, existing methods are tailored for monochrome
polarization images, and distinct edge artifacts are prominent.
Therefore, accurate numerical reconstruction from raw measure-
ments for both monochrome and color polarization cameras other
than the interpolation method is a must in practical applications.

In this work, we present a high-quality reconstruction algorithm
tailored for both monochrome and color polarization images. We
propose a comprehensive image formation model by taking into
account the Stokes vector conversion, micro-polarizer mosaicking,
and noise model. We obtain significantly improved estimates of the
intensity, Degree of Linear Polarization (DoLP), and Angle of Lin-
ear Polarization (AoLP) for monochromatic and color polarization
images by solving an inverse problem within the alternating di-
rection method of multipliers (ADMM) framework. Considering a
high-quality large polarization image dataset is lacking in this area,
we construct a new dataset with 40 scenes, including both unpolar-
ized and polarized background illumination cases. This carefully
captured high-resolution dataset covers a variety of polarization
scenarios that are commonly seen in the real world, and we make
it public for future research at DOI:10.25781/KAUST-2VA2X. We
demonstrate and evaluate our algorithm on this dataset and show
numerical comparisons against prevalent monochromatic polariza-
tion demosaicking methods and a high-resolution color polariza-

tion demosaicking approach. Simulation and experimental results
are carried out to show that the proposed reconstruction method
offers an effective solution to polarization imaging.

2. Polarization Demosaicking
2.1. Polarization Model
Stokes vector describes the polarization states for incoherent illu-
mination. In the case of linear polarization, we only consider the
first three components of the Stokes vector, i.e.,

S =

S0
S1
S2

=

 Itot
ItotP cos(2φ)
ItotP sin(2φ)

=

 1
2 (I0 + I45 + I90 + I135)

I0− I90
I45− I135

 , (1)

where Itot is the total intensity, P is DoLP and φ is AoLP. The
Stokes parameters S0, S1, and S2 are measured by four intensities
I0, I45, I90 and I135 with linear polarizers oriented at 0◦,45◦,90◦

and 135◦ respectively. DoLP and AoLP are defined as

P =

√
S2

1 +S2
2

S0
, φ =

1
2

arctan
(

S2
S1

)
. (2)

See Supplementary Material for the background of polarization.

2.2. Image Formation Model
The essential quantities of polarization analysis are Itot , DoLP, and
AoLP. Since the Stokes vector as well as the DoLP and AoLP are
highly non-linear functions of the raw sensor data, any noise gets
amplified in the estimates for DoLP and AoLP. On the other hand,
the formulas for the DoLP and AoLP (Eq. (2)) is also non-convex,
making it difficult to directly demosaic these channels. Instead, we
propose to solve the Stokes vectors by modeling the physical image
formation from Stokes to intensity. With a better estimation of the
Stokes vector, higher accuracy in DoLP and AoLP can be obtained.

Since the sensor can only measure intensity, which is just the
first component of the Stokes vector, the four intensity values can
be obtained by selecting the first component in each Stokes vector
for 0◦,45◦,90◦ and 135◦. The captured image is a mosaic of in-
tensities filtered by the micro-polarizers, and also by Bayer filters
in the color case. This can be represented by pixel-wise multipli-
cations by the respective mosaic masks. Therefore, the polarization
image formation model can be expressed as

y = BKAs+n, (3)

where s ∈ R3cN is the vector form of stacked unknown Stokes pa-
rameters for each pixel in each color channel c. For monochrome
cameras, c = 1, and for RGB cameras, c = 3. The total number of
sensor pixels is N. A ∈ R4cN×3cN is a block diagonal matrix that
converts the unknown Stokes vectors to measured intensities via
Müller matrices of the four micro-polarizers. K ∈ R3cN×4cN is a
selecting matrix constructed according to the micro-polarizer lay-
out. B ∈ RN×3cN is a selection matrix representing the Bayer filter
layout. For the monochrome camera, the Bayer filter diminishes,
so B = I becomes an identity matrix. n ∈ RN is additive Gaussian
noise, and y ∈ RN is the captured raw data.

2.3. Inverse Problem
To recover the unknown Stokes vectors, we solve the following
constrained optimization problem within the ADMM framework.
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This framework has been very successful in many image recon-
struction tasks, including color image demosaicking [HST∗14], es-
pecially when combined with sophisticated regularization terms
such as a cross-channel prior [HRH∗13], or BM3D denois-
ing [DFKE07]. However, our experiments (see Sec. 4) show that
many of these regularizers do not significantly improve reconstruc-
tion results for polarization images, and can in fact be detrimental
to reconstruction quality.

Instead, our proposed polarization demosaicking method takes
the simpler form

minimize
s

1
2
‖y−BKAs‖2

2 +λ1h(D1s)+λ2h(D2s) ,

subject to −1≤ s1,s2 ≤ 1,

0≤ s0 ≤ 2,

|s1|, |s2| ≤ s0,

(4)

where the second and third terms are Huber penalties on the
derivatives of the Stokes vectors. D1 is a convolution with
the forward-difference kernels for the X and Y directions,
which is Ox = (0, -1,1) and Oy = (0, -1,1)T . D2 is a Lapla-
cian (0,1,0;1, -3,0;0,0,1), which are the addition of O2

xx =
(0,0,0;1, -2,1;0,0,0), O2

yy = (0,0,0;1, -2,1;0,0,0)T , and O2
xy =

(0,0,0;0,1, -1;0, -1,1). The Huber penalty [Hub64] is

h(x) =


1
2

x2, | x |6 δ,

δ

(
| x | −1

2
δ

)
, | x |> δ.

(5)

where δ is a parameter that determines the transition points. We
adopt Huber penalty here because it overcomes the penalization of
small gradients inherent to total variation (TV), and therefore im-
proves the reconstruction of image gradients while still maintaining
sharp edges. The constraints in Eq. (4) confine the physically pos-
sible ranges of the individual components of the Stokes vector s:
the total intensity s0 ranges from 0 to 2, while s1 and s2 range from
from −1 to 1. Also, the absolute value of s1 and s2 are always less
than or equal to s0. Sensor noise and interpolation artefacts could
result in violations of these physical constraints, so that explicit en-
forcement in the optimization method becomes necessary in order
to avoid artefacts in the derived quantities DoLP and AoLP.

Within the ADMM framework, the problem is split into two sub-
problems and solved separately. We introduce two slack variables
z1 = D1s and z2 = D2s. In the s-problem, we solve

minimize
s

1
2
‖y−BKAs‖2

2 +
ρ1
2
‖z1−D1s‖2

2 +
ρ2
2
‖z2−D2s‖2

2 ,

(6)
where its analytical solution is(

AT KT BT BKA+ρ1DT
1 D1 +ρ2DT

2 D2
)
s∗

= AT KT BT y+ρ1DT
1 z1 +ρ2DT

2 z2,
(7)

This can be solved efficiently by a Conjugate Gradient solver.

We solve the z-problem by a soft-shrinkage operator

Sδ (w) =



ρ

1+ρ
w, | w |6

(
1+ρ

ρ

)
δ,

w− δ

ρ
, w >

(
1+ρ

ρ

)
δ,

w+
δ

ρ
, w <−

(
1+ρ

ρ

)
δ.

(8)

3. Polarization Image Dataset and Visualization
3.1. Dataset
To the best of our knowledge, existing polarization image datasets
are monochromatic, and consist of a few scenes [LGFB18,
TDRB18]. High-resolution polarization images with color, are
lacking for research. Therefore, we construct a polarization image
dataset containing 40 carefully calibrated ground truth images with
a wide range of scenes. We try to cover as many naturally occur-
ring polarization effects as possible. We capture different scenes
with various shapes, materials, and lighting conditions. In particu-
lar, polarized illumination is an essential and useful phenomenon in
artifact diagnosis and industrial inspection. We include such images
by capturing transparent objects in front of a highly polarized mon-
itor. Figure 3 shows a gallery of our polarization image datasets.

Figure 3: Gallery of our polarization image dataset. Only intensity
components are shown here. The complete dataset is available at
DOI:10.25781/KAUST-2VA2X.

The dataset is captured by the division-of-time (DoT) strategy.
We use a FLIR Grasshopper3 GS3-U3-41C6C color camera. The
sensor is a CMOSIS CMV4000-3E5 CMOS, with 2048×2048 pix-
els. Each pixel is 5.5µm×5.5µm. A Canon EF50mm f/1.8 II lens is
used at its maximum aperture size. We mount a linear wire grid po-
larizer (WP25M-VIS, Thorlabs) on a high-resolution rotary stage
(T-RSW60A, Zaber), and place it in front of the camera. The lin-
ear polarizer has more than 800 : 1 extinction ratio over the visible
spectrum from 420nm to 700nm. For each scene, we capture four
groups of raw images at 0◦, 45◦, 90◦ and 135◦ with the same ex-
posure time. Each group has 100 images captured consecutively.
We take the average of these 100 images to suppress noise. We also
do a 2× 2 pixel binning in the averaged image to further increase
the signal-to-noise ratio. With such pre-processing, we can gener-
ate high-quality ground truth data for Itot, DoLP, and AoLP.

3.2. Visualization
The challenge of visualizing color polarization originates from its
9D high dimensionality. We propose alternative methods in Fig. 1
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to complement existing visualization methods for color polariza-
tion images. For DoLP, we concatenate the respective DoLPs in its
corresponding color channel, and convert it to a color image in the
sRGB color space, as shown in Fig. 1 (f). Significant differences
in DoLP across color channels lead to color fringes, which reflect
certain color channels having larger DoLP values. Such effects can
hardly be seen in the corresponding intensity images in Fig. 1 (e).

For AoLPs that are close to 0◦ or 180◦, due to angular
wraparound similar angles are assigned vastly different intensities,
we propose to take the AoLP in the green channel as a reference,
and calculate the absolute difference in blue and red channels with
respect to green. We then set the green AoLP values as a trans-
parency α-channel, which is shown in Fig. 1 (g).

Visualizing the polarization state in its entirety is helpful to inter-
pret the 9D polarization states. In analogy to a vector field within
a unit circle, the magnitude is the value of DoLP, and the direc-
tion represents AoLP. We overlay vector fields on top of the total
intensity for 9D visualization, as shown in Fig. 1 (h).

In addition to static visualization, we take advantages of anima-
tions to reveal implied information from the underlying polariza-
tion states. We synthesize new intensity images with a temporally
changing “virtual” polarizer as if the images were taken under the
same physical condition, where the virtual linear polarizer can be
fully modeled by its Müller matrix. See the Supplementary Mate-
rial for more details of the above visualization methods.

4. Results
We first evaluate our algorithm by simulation on our polarization
image dataset and then by real experiments to demonstrate the real
performance. In the simulation, we compare our algorithm against
state-of-the-art polarization demosaicking algorithms. The recon-
struction quality is evaluated in terms of peak signal-to-noise ratio
(PSNR) on three quantities: total intensity, DoLP, and AoLP. In
AoLP angle wraparound occurs at 180◦, so we first calculate the
error between estimated AoLP and ground truth AoLP by

∆φ = min
(
| φ−φref |,180◦− | φ−φref |

)
, (9)

where φ is the estimated AoLP, and φref is the ground truth. The
equation reduces the wraparound confusion.

4.1. Monochromatic Simulation Results
Conventional polarization demosaicking algorithms focus mainly
on monochromatic images [MLB18]. State-of-the-art algorithms
include bilinear, bicubic, bicubic spline interpolations [GG11],
Fourier domain demosaicking [TLR09], and Intensity Correlation
among Polarization Channels (ICPC) [ZLHC16]. Therefore, we
compare against these methods in the monochrome case. We take
the green channel from our color polarization image dataset as the
ground truth monochrome polarization data, because it has a better
signal to noise ratio than the other two channels.

We show two exemplary results in Fig. 4, a ball scene with
unpolarized background illumination and a containers scene
with polarized illumination. In both cases, we add Gaussian noise
with standard deviation σ = 2. For conventional methods, there ex-
ist distinct edge artifacts because of interpolation, e.g., around the
border between black and white patches on the ball. They tend to
overestimate DoLP, while our method can suppress these artifacts.

We quantitatively compare PSNRs for all the methods on the in-
tensity, DoLP and AoLP. The results show our method performs
significantly better in all the three polarization components.

The latest polarization demosaicking method, ICPC [ZLHC16]
claims to achieve better visual results than simpler interpolation
methods, and the DoLP and intensity have lower root-mean-square
error (RMSE) than bilinear, bicubic, and bicubic spline interpola-
tion. However, running the ICPC method on our full dataset, we ob-
serve that although the intensity results of ICPC are almost always
better than the other competitors, the DoLP results are not always
higher than simple filtering. In particular, for the scenes with po-
larized illumination the reconstructed DoLP is quite low, as shown
in the lower part of Fig. 4. In addition, ICPC does not account for
AoLP in the reconstruction, resulting in poor AoLP results. An-
other competitive method, Fourier domain demosaicking [TLR09]
is robust, but the DoLP is sometimes lower than bilinear and ICPC
but overall higher than the other methods. The AoLP of Fourier do-
main demosaicking has the same situation with DoLP. In total, our
method has better reconstruction quality.

It is worth noting that the range of DoLP is [0,1]. However, ex-
isting methods tend to overestimate DoLP, so in dark regions these
methods could have DoLP values larger than 1, which is physically
impossible. This has been pointed out by Tibbs et al. [TDRB18].
Our method is more robust to handle such low intensity regions in
both unpolarized and polarized illumination cases.

Considering that various factors could affect polarization states,
we run the comparison for all the methods on our entire dataset. The
average PSNR results are shown in Table 1. This further demon-
strates the effectiveness and robustness of our method.

4.2. Color Simulation Results
Since both color and polarization information offers even more in-
formation about the scene, our work puts more focus on testing our
algorithm on color polarization demosaicking. This brings much
more challenges for the interpolation methods, because color and
polarization are independent properties of light, and joint demo-
saicking of the two is difficult to reconstruct in the sense of inter-
polation. There are few algorithms for this purpose in the literature,
so instead of comparing with interpolation based methods, we com-
pare different priors/regularizers in our optimization framework.

Specifically, we consider candidate image priors commonly used
in image reconstruction, including total variation on first order
derivatives (TV), total variation on both first and second order
derivatives (TV+2d), Huber loss penalty on first order derivatives
(Huber), Huber loss penalty on first and second order deriva-
tives (Huber + 2d), Huber penalty on 1st and 2nd order deriva-
tives combined with BM3D prior [DFKE07] (BM3D), and Huber
penalty on 1st and 2nd order derivatives combined with BM3D
and cross-channel priors [HRH∗13] (BM3D+CC). For the cross-
channel prior, we implement it between color channels, as well as
between Stokes vector components. We show in Fig. 5 the results
for two typical scenarios. The first is a fruit scene with unpo-
larized indoor illumination (upper part). The second is the cell-
phonecases scene with polarized illumination (lower part). In
each case, we add Gaussian noise with σ = 2. Among all the pri-
ors, Huber penalty on both first and second order derivatives out-
performs the other three candidates for all the polarization compo-
nents. As the results show, the BM3D prior and cross-channel prior,
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Figure 4: Monochromatic polarization demosaicking on two exemplary scenes in our dataset. The upper part is a ball scene with unpolar-
ized background illumination, and the low part is a containers scene with polarized background illumination. The reconstruction quality
is presented in PSNR for all the methods for comparison.

Table 1: Average PSNR results for monochromatic polarization demosaicking (σ = 2)

Average PSNR Bilinear Bicubic Bicubic Spline Fourier ICPC Ours (Huber2d)

Unpolarized
illumination

Itot 42.85 43.46 40.57 41.63 45.07 47.91
DoLP 32.45 30.71 29.94 31.64 29.38 40.43
AoLP 19.83 18.72 18.31 18.07 10.82 25.46

Polarized
illumination

Itot 45.89 45.58 43.04 45.04 47.19 46.34
DoLP 33.99 32.92 29.53 32.38 5.42 34.63
AoLP 30.02 29.47 28.54 29.37 15.99 31.37

which proved to be effective for color images, are not helpful for color polarization image reconstruction. This indicates that, due to
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Figure 5: Comparison of optimization based methods with different priors. From left to right are the ground truth (GT) data, TV prior, TV
on both 1st and 2nd order derivatives (TV+2d), Huber penalty on 1st derivatives, Huber penalty on both 1st and 2nd order derivatives
(Huber+2d), Huber penalty on 1st and 2nd order derivatives combined with BM3D prior (BM3D), and Huber penalty on 1st and 2nd
order derivatives combined with BM3D, cross-color channel prior (BM3D+CC). The proposed Huber penalty with 1st and 2nd derivatives
outperforms other priors for all the three polarization components.

the very different statistics of Stokes vectors compared with con-
ventional color images, Huber penalty on the first and second order
derivatives are the most effective priors for polarization images. We
also compared with interpolation methods, and all our optimization
based methods have better results than the interpolation method.

In addition, we run our algorithm throughout our dataset. The
average PSNR results are shown in Table 2. To consider different
noise levels, we compare the result with noise σ = 2 and σ = 3 re-
spectively. The results indicate that our proposed method with Hu-
ber penalty on both first and second order derivatives works better

than other candidate priors. We also include the results for bilinear
interpolation for a baseline comparison. The bilinear interpolation
is applied in the four intensity images after color demosaicking. For
color demosaicking, we use the Matlab demosaic function.

In the monochromatic case, we divide the dataset scenes into two
parts according to the illumination conditions. For the two cases,
we use different regularization weights for the priors, but we fix
the weights for all the images in the same illumination conditions.
This is because in the polarized illumination, the brightness of the
four captured intensities under the micro-polarizers could drop or
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Table 2: Average PSNR results for joint color and polarization demosaicking

Average PSNR Bilinear TV Huber TV2d
Huber2d
+BM3D

Huber2d
+BM3D+CC

Huber2d

Unpolarized
illumination

σ = 2

Itot 41.52 38.39 40.28 40.32 40.01 40.02 40.18
DoLP 31.13 32.40 37.22 34.12 37.29 37.28 37.34
AoLP 18.82 22.23 22.80 22.80 22.39 22.38 24.09

Unpolarized
illumination

σ = 3

Itot 40.77 38.01 39.73 39.48 39.80 39.82 39.97
DoLP 29.58 33.68 36.11 33.65 36.47 36.46 37.03
AoLP 17.36 20.32 21.51 21.35 21.41 21.40 22.85

Polarized
illumination

σ = 2

Itot 44.22 44.18 43.14 44.51 42.75 42.73 44.82
DoLP 32.68 32.50 32.15 32.74 31.02 30.99 33.64
AoLP 30.24 30.30 31.00 29.99 28.41 28.39 31.05

Polarized
illumination

σ = 3

Itot 43.13 43.02 41.74 43.31 41.76 41.75 43.22
DoLP 31.14 31.62 30.93 31.67 29.68 29.67 31.75
AoLP 29.54 29.82 30.22 29.53 27.84 27.84 30.11

increase drastically for orthogonal polarization angles. In the unpo-
larized illumination, such variation is much less.

For the performance of our framework, we implemented the
method in both a Matlab (CPU) and a CUDA (desktop GPU) ver-
sion. The CPU implementation of the overall computation cost
looks high, however, a short convergence with a good starting point
is close to the converged result and provides high-resolution quality
and shorter runtime. The GPU version takes about 5.5 seconds per
frame, but has further potential for optimization.

4.3. Experimental Results
In real experiments, we use a monochrome polarization camera
PHX050S-P and a color polarization camera PHX050S-Q from Lu-
cid Vision Labs. Both polarization sensors are shipped with Sony
IMX250MYR CMOS with 2048× 2448 pixels. Each pixel size is
3.45µm× 3.45µm. In the monochrome case, each 2× 2 pixels are
a group. In the color case, every 4× 4 pixels form a super pixel to
sample both polarization and color. We use a Canon EF 50mm f/1.8
II lens operating at the maximum aperture for all the results.

Both color calibration and polarization calibration are necessary
before processing. We adopt the method proposed by Akkaynak
et al. [ATX∗14] to calibrate color correction with a Macbeth color
checker. To minimize the influence of polarization, we use unpolar-
ized light for illumination. We find that the Macbeth color checker
itself exhibits negligible polarization effects. For simplicity, we
only apply white balancing for all the results.

Polarization calibration aims at characterizing the conversion
matrix from the Stokes vector to intensities for the micro-polarizers
in each color channel. Following the calibration method proposed
by York and Gruev [YG12], we mount a high extinction ratio linear
polarizer (WP25M-VIS, Thorlabs) on a rotary stage (T-RSW60A,
Zaber). A white light source (HPLS245, Thorlabs) is first colli-
mated and then enters the linear polarizer. The exiting light be-
comes linearly polarized in this way. We rotate the linear polarizer
to change the incident angle of polarization. The polarization sen-
sor measures the intensities for different rotation angles. We sweep
the rotation angles from 0◦ to 179◦ with a 1◦ step. We take 100
images for each angle and average them to suppress noise. We fit

the intensity changing curves and obtain the respective coefficients
to construct the conversion matrix.

We show real experimental results in Fig. 6 for both
monochrome and color polarization cameras with the proposed op-
timization method. For each camera, we show two arbitrarily cap-
tured scenes. Since our method deals with the color/polarization
demosaicking simultaneously in an optimization framework, the
edges can be handled more properly. This means our method is
more conservative such that we do not “create” artificial polariza-
tion effects, especially on the boundaries in the scenes.

5. Discussion and Conclusion
Polarization imaging is an effective analytical tool across many
disciplines. An improved resolution of polarization imaging is of
interest, especially for analyzing internal stress of glass and plas-
tics that are not detectable from conventional imaging approaches.
Another crucial application includes highlighting the imperfections
and scratches of transparent objects, especially those fabricated
from plastic. In order to improve the reconstruction quality of the
color and polarization information, we have demonstrated an ef-
fective algorithm to combat imperfect issues by inverting the un-
known Stokes vectors from a single captured mosaic image within
the ADMM framework. The resulting intensity, DoLP, and AoLP
outperforms interpolation based methods, and offer more accurate
measurements for the high dimensional color polarization informa-
tion. Our self-constructed high-resolution color polarization image
dataset covers as many polarization scenarios as possible that occur
in the natural world, offering a large database for algorithm evalu-
ation and polarization analysis. With the aid of our high-resolution
color polarized illumination images, the surface scratches, and in-
ternal stress characteristics of the objects are quite distinct. We en-
vision the methods presented in this paper will enable many more
applications in machine vision, biomedical imaging, remote sens-
ing, marine science, etc. for both research and industry.
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