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Abstract

In this paper we present a high-quality, image-space approach to illustration that preserves continuous tone by
probabilistically distributing primitives while maintaining interactive rates. Our method allows for frame-to-frame
coherence by matching movements of primitives with changes in the input image. It can be used to create a variety
of drawing styles by varying the primitive type or direction. We show that our approach is able to both preserve
tone and (depending on the drawing style) high-frequency detail. Finally, while our algorithm requires only an
image as input, additional 3D information enables the creation of a larger variety of drawing styles.

Categories and Subject Descriptors (according to ACM
CCS): 1.3.3 [Computer Graphics]: Nonrealistic Rendering,
Halftoning & Dithering, Monte Carlo Techniques, Image
Processing, Printing, Rendering

1. Introduction

[lustrations are interesting alternatives to traditional pho-
torealistic rendering in terms of both artistic expression
and the power to convey information more effectively us-
ing a possibly limited palette of tones. A number of ap-
proaches have been proposed to simulate illustration with
computer generated imagery. Pen-and-ink illustration tech-
niques are the most comparable to our work and can be
grouped roughly into two categories: image-space methods
(e.g.2>2) and object-space methods (e.g.3!:32 18, 11, 14,223

The former have usually aimed at producing high-quality
images for printing, while most of the latter have been de-
signed for interactive applications. Consequently, image-
space methods focus more on representing tone and avoid-
ing the undesirable “shower door”!¢ effect, where strokes
“stick” in image space independent of object movement.
Object-space methods concentrate on achieving interactive
rates and frame-to-frame stroke coherency. Some image-
space methods discretize tone for cartoon shading effects or
use a minimum number of strokes for expressiveness. Those
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that attempt to accurately represent tone with a significant
number of primitives (pen or brush strokes or stipples) are
not suitable for interactive applications because of their com-
putational cost and their lack of primitive coherency between
individual frames. Alternatively, object-space methods are
typically restricted to attaching stroke textures directly to the
3D geometry. Such methods cannot easily simulate certain
expressive drawing styles, such as allowing strokes to cross
boundaries or the use of motion lines. Not insignificantly,
object-space methods require 3D geometry and cannot be
applied directly to images or photographs.

In this paper we propose an image-space method that ac-
curately represents global tone in a scale-independent man-
ner while preserving frame-to-frame coherence. The method
is capable of producing both high-quality images suitable
for printing and interactive renderings at lower resolutions.
Our approach is similar to that of Salisbury et al.? in that
we derive a probability density function (PDF), or “impor-
tance” from the input image. A sequence of precomputed,
uniformly distributed points in 2D is then redistributed ac-
cording to the PDF. Our PDF is designed a priori to ac-
count for the tone that will be generated by the redistribu-
tion process. This eliminates the expensive incremental up-
dating procedures of the importance required in Salisbury et
al.% Also, since the PDF varies continuously as the input
image changes we can achieve frame-to-frame coherence of
the primitive positions by reusing the same sequence of uni-
formly distributed input points for every frame. We support a
large variety of different drawing styles including examples
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Figure 1: A hatched pen-and-ink illustration using the im-
age gradient for primitive orientation.

that preserve sharp features and edges and others that allow
individual strokes to cross edges. Figure 1 shows an example
rendered with a feature-preserving style. Additional styles
are possible if additional 3D geometry is available.

In the next section, we describe the necessary previous
work, followed by the derivation of the PDF and the redis-
tribution of the input points in Section 3. Section 4 describes
different choices of input point distributions. Finally, in Sec-
tion 5 we describe how to achieve different drawing styles,
before presenting results in Section 6 and concluding with a
discussion of future work in Section 7.

2. Related Work

Our work attempts to automatically place primitives for il-
lustrative purposes while accurately representing tone with a
limited palette and maintaining frame-to-frame coherence at
interactive frame rates. Relevant related work includes auto-
matic illustration techniques, real-time NPR techniques and
techniques for accurately representing tone. Illustration tech-
niques based on user-guided systems for placing primitives
(e.g.2*4) are less related and will not be discussed.

Accurate representation of continuous tone has long been
an important goal of many traditional artists. However, many
of the current automatic illustration techniques focus on sim-
ulating a particular medium or style and are less concerned
with representation of tone and may even purposely limit the
tonal range.® Consequently, the placement of primitives is
often guided less by tone than by the desire to represent tex-
tures or features. However, increasing the accuracy of tonal
reproduction provides the artist with a continuous rather than

discrete palette and aids in producing less heavily stylized il-
lustrations. The current automatic approaches to illustration
can be grouped into two categories, object-space and image-
space methods. We focus mainly on the pen-and-ink tech-
niques in these categories, since our approach also uses a
two-tone palette.

Object-space techniques are often used for interactive ap-
plications and attach individual primitives directly to the
3D geometry. For example, Winkenbach and Salesin’! de-
veloped the concept of a stroke texture, which is a priori-
tized list of strokes for a single geometric object. A subset
of these strokes is then used to approximate the local tar-
get tone. Hertzmann and Zorin'! place hatches and cross
hatches along a cross field derived from the local curva-
ture of a 3D object. They approximate a discretized set of
tones using regions of cross, single or no hatching (in addi-
tion to undercuts and Mach bands to improve contrast) and
vary stroke width for continuity between tones. Klein et al.!*
developed the concept of art maps, which are prefiltered tex-
tures representing a certain drawing style for different target
resolutions. Praun et al.?? extended this concept to tonal art
maps, which allow for smooth transitions between art maps
to achieve continuous tone images.

These object space methods can usually achieve interac-
tive frame rates with a high degree of coherence between
successive frames by attaching the strokes to the 3D geom-
etry. Stroke locations remain fixed in object space, and only
the intensities of the strokes vary depending on the view.
These methods limit the drawing styles that can be achieved.
Some drawing styles in traditional pen-and-ink illustration
call for fuzzy outlines or individual strokes crossing silhou-
ette edges® which cannot be easily simulated with object-
space methods. Praun et al.?? achieve real-time frame rates
and accurate representation of tone, but cannot move the
strokes off the surface of the object.

Image-space methods place primitives using an input im-
age, which can of course be the result of a rendered 3D
model. Using images as input rather than 3D models, Sal-
isbury et al.?* developed a method for generating pen-and-
ink illustrations that preserve tone across scales by using
fairly expensive data structures to track discontinuities and
preserve edges. Deussen et al.? present a stippling method
that uses relaxation to ensure that the final points are uni-
formly spaced (Poisson disk, or “blue noise” distributed)
which is visually more pleasing. Energy minimization in
image-space has been used for certain types of primitive
placement, including paint and streamline visualization.!? 28
Salisbury et al.>> place individual strokes in the image and
distribute them according to an importance function that is
derived from the difference between the input image and
the sum of the preceding strokes. The importance function
is stored in an image pyramid that needs to be updated af-
ter every stroke is placed. Our proposed approach uses a
similar distribution of primitives. Techniques for accurate
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representation of continuous tone in a discrete domain have
been widely studied for creating photo-real representations
in the field of halftoning. Some halftoning techniques that
extend into NPR place varying types of primitives based on
tone?” or convey pattern by carefully constructing dither ma-
trices based on image tone?® or 3D scene information3. Us-
ing 3D geometry as input has allowed some image-space
methods to use silhouette information, but replace straight
silhouette edges with sketchy lines (e.g. Markosian et al.'8)
in image-space, or replace individual parts of the geometry
with textured polygons that are oriented to face the viewer
(Deussen and Strothotte?). While the described image-space
algorithms produce images of very high quality, they usually
require off-line processing and either do not address issues
of accurately representing tone with larger primitives or do
not address the “shower door” effect.

Some methods use a combination of techniques to achieve
interactive frame rates. Kowalski et al.!> place primitives
similar to Salisbury et al.’s?>> image-space method, but fix
them in object-space to achieve multiple frames-per-second.
Kaplan et al.!3 achieve interactive rates by extending Kowal-
ski’s work to include a method of interactively placing prim-
itives. They obtain frame-to-frame coherence by varying the
shape and size of the primitives. Lake et al.!® achieve real-
time rates by using precomputed textures to represent three
or four tones. The tones are associated with materials on the
surface of 3D objects and strokes are added in image-space
for expression. Freudenberg et al.> provide a method for pre-
serving tone of filtered textures by manually constructing
carefully designed ink-maps. While the latter three methods
achieve interactive rates and can place primitives in image-
space, which allows a wider variety of styles, they do not at-
tempt to ensure accurate representation of continuous tone.
The former method maintains continuous tone at interactive
rates but requires too much manual construction of textures.

In our work, we derive a probability density function
(PDF) from the input image, which is similar to the impor-
tance function of Salisbury et al.>> The PDF is designed a
priori to position primitives to achieve the correct output
tone. The rendering itself then merely consists of taking a
sequence of precomputed, uniformly distributed points in
2D, and redistributing them according to the PDF. Once the
primitive locations are defined a variety of drawing styles
can be used. Since the locations vary continuously with
changes in the input the technique naturally achieves frame-
to-frame coherence and scale-independent tone. We show
that both the derivation of the PDF from an image and the
actual rendering can be done at interactive frame rates.

3. Real-time Image-space Illustration

As outlined in Section 2, our method takes a set of possibly
precomputed uniformly distributed random or quasi-random
points, and redistributes them according to a probability den-
sity function (PDF) derived from an input image. We then
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place primitives at the redistributed points to obtain a pen-
and-ink style image of the original scene.

We first describe the details of this redistribution process
and then discuss the derivation of a PDF from a given in-
put image. The tone of the original image in the stippled or
hatched pen-and-ink output is preserved by the derived PDF.

3.1. Generating Random Points With a 1D PDF

Given a one-dimensional probability density function p(x),
x €0, 1], and a set of uniformly distributed random samples
{x;} over [0, 1], we can redistribute the samples according
to p(x). An example of a 1D probability density function is
shown in Figure 2(a). The transformation method is well-
described in the literature (e.g.2!):

We compute the cumulative density function

= [ vy

as shown in Figure 2(b). We then invert C(x) and transform
each sample x; to get x; = C~!(x;). This is shown graph-
ically in Figure 2(c) by mapping a set of samples on the
y-axis through to the x-axis. The set {x}}, drawn as circles
on the x-axis of Figure 2(c), is distributed according to the
original probability density function p(x). Note that for the
purposes of the illustration, the input sample set is regularly
distributed, but it should be chosen from a uniform random
distribution. Also, an intuitive explanation of the mechanics
of the transformation method is possible with Figure 2. The
peaks in the probability density function are transformed
through integration into areas of high slope. These areas
of high slope consequently gather more input samples than
other areas. Symmetrically, valleys in the density function
correspond to areas of low slope in the cumulative density
function, which intersect fewer input samples.

3.2. Generating Random Points With a 2D PDF

Given a 2D probability density function p(x), x € [0,1]?,
and a set of uniformly distributed random points {p;} over
[0, 1]2, we can redistribute the points according to p(x) using
the transformation method.

To find the y-coordinate q;,,, of a redistributed point q; we
compute the cumulative density function

y 1
M) = [ m(tyde, whete miy) = [ p(xd,

and obtain q;, = M~ '(p;,). The function m(y) is the
marginal density function of p(x). In a 2D image, m(y) can
be considered the average intensity of the scanline y. Note
that M(y) is monotonic, but not necessarily strictly mono-
tonic if some scanlines have zero intensity. Hence, the in-
verse M_l(y) exists almost everywhere except at isolated
points.
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(a) Example 1D probability density

function. function.

(b) Example 1D cumulative density

(c) Example 1D cumulative density
function and regular sampling of its
inverse.

Figure 2: 1D example of redistributing points according to a probability density function. Compare the samples (circles) at the

bottom of Figure 2(c) to the density function in Figure 2(a).

Given q;y, we can now determine the x-coordinate q; x
by redistributing p; » according to the PDF of the respective
scanline. Mathematically, this is described by a conditional
PDF
)4 ()C, Qi,y)

m(d;y)

and its cumulative density function

X
Clriain) = [ clolaiy) ds

As before, the x component of the new point is given by the
inverse of that function: q; , = C_l(pi7x|qi7),).

c(+ldiy) =

For a discrete PDF p(x), such as one arising from an im-
age, M(y) and C(x|y) are easily precomputed as a 1D and a
2D table, respectively.

3.3. Deriving a PDF From an Image

In stippling, hatching and other applications, the samples
that we would like to place have finite area. It is possible,
and with increasing density quite likely, that two randomly
placed samples will overlap. Once a pixel has been covered
by a primitive, further overlap has no effect. Thus the area
covered by all samples does not change linearly with the
number of samples. For example, if we were to set N pix-
els uniformly at random in an image of M total pixels, the
ratio of the number of pixels set to the number of pixels cho-
sen is nonlinear and reaches only about 60% when N = M.
The non-linearity is solely due to overlap — pixels chosen
more than once do not change the resulting image. It is, how-
ever, possible to correct for overlap by modifying the density
function accordingly. We will first consider the simple case
where all primitives cover a single pixel.

Let I(x;) be the intensity of the base image at pixel x; as
a value between 0 and 1. Note that 2D pixel positions do not
play a role in the case of single pixel primitives, so we use
the simpler notation with a single subscript to distinguish
between pixels. The drawing process should create a binary
image where the probability that a pixel x; is set is identical
to the intensity of the corresponding pixel in the base image,
that is, p(x; = 1) = I(x;). Furthermore, we want to be able
to independently place random samples for generating this
binary image. We need to find a PDF ¢(x) that can be used
with the algorithm from Section 3.2 such that once primi-
tives have been placed and overlap taken into consideration,
the probability of each pixel being set is as above.

After placing N samples according to the density function
q(x), the probability that pixel x; has not been set is (1 —
q(x;))" . Therefore, we require that

1= (1=g(x))" =
q(xi) =

p(xi=1)
1-Y1=pxi=1) 1)

for all i = 1...n. We also require that ¢(x;) integrate to one
so that it satisfies the definition of a probability density func-
tion. Combining this constraint with Equation 1 gives us

n

Zq(xi):l(:ru(:)i\N/l—p(xizl):n—l. 2)
i=1

i=1
This non-linear equation for N can only be solved directly
for a constant intensity image /(x;) = Iy. For general images
this equation system cannot be solved directly, however stan-
dard numerical methods work well. We bracket the value of
N between a minimum and maximum value and perform a
binary search. The maximum can be chosen as the number
of samples that would be required to cover an image of con-
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stant intensity very close to black. Furthermore, in practice
this binary search does not have to extend over the full sum
in Equation 2. Every term in the sum only depends on the
probability p(x; = 1) for each pixel, which in turn depends
only on the intensity /(x;) of the base image, and that is usu-
ally quantized, for example to 256 levels. Therefore, if we
denote the quantized intensity levels as /;, j = 1...K, and
the histogram of the intensities in the base image as H(/;),
we can rewrite Equations 1 and 2 as

q(l))=1=3/1-1; @)

and
ZH JY1-Ij=n—1 4)

which involves sums over only K levels rather than n pixels.

A similar formula can be derived for primitives larger than
a single pixel (see Appendix A). That method requires the
additional assumption that the tone to be reproduced is ap-
proximately constant over the support of the stroke. This is
the case, for example, if the strokes are thin in one direction
and they are oriented orthogonal to the gradient of the tone
in the source image. Note that drawing styles that require
individual strokes to cross discontinuity edges automatically
compromise on the tone reproduction, so this assumption is
not a serious limitation. Similarly, it is clear that no pen-and-
ink rendering style can precisely preserve features smaller
than the stroke width. A grayscale ramp illustrating the tone
preservation with this method is shown in Figure 3.

3.4. Algorithm

To summarize the previous theory and the following imple-
mentation details, we list the steps of the complete algo-
rithm:

1. Capture an input image, possibly from a 3D object

2. Build the histogram of the image intensities

3. Search for N, the number of primitives to place, using
Equation 4

. Compute ¢(I;), j=1...K using Equation 3

. Integrate scanlines and invert to form M -1

. Integrate and invert to form C™

. Distribute the N primitives according to M ~landc™!

N B~

4. Input Point Distributions

To this point we have assumed that the input points are Pois-
son distributed, i.e. are independently chosen, uniformly dis-
tributed random points. This does not necessarily have to be
the case; we can choose the input points from a variety of
different random distributions and quasi-random sequences.

Poisson distributions tend to form small clusters of points
that are relatively close together. It is widely accepted in the
stippling and halftoning literature?-? that a more uniform
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point spacing yields more visually pleasing results, so that
Poisson disk distributions (“blue noise”?”) are usually pre-
ferred.

Our method maps any given input point set through a dis-
tribution function to determine the final location of prim-
itives. If the base image used to generate the distribution
function is approximately constant locally around a given
point, then the mapping obtained by the distribution function
is approximately linear locally. This indicates that desirable
properties such as minimal distances in a Poisson disk dis-
tribution should be locally preserved in regions of approxi-
mately constant intensity. This property breaks down in re-
gions of strong changes such as edges, but that is also the
case for traditional images.

We use the first N samples of a precomputed point se-
quence (where N is determined according to Section 3.3)
for every frame in order to maintain frame-to-frame coher-
ence. This means that we are restricted to point sequences
where any subset consisting of the first N samples is well
distributed. This eliminates, for example, the Hammersley!?
point set, which is only well-distributed in its entirety, but
allows us to use the Halton® or Sobol?® sequences.

// 7 /7,
/4///?/1/ 4

/
/// // /
é//"

2% /////// ’

RIS
/f///”///
// w7

f/

// .

7
/

/ ///
7%
0
" ///// 75 ’/ 7

Figure 3: Comparison of different input distributions with a
point distribution and a grayscale ramp. From top to bottom:
Poisson distribution, Halton sequence, Sobol sequence and
hierarchical Poisson disk sequence.

In addition, we experimented with Poisson disk dis-
tributed points generated with the hierarchical approach of
McCool and Fiume!®. Besides being faster than other meth-
ods for generating Poisson disk distributed points, this ap-
proach also has the advantage of producing a sequence of
points that are Poisson disk distributed with a decreasing
disk radius. In Figure 3 we compare the performance of the
different approaches by applying them to a simple grayscale
ramp.

It can be seen that the Poisson distribution clusters the in-
dividual samples, resulting in a very noisy and irregular im-
age. The other distributions avoid excessive clustering and
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achieve more uniform sample spacing. The Sobol sequence,
however, sometimes tends to form undesirable patterns. The
Halton sequence and the hierarchical Poisson disk distribu-
tion are free of those artifacts. Based on this experience, we
usually choose the Halton sequence for our method since it
is computationally more efficient to generate. The other im-
ages in this paper are rendered using the Halton sequence
unless otherwise noted.

5. Drawing Styles

The algorithms from Section 3 can be used to determine
stroke positions from input images. What remains open are
issues of acquiring the input images from 3D models and
orienting the strokes. Different choices of methods for these
tasks give rise to a large variety of rendering styles.

The basic algorithm for placing the strokes only requires
a grayscale input image to generate a PDF. Hence, our algo-
rithm is able to work from data like photographs or paint-
ings. These can be preprocessed with any kind of image
processing tool to achieve the desired effect. For example,
indication® 3! can be achieved by increasing or decreasing
the brightness in selected parts of the input image. In ad-
dition, we include a transfer function in our system, which
allows for on-the-fly adjustments of contrast or tone on the
whole image.

Starting from a 3D model rather than an input image, we
first use an OpenGL rendering pass with traditional shad-
ing and specular and diffuse lighting to generate an image.
However, by starting from a 3D model we can easily gener-
ate additional information, encode it into the image, and later
use it to drive different drawing styles. For example, we can
draw silhouette outlines either using environment maps’ or
by explicitly traversing the input mesh and finding silhou-
ette edges. Similarly, we can encode additional information
for determining the stroke direction into other color chan-
nels. In an RGBA framebuffer, this gives us three channels
to be used for such additional information. We have exper-
imented with the following options and more are certainly
possible:

e Computing a per-vertex tangent or parametric direction,
projecting it into image space, and interpolating it for ev-
ery pixel (all steps are possible in a single pass in hard-
ware) to be used as a stroke direction. This yields re-
sults similar to the ones described by Winkenbach and
Salesin’2.

e Computing and encoding a normal direction in much the
same way. This is an interesting way of drawing short fur
or grass.

e Encoding 2D stroke directions into a camera-aligned en-
vironment map. This can be used to give areas facing dif-
ferent directions different stroke properties.

e Encoding object or material identifications for individual
parts of the scene, which can then be used to render dif-
ferent objects in different styles.

Based on this information, we can generate variations on
three basic drawing styles:

Point Stippling

The simplest rendering style is point stippling, which does
not require any directional information. We simply place
OpenGL points or scanned stipple textures at the positions
obtained with the method described in Section 3.

Figure 4: A stippled image of foot bones.

Hatching

For hatching we either use OpenGL lines of different widths
and lengths, or scanned texture maps of real pen-and-ink
strokes. For the stroke orientation we can choose between a
constant direction or any kind of direction encoded into color
channels as described above. Finally, we can also compute
the gradient field of the image intensity, and orient strokes
orthogonal to it. This works both for images and 3D mod-
els, and orients strokes parallel to discontinuity edges, which
helps preserving the tone of the input image as described
above. In areas in which the intensity gradient is not strong
enough, we can either default to a constant stroke direction,
or search for a stronger gradient in an image pyramid.

Cross Hatching

For cross hatching we can vary the hatch direction proba-
bilistically. Say we want to start cross hatching for some in-
tensity threshold 7(x) > . Whenever we place a stroke at
pixel x; ;), we choose the orientation as follows: if the inten-
sity of the input image /(x; ;) at that location is less then the
threshold, we compute the stroke direction with any of the
methods described above. If I(x; ;) is larger than the thresh-
old, however, then we choose the original orientation with
a probability of a/I(x; ;), and a secondary direction with

(© The Eurographics Association 2002.
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Figure 5: A tiger model hatched with large strokes to achieve
a furry look.

probability (1 —at)/I(x; ;). This secondary orientation can
either be a fixed direction, the original direction rotated by
some fixed angle, or any rotation inferred from an encoding
of an object-space property as discussed above.

Figure 6: Cross hatching in very dark areas together with
silhouette extraction cause a hairy appearance of the legs
and antennae.

6. Results

We have implemented a system demonstrating our approach
to distributing primitives that preserves continuous tone in
a scale-independent manner. We can either load images or
3D scenes as a starting point for our method. The different
drawing methods described in the previous section, as well
as the parameters for the initial rendering of the 3D model,
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can produce a multitude of different styles of which we can
only show a small subset.

Figure 1 shows a bust model rendered with hatching,
where the hatches are aligned against the image gradient.
Only the rendered scene is used to align the strokes, and not
the 3D model information. Figure 1 shows a good preser-
vation of sharp features. Figure 4 and 5 show results for
stippling and hatching, respectively. Figure 6 shows a bee
rendered with cross hatching, which gives the legs and the
antennae a hairy appearance. Figure 8 shows how our sys-
tem accurately preserves continuous tone. Figure 9 (Top)
shows every fifth frame of an twenty-five frame animation.
All of the primitives in the frame on the far left appear in the
frame on the far right at adjusted locations. Extra primitives
have been added over the twenty-five frames since the image
darkens. The primitives have been “shape-encoded” to help
trace their movement. More examples can be found at the
end of this paper.

The performance of our method depends on several fac-
tors. The first one is the size of the table used for the PDF
and the distribution functions. This size is algorithmically
independent of the resolution of the final image, so small ta-
ble sizes can be used to reduce rendering cost. However, if
the table gets too small, sharp edges will start to alias. The
resolution at which these artifacts start to be visible depends
on the size of strokes, but we generally found that using a
PDF table of half the size of the target image produces good
results except for stippling with very small point sizes. The
second factor for performance is the rendering style. Com-
puting image-space gradients for orienting the strokes is rel-
atively expensive, while generating the orientation from en-
coding a 3D direction is practically free. The cost of ren-
dering the initial 3D model is negligible since the meshes
do not need to be very detailed to serve as a basis for pen-
and-ink illustration. The number of strokes rendered is an-
other cost factor. Very dark images take longer than light
ones, and images with large strokes render faster than images
with very small ones. The major cost here is the rendering of
the individual points, lines, or texture-mapped strokes using
OpenGL (which is a geometry-bound operation on current
graphics hardware).

Depending on the above parameters, we were able to
achieve between 2 frames per second and 15 frames per sec-
ond on a 1.5GHz Pentium with a GeForce 3 card, using PDF
sizes between 256 x 256 and 512 x 512 for the scenes shown
in this paper. No specialized hardware was used with our
software implementation to obtain these frame rates.

A common goal of many real-time NPR techniques is to
achieve frame-to-frame coherence of primitive placement.
In our approach individual primitives are placed in image-
space, are therefore not attached to 3D geometry and can
move around freely. Thus, we cannot expect them to move
exactly with the 3D object points. However, since we re-use
the same set of uniformly distributed points, small changes
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in the input image (and therefore in the PDF) will only result
in small adjustments of the point positions. For example, if
a highlight moves across a 3D object due to a moving light
source, then the individual strokes will rearrange themselves
continuously around the highlight as shown in the top of Fig-
ure 9. Similarly, if the transfer function is adjusted continu-
ously, the strokes will slowly move across the image to adapt
for the changes. These effects are demonstrated in the video.
Since our approach distributes primitives in real-time based
on intensity and primitive size, continuous tone is precisely
replicated. Even with the use of slightly larger primitives the
global tone is accurately preserved and is scale-independent.
Our method is based entirely on the location of primitives,
allowing us to easily simulate many drawing styles by alter-
ing the primitive type or direction.

7. Conclusions and Future Work

In this paper we have presented an image-space algorithm
for generating continuous tone illustrations at interactive
frame rates. Our approach for distributing primitives natu-
rally provides scale independent results with frame-to-frame
coherency. That is, individual strokes move continuously as
the input image changes. We demonstrate that a number of
different drawing styles are possible using only an image as
an input. More styles are possible if additional information
such as silhouette edges or material IDs can be derived from
a 3D model.

Preservation of continuous tone with our approach is de-
pendent on the size of the primitive, the feature to be pre-
served (i.e. edges) and the viewing distance. This is a stan-
dard limitation, since, as with any halftoning technique, the
formation of continuous tone from a discrete palette relies
on the spatial integration of the eye. Thus, our approach
preserves tone if the choice of drawing primitive, image or
model and viewing distance is reasonable. Our frame rate
depends on several factors (brightness, size of PDF table,
drawing style etc.) and is thus not constant. This could limit
the applicability of our method in some situations. A fi-
nal limitation is the distance a primitive moves from frame
to frame. While primitives move continuously, the apparent
movement from frame to frame can be distracting, especially
at the lower frame rates.

In the future we would like to extend the tone correc-
tion method to work for grayscale and color primitives or
graftals!>. Grayscale or semi-transparent strokes or brushes
could be used to simulate other non-photorealistic rendering
effects such as watercolor!. Additional pen-and-ink styles
could also be incorporated into our method. For example,
it would be easy to clip strokes against object masks ren-
dered using an ID buffer algorithm. This would preserve
discontinuities in the image without having to align strokes
orthogonal to the gradient field. Finally, it should be pos-
sible in the future to offload the placement of the stipples
onto the graphics chip, which would drastically reduce the

bandwidth requirements of the method. This would require
a programmable vertex engine similar to the one described
by Lindholm et al.!”, but with the additional possibility to
perform per-vertex table lookups.
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Figure 7: Rendering of the Lena image using hatching and
cross hatching. Primary strokes are aligned perpendicular
to the gradient in regions of strong gradients and at a 45°
angle in areas where the gradient is small.

Appendix A: Tone Correction for Large Stroke Sizes

Tone reproduction is possible for larger stipples or strokes
under two assumptions. Firstly, it is clear that drawing styles
that require strokes to cross discontinuities cannot precisely
preserve tone around those discontinuities. We can there-
fore only hope for exact tone reproduction if we either align
strokes parallel to discontinuities, or clip them accordingly.
Secondly, we can only hope to preserve feature sizes that are
no smaller than the width of the strokes used.

Under these assumptions, however, the tone correction
procedure from Section 3.3 can be extended to strokes and
stipples of larger size. Where we could previously ignore
spatial relationships between the different pixels, these now
have to be taken into account. We adapt our notation to 2D
indices for the images and probability tables (e.g. p(x; ;)
rather than p(x;)).

We can then describe the probability p((x; ;) = 1) that a
pixel is set after rendering N stipples as

ne Ty

N
p(xij=1)=1- (1 -) Zq(xk,l)s(xk—i,z—j)> ©)
k=11=1
wherei=1...nx,j=1...ny and s(X¢_;;_ ;) is the image of
the stroke or stipple that would be drawn if a sample was to
be placed in pixel (x;;). The value of s(x) is either one or
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Figure 8: A bust stippled with pixel-sized stipples. The left image is the original greyscale input and the right is the stippled
image. This result is similar to the ones that would be obtained by halftoning methods. Any apparant differences in tone between
these two images, when viewed from a distance of several feet, is due to the halftoning screen of the individual printer.

zero; we do not consider grayscale values. With the updated
notation, the constraint from Equation 2 becomes

ne Ty

Y Y axg) =1 6)

k=11l=1

To determine ¢(x; ;) and the number of samples N, Equa-
tions 5 and 6 have to be solved simultaneously. However,
it is easy to see that this system of equations does not in
general have a solution: consider an image with a one-pixel
wide dark line on white background, and a circular stipple
pattern of radius larger than 1 pixel. Since the line is very
dark, the stipples have to be densely spaced on it. However,
since every individual stipple is wider than the line itself,
it will automatically also cover adjacent parts of the image
which should be white, i.e. p((x; ;) = 1) = 0. Thus it is ob-
vious that the system of Equations 5 and 6 is not solvable
if the image contains features narrower than the stipples or
strokes used for hatching.

An alternative strategy would be to minimize the differ-
ence between the left and the right side of Equation 5 subject
to Equation 6 with the additional constraint that g(xz ;) > 0
for all &, /. This is a non-linear constraint optimization prob-
lem with a large number of variables (equal to the number of
pixels in the final image). While this system is rather sparse
for reasonable stroke sizes, it is beyond hope of solving in
real time.

However, we can simplify Equation 5 by assuming the
target tone is approximately constant over the support of a
stipple. This may sound restrictive, but is easily achieved by
aligning the strokes orthogonal to the gradient field of the
input image or otherwise preventing the stroke from crossing
discontinuities as described above. With this simplification,

Equation 5 becomes

ne My

1= 1=Y Y q(xi)s(Xk—ij—)) 0

k=11=1

ne Ty

1—{1- q(X,'J) Z Z s(xk_iJ_j) (8)

k=11=1
= 1—(1—q(xi)si,)"

where s;; = Y7 X2 s(Xk—i— ;). Intuitively, s; ; is the
number of pixels (xx,y;) that would cause pixel (x; ;) to be
covered if a sample was placed in one of them. Note that this
relationship allows for different stroke sizes and orientations
depending on the local intensity or even pixel position. How-
ever, this relationship should be simple to compute in order
to facilitate a rapid calculation of the s; ;.

Q

Once s; ; has been computed, we can solve Equation 8 for
q(x; ;) just as in Section 3.3. The search for the correct num-
ber of samples to be placed can again be sped up by using a
histogram based approach, where the size of the histogram
is the product of the number of quantization levels for the
image intensity and the number of different sizes used for
strokes during rendering. For a small set of differently sized
strokes this will still be more efficient than a search directly
on the full resolution image.

(© The Eurographics Association 2002.
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Figure 9: Top: Frames of an animation showing stroke movement. Bottom: A
simple 3D scene rendered with different stroke directions for the different objects

Figure 10: St d b hatched with
using material IDs and object-coded directions. g anford bunny haiched wi

curved strokes.
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Figure 11: A hatched rendering using Cezanne’s “Still Life With Apples” as input. The stroke directions are a function of the
color in the original image.
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Figure 12: A hatched rendering using Van Gogh’s “Self Portrait With Felt Hat, 1888” as input. The stroke directions are a
Sfunction of the color in the original image.
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