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Figure 1: NAScenT jointly optimizes a hybrid explicit-implicit representation consisting of an octree for 3D space partitioning, and structured
networks in each active leaf node. Each network maps a spatial coordinate and a direction to a view-independent density and a view-
dependent color. NAScenT adaptively allocates more tree nodes to parts of the 3D space with higher scene complexity. Shown here are

renderings of novel views from Fruit and Fern.

Abstract

Neural rendering with implicit neural networks has recently emerged as an attractive proposition for scene reconstruction,
achieving excellent quality albeit at high computational cost. While the most recent generation of such methods has made
progress on the rendering (inference) times, very little progress has been made on improving the reconstruction (training)

times.

In this work we present Neural Adaptive Scene Tracing (NAScenT ), the first neural rendering method based on directly training
a hybrid explicit-implicit neural representation. NAScenT uses a hierarchical octree representation with one neural network per
leaf node and combines this representation with a two-stage sampling process that concentrates ray samples where they matter
most — near object surfaces. As a result, NAScenT is capable of reconstructing challenging scenes including both large, sparsely
populated volumes like UAV captured outdoor environments, as well as small scenes with high geometric complexity. NAScenT
outperforms existing neural rendering approaches in terms of both quality and training time.

CCS Concepts

» Computing methodologies — Ray tracing; Image-based rendering;

1. Introduction

In recent years, inverse rendering methods based on implicit
neural networks such as NeRF [MST*20] and its variants
(e.g. [YYTK21], [LGL*20], [RPLG21], [MLL*21], [LMTL21],
[MGK™19], [LMW21]) have garnered a lot of interest in both com-
puter graphics and computer vision. These methods have led to a
massive improvement in the quality of 3D reconstruction and re-
rendering tasks. Unfortunately, this quality improvement comes at
a high computational cost during both training and inference (re-
rendering), since the implicit network must be evaluated at millions
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of points. This shortcoming has so far precluded the use of implicit
neural networks for the reconstruction of very large scenes.

In parallel to the development of these neural inverse rendering
methods, we have also seen the introduction of neural scene rep-
resentations [YWOSH21], [SMB*20], [MLL*21]. These are not
concerned with solving an inverse problem, but instead take an ex-
isting image or volume, and compress it into a compact neural net-
work representation. In this space, the ACORN system [MLL*21]
has shown that hybrid explicit-implicit representations based on hi-
erarchical octree representations can yield a improvements in terms
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of both the compute time and the quality of fine details in represen-
tations of large images and volumes.

Here, we introduce Neural Adaptive Scene Tracing (NAScenT ),
a hybrid explicit-implicit neural representation that can be trained
directly on scene reconstruction tasks (Figure 1). NAScenT uses an
octree representation to partition the space into regions according to
scene complexity. Each octree node has its own small-scale MLP
to represent the node contents. The fully differentiable rendering
pipeline employs a ray-based importance sampling scheme in this
hierarchical representation, with the importance being determined
by an initial node-based splatting approach that maximizes sample
reuse across views.

With this approach, NAScenT achieves both high detail accuracy
for large scenes, as well as fast training and inference. The adap-
tive representation works well for a large range of scene types and
camera positions, from complex small scale scenes with either full
angular coverage or light-field like directional coverage all the way
to large sparse volumes that arise in UAV-based capture of large-
scale environments.

Specifically, our contributions are: (1) we propose an octree-
based neural representation method that represents a scene as an
octree with a coordinate-based neural network inside each leaf node
and can be trained directly from 2D image data; (2) we also propose
an octree structure optimization method that jointly solves multi-
ple neural networks representation and computational resource al-
location problems; (3) our representation method can handle chal-
lenging cases of large viewpoint change and dynamic camera range
cases, e.g. UAV-view terrain scanning.

2. Related Works

3D Scene Reconstruction is an active research topic in com-
puter graphics. The goal of 3D scene reconstruction is to infer
the 3D geometry and texture of a real scene from active mea-
surements [KK20], passive imaging [AK19] or by combining
both [GLS*07]. This task is fundamental in several application
fields such as scene understanding, object detection, robot navi-
gation, and industrial inspection. During the last decades, several
approaches have been proposed to reconstruct scenes from 2D cap-
tured images [SF16], [ZSG* 18], [AK19], [DHND21]. In our work,
we adopt a multi-view reconstruction approach, where a 3D model
of the scene is reconstructed from a set of 2D images taken from
known camera viewpoints [SCD*06]. The traditional pipeline first
recovers camera pose for the multi-views system, and then gener-
ates a sparse 3D points distribution of the scene by Structure-from-
Motion (SfM) technique. At this stage, a dense scene reconstruction
can be obtained by performing multi-view stereo techniques. To en-
able a photo-realistic viewpoint change, a material type or paramet-
ric reflection model can also be specified in the rendering pipeline.
Finally, a ray tracing can be performed using a physically-based
renderer to simulate the light propagation and camera imaging pro-
cess. Recently, neural rendering techniques have been applied with
a huge success to scene reconstruction.

Neural Rendering techniques have been a resounding success
in the computer graphics. They have been applied to achieve re-
alistic rendering of real scenes and improved the view synthe-

sis [ERB*18], [SZW19], [MST*20], [NMOG20], [CMK*21], the
relighting and material editing [BBJ*21], [SDZ*21], [XXH*21],
[ZLW*21], the texture synthesis [OMN™19], [SHN™*19], [CPM20].
Other applications of neural rendering are discussed in the sur-
vey [TFT*20].

The Neural Radiance Fields (NeRF) work [MST*20] paved the
way to a new sub-domain in neural rendering. NeRF and its many
adaptations show impressive results in several graphics tasks. How-
ever, the large number of samples needed per ray and the re-
quirement to evaluate the network for each sample is a real ob-
stacle for real-time applications. Several strategies have been ex-
plored to speed up the neural rendering using NeRF-like networks.
These approaches include pruning [LGL*20], network factoriza-
tions [RPLG21], caching [GKJ*21], use of dynamic data struc-
tures [LGL*20], [YLT*21], and directly learning the integral along
a ray [LMW21]. Most of these approaches improve only the ren-
dering performance, but not the training. In this work we specifi-
cally target accelerations of the training time by direct training on
a hierarchical representation.

3D Scene Representation is of paramount importance in the re-
construction process. Historically, several ways have been used for
the representation of the geometry of the scene, including regular
3D grids of voxels representing discrete occupancy, point clouds,
polygon meshes, set of depth maps, or a function of the distance to
the closest surface [SCD*06]. More recently, several neural repre-
sentation have been proposed. They can be classified into explicit,
implicit and hybrid representations. The explicit methods describe
the scene based on a collection of primitives like voxels [STH*19],
point clouds [ASK*20], meshes [HPP* 18], or multi-plane images
[FBD*19]. The rendering using these representations is fast, but
their huge requirements in terms of memory, make them challeng-
ing to scale.

On the other hand, coordinate-based networks have been in-
troduced to represent scenes in an implicit fashion using neural
network [ERB* 18], [PFS*19], [MST*20], [SMB™*20], [XHKK21],
[CMK*21]. These implicit neural representations leverage a Multi-
Layer Perceptron (MLP) to learn a mapping from continuous coor-
dinates to physical properties such as density, field, occupancy or
radiance distribution. Despite the impressive results of these rep-
resentation approaches, they suffer from both a large training time
and large rendering time, since the network has to be evaluated for
each voxel of the grid. A recent exception is the ACORN system
proposed by Martel et al. [MLL*21]. It utilizes a hybrid implicit-
explicit multi-scale representation in order to combine the com-
putationally efficiency of explicit representations with the mem-
ory scalability of implicit approaches. ACORN is also designed
to prune empty space in an optimized fashion, and its shows ex-
cellent performance in representing fine scale detail on large ob-
ject domains. However, like several other works [YWOSH21],
[SMB*20], ACORN is purely a neural representation, not a neural
rendering method. That is, these approaches can be used to com-
press existing volumes into neural representations, but they cannot
in a straightforward way be used for solving scene reconstruction
problems. Our neural representation is inspired by the hierarchical
representation of ACORN, but with several crucial adaptations that
make NAScenT highly suitable for scene reconstruction tasks.
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Figure 2: System diagram of NAScenT. The architecture is an
explicit-implicit neural representation for the 3D scene, consisting
of an octree partitioning of space and a separate lightweight MLP
for each leaf node of the octree. The same network architecture and
hyper-parameters are used for all octree nodes, which concentrates
the model parameters in regions of high complexity. This adaptive
representation is combined with an adaptive sampling scheme and
differentiable rendering described in the text.

3. Method

NAScenTuses a hybrid explicit-implicit neural representation
based on a hierarchical octree data structure (Sec. (3.1)) in which
each leaf node has its own neural network, see Fig. (2). This model
is evaluated with a two-step sampling approach that concentrates
most samples in regions of high geometric complexity as well as
near object surfaces (Sec. (3.3)). The samples are then composited
front-to-back (Sec. (3.2)) to render images in a differentiable fash-
ion. In this way we can both optimize the neural networks in the
leaf nodes as well as adaptively refine the hierarchical model struc-
ture (Sec. (3.4), Sec. (3.5)). The details of the individual steps are
discussed in the following.

3.1. Hybrid Scene Model

NAScenT uses a hybrid explicit-implicit scene model M, that maps
a sample location x and a viewing direction d to an RGB color ¢
and the density or opacity ¢ of the sample:

M=M]: (x,d) = (c,0). )

The explicit part of the representation is somewhat inspired by
the hierarchical structure of ACORN [MLL*21], however with a
number of important differences. Specifically, the model ./\/lf is re-
cursively defined as either a leaf node represented as a neural net-
work, or a subdivided node with exactly 8 child nodes in standard
octree fashion:

@l : (x,d) = (¢,0) ,if leaf node

2
U{Mﬁl,.,.,./\/lgfgl} ,else @

Mi(x,d) = {

Note that unlike previous hybrid neural representations like
ACORN [MLL*21], NAScenT does not use a global neural net-
work, but instead individual lightweight networks for the leaf nodes
of the octree representation.
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The neural networks for each leaf node have the same MLP ar-
chitecture, depicted in Fig. (2). The network consists of a multi-
layered view-independent part and a single view-dependent layer.
Note that only color ¢ depends on the viewing direction d, while the
density ¢ is view independent. This allows us to re-use calculated
densities across multiple views (see sampling process below).

The number of layers and neurons per layer in the view-
dependent part are hyper parameters, however unless otherwise
noted, all experiments in this paper use 8 layers with 64 neurons
each. The view dependent layer has 256 neurons. Positional encod-
ing is used for both the position x and the direction d with 10 and
4 frequencies, respectively. As the activation function, we use ran-
domized leaky ReLU (RReL.U) with a negative lower (—0.3) and
upper (—0.1). Unless otherwise noted, we limit the maximum oc-
tree level to 5. The learning rate starts at 5 - 10~* and is reduced by
a factor of 0.1 every 10 epochs.

3.2. Image Formation

Like most recent neural inverse rendering works, NAScenT targets
scenes that primarily consist of opaque surfaces. Such scenes are
represented well by the front-to-back compositing model intro-
duced by NeRF [MST*20], which we replicate in the following
for completeness. Given a set of samples {x;}; along a ray r with
direction d, and the associated color and density values (¢;,6;) =
M(x;,d;), the corresponding image pixel is given as

1(r) = Y. Ti(1—e""¥)ci,  where T;=exp [* i "1811 '
3

Here, 7; is the cumulative transparency along the ray segment
leading up to sample i, and §; is a sample weight based on the
length of the ray segment between successive samples similar to
NeRF [MST*20], but computed independently for each octree
node, so that empty or low resolution nodes do not inflate the
weight of the first sample in the next node.

Note that this image formation model requires the samples to
be ordered front-to-back, since 7; in Eqn. (3) requires summation
over all samples j closer than i. This is straightforward to achieve
in non-adaptive representations like NeRF [MST*20] or kiloN-
eRF [RPLG21], but requires extra book keeping efforts in our adap-
tive, hierarchical approach. Furthermore, any samples located be-
hind an opaque surface will have zero contribution to pixel value,
and will therefore also not contribute to the gradient. Such samples
can therefore be culled to reduce the computational burden.

3.3. Two-step Sampling and Ray-tracing

To address these issues we employ a two-step sampling process.
First, we use stratified regular sampling in the octree nodes to ob-
tain an estimate of the importance of volume regions to each ray.
Then, we apply a ray-based importance sampling scheme along
each ray using the information gathered in the first pass.

Stratified node-based sample generation Considering (3), an
important observation is that #;, the accumulated transparency along
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the first part of the ray segment, can act as an effective impor-
tance function for the sampling process, along with the hierarchical
model structure itself, which refines around regions of high com-
plexity. Furthermore, this cumulative transparency depends only on
the density of the samples, but not their color, and the densities in-
dependent of ray direction. This makes it possible to re-use samples
across different views.

To exploit this observation, we generate samples on stratified
grids within each octree leaf node. The number of samples is the
same for each leaf node (643 in our implementation), so that the
evaluations of the networks @f can be batched in a straightforward
fashion, while the adaptive nature of the octree naturally adjusts the
sampling density to the local scene complexity.

In this first sampling stage, we only evaluate the view-
independent part of the network, yielding the densities 6;, which
can be re-used for all camera views. Furthermore, since these den-
sities are only used for importance sampling in the second stage,
we do not need to generate gradient information for this stage. This
makes the process efficient despite the large number of samples
generated.

Sample sorting and ray compositing For each view, the samples
generated in this fashion are projected into the image plane, and
associated with a pixel and the corresponding ray r (with ray id
for each ray). Next, we need to sort the samples belonging to each
ray in depth. Instead of solving a large number of small sorting
problems, it is more efficient to sort all samples simultaneously. To
this end, we assign a global sorting key z, to each sample, which is
given as

Zg = I Zmax +Zs, 4)

where z; is the sample depth relative to the camera, zmax is the
maximum scene depth defines by the user, and r is an integer ray
ID. Each sample is associated with the ray corresponding to the
pixel it projects to in a nearest-neighbor sense.

Sorting according to this global key will therefore bring all sam-
ples into a global order in which successive groups of samples cor-
respond to the same ray, and each group is sorted by depth. The
groups are padded to the same maximum length, and then compos-
ited in parallel according to Eqn. (3).

Ray-based importance sampling In the second sampling stage,
we generate the actual ray-based sampling pattern that is used for
differentiable image rendering. When the sorted stratified samples
are given, we estimate the cumulative density distribution (i.e., ac-
cumulative sum of &) in each block that similar to NeRF’s hierar-
chical sampling scheme [MST*20] (i.e., stratified sampling based
on spatial ray distance), but only evaluate the density distribution
within one node. Then, we apply importance sampling to reallocate
the samples according to the cumulative density distribution inter-
val (i.e., uniform sampling based on the CDF), assuming that the
steep slopes in the CDF indicate true surfaces.

3.4. Optimization of Hybrid Model

The full model M consists not only of the neural networks in
the leaf nodes, but also of the octree structure itself. To op-
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Figure 3: Octree structure update. (a) to (e) show the initial train-
ing by using a fully subdivided octree to a given level, with empty
nodes culled. (f) only shows active and keep unchanged blocks in
level 2, (g) shows block splitting for level 2 to level 3, (h) shows
block splitting for level 3 to level 4, (i) shows a block merge to
prune the octree for simplification.

timize this octree structure, we solve an optimization problem
with a mixed integer program, similar to the method proposed by
ACORN [MLL*21]. However, while ACORN is trained directly
from a known reference volume, the volume is initially unknown
in our inverse rendering setting. We therefore have to devise a dif-
ferent cost function to decide which octree nodes should be subdi-
vided, merged or deactivated.

Specificially, our octree optimization procedure considers both
the weighted average density within each node, as well as the ag-
gregated reprojection error within each node. If a weighted average
density in a block is less than a threshold (0.01), the block will
simply be set to inactive, and will not join the later computation.
If a parent node and child node are both active, our algorithm will
choose the node with smaller size, i.e. the child node has priority.
Please refer to the supplemental materials and the code for more
details. Fig. (3) illustrates the evolution of the octree structure from
initial levels to full octree optimization stage.

3.5. Model Updates by Pre-training

Every time the octree structure changes, the networks for the old
leaf nodes are replaced with new networks for the new leafs. For ex-
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ample, when a leaf node is subdivided, the corresponding network
<I>f is replaced by eight new networks <I>ﬁ1 yeen 7¢>f§1 responsible
for the different quadrants. Conversely, when nodes are merged,
eight networks at level / get replaced by a single network at level
I — 1. After such structural changes, we directly pre-train the new
network(s) using stratified samples from the previous network(s).
This allows the model to quickly return to a similar quality than
before the structure change without the need for costly ray-tracing
and compositing operations. After this pre-training, the normal ray-
tracing-based training resumes.

4. Experiments

For evaluation and both qualitative and quantitative comparison
against state-of-the-art methods, we apply our method to sev-
eral publicly available datasets that have been used by com-
peting methods before, e.g. Synthetic-NeRF [MST*20], LLFF-
NeRF [MST*20], DTU Robot Image Data Sets [JDV*14]. We
also conduct extensive ablation studies for various parameter
choices, e.g., sub-network architecture and the number of block
levels. In addition to the results in this document, we also refer
to the supplemental material for more results.

4.1. Visual Comparison on Public Datasets

We demonstrate the performance of our method by rendering novel
views of synthetic and real scene dataset [MST*20] by visualiz-
ing novel views in test set as well as the rendered depth map of
the scene. Visually, it is difficult to see differences between any
of the recent methods for view interpolation — camera positions
close to the training positions. However, differences become appar-
ent for view extrapolation, where the novel camera position is far
from any of the input cameras. In this document we therefore focus
on this view extrapolation scenario for the visual results; the sup-
plemental material has more results. For comparison methods, we
choose those neural rendering methods that can support both sper-
ical and front view scene rendering, including NeRF [MST*20],
KiloNeRF [RPLG21] and MipNeRF [BMT"*21].

Synthetic Dataset Fig. (4) visualizes results for extrapolated
viewpoints on the synthetic Lego model. NeRF [MST*20] tend to
produce slightly patchy colors in flat areas since incorrect geom-
etry exists in the density field. Also, a single large model is com-
putationally expensive, and therefore limits the number of samples
for a ray. KiloNeRF [RPLG21] uses NeRF’s model as a teacher to
learn a set of small networks for a space partitioning into a regu-
lar grid, with the goal of improving the inference (rendering) effi-
ciency and enabling better sampling rates. However, the networks
for the individual grid cells are not consistent at cell boundaries,
and so light leaks can easily happen in a novel views of the scene,
since all the samples along the ray contain zero density for a true
surface. Moreover, KiloNeRF also inherits defects from the origi-
nal NeRF model. MipNeRF has issues at depth discontinuities for
these extreme view points, which also indicates that it did not learn
an accurate 3D representation. Our method trains the composite
model from scratch and enables efficient rendering while avoiding
the artifacts of the comparison methods.

Real Scene Dataset Fig. (5) shows an extrapolated viewpoint
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for a light field dataset, which confirms the findings on the syn-
thetic data. NeRF [MST*20] and KiloNeRF [RPLG21] exhibit re-
duced color accuracy in flower’s androecium (see row 2), while
our method can faithfully recover color in fine area due to a bet-
ter jointly trained geometry and color representation. Moreover,
NeRF [MST*20] and KiloNeRF [RPLG21] tend to lose shape de-
tails in the flower and leaves under strong view point changes. Mip-
NeRF produces sharper results but again also has boundary artifacts
at depth discontinuities, indicating an inaccurate density field. On
the other hand the octree structure of NAScenT manages to learn
a very detailed density field that preserves fine structures over ex-
treme viewpoint changes.

4.2. UAV-view Terrain Scanning and Reconstruction

In addition to existing standard datasets we also introduce a new
UAV-based scene. UAV remote sensing data has usually much
sparser view points, with little overlap between neighboring views.
Moreover, the standoff distance is often large compared to the scene
scale, so that parallax is limited. Visual results and depth can be
shown in Fig. (6), and supplement (see Fig. (4) and Fig. (11)). This
setting is quite challenging for previous neural rendering methods
were mainly designed for rendering dense viewpoints with simi-
lar camera viewing angles and highly overlapping scene content,
and then represent scene by single network [MST*20], [MLL*21],
[LMTL21] or multiple sub-networks [RPLG21]. However, a non-
adaptive single network structure will have representation capac-
ity problems for training and rendering a large unbounded scene,
multiple sub-network [RPLG21] will also require a pre-trained sin-
gle network for better initial performance. Our method contains
the optimization of octree structure and sub-network training, thus,
the network in each block is only handling representation and re-
construction tasks locally, and could also scale to larger scenes
if needed. Our proposed method is scalable and represents scene
content by multiple networks in an octree structure. Therefore the
overall representational capacity of the model depends on both the
number of octree cells as well as the number of parameters in the
networks. Both of these are hyper parameters that we analyze in
detail below. However, even very lightweight per-node networks
are capable of producing higher quality representations compared
to competing approaches.

4.3. Quantitative Comparisons

In Tab. (1), we compare our reconstruction results quantita-
tively against other state-of-the-art works using PSNR, SSIM, and
LPIPS [ZIE*18] as metrics. Note that these comparisons are for
the view interpolation scenario since the datasets do not con-
tain comparison views that are far from the training data. The
datasets used here are Synthetic-NeRF [MST*20], RealScene-
LLFF [MSOC*19], and the new UAV dataset. Extensive ex-
periments show that our method is highly competitive on all
datasets. The most contented dataset is the LLFF dataset, where
NAScenT loses to NSVF [LGL*20] in terms of PSNR and SSIM,
but wins according to LPIPS. LLFF [MSOC*19] and PixelNeRF
are only competitive on the narrow baseline light field data,
whereas the other methods show more even performance on all
datasets.
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(a) NeRF [MST*20] (b) KiloNeRF [RPLG21]

(c) MipNeRF [BMT*21]

(d) Our

Figure 4: Novel View Comparison on Synthetic Dataset [MST*20]. We render viewpoints from near to far for visualizing viewpoint change

and the influence of geometry in rendering.

(a) NeRF [MST*20] (b) KiloNeRF [RPLG21]

! _al
(c) MipNeRF [BMT*21] (d) Our

Figure 5: Novel View Comparison on Real Scene Dataset [MST*20]. We render extrapolated viewpoints that far away from view sampling
in the training dataset, to show the rendering performance for challenging large viewpoint change.

Our proposed method excels at the new UAV dataset (shown in
supplement Fig. ), since UAV viewpoints have a large view of field,
sparse viewpoint and long-range distance, the traditional sampling
scheme in NeRF-related methods will waste a large amount of sam-
ples in empty space, or hard to sample proper candidates of the
ground surface due to limited sampling points along the ray direc-
tion. Moreover, NSVF cannot be evaluated on this data because it
only reconstructs bounded scenes with extremely high training time
in UAV dataset. Our octree-based sampling scheme can achieve
uniform sampling inside tree blocks, smaller blocks even have a
finer sampling step, in order to enable a better searching scheme
for thin objects. As the ablation studies in the next section demon-
strate, we have the ability to further improve the quality by using a
more powerful network configuration in each octree node, albeit at
a performance cost.

4.4. Training Efficiency Comaprison

Training time for the Synthetic-NeRF dataset is shown in Ta-
ble 2. At the default parameter settings detailed in Sec. (3.1),
NAScenT has faster training times than the competing methods and
competitive rendering times compared to the fastest existing neu-
ral rendering methods. Details of performance/speed trade-off are
provided in the next section, and more results are shown in the sup-
plement.

4.5. Ablation Study

Network Architecture. We perform an ablation study on the
hyper-parameters of the implicit networks for each octree node in
Tab. (3). For these use the fruit dataset that contains various zoom-
in and zoom-out views to perform ablation study. Note that W and
D are network’s width and depth. In supplement Fig. (5), we also

© 2022 The Author(s)
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Figure 6: UAV scene reconstruction. We compare our method against NeRF [MST*20], MipNeRF [BMT*21].

Table 1: Quantitative Evaluation on Synthetic-NeRF [MST*20], RealScene-LLFF [MSOC* 19], UAV dataset.
LLFF [MSOC*19]

Synthetic-NeRF [MST*20] UAV dataset

Method PSNRT SSIMt LPIPS|] PSNR{ SSIMtT LPIPS| PSNRtT SSIM{ LPIPS)
LLFF 26.05 0.893 0.160 25.03 0.793 0.243 23.70 0.834 0.260
NeRF 31.01 0.947 0.081 27.15 0.828 0.192 24.98 0.853 0.201
PixeINeRF 26.20 0.940 0.080 25.89 0.187 24.69 0.824 0.201
NSVF 0.048 - - - - - -
KiloNeRF 30.95 0.937 0.080 26.15 0.828 0.192
Our(W64-D8) 31.85 0.967 0.049 0.114 30.48 0.931 0.115
Our(W128-D8)  31.94 0.969 0.048 28.19 0.903 0.113 30.50 0.932 0.113
NeRF  KiloNeRE MipNeRF Our(W64D3) Table 4: Ablation study on octree levels.
Tot. Time(h) 6.5 18.5 53 4.2

Level No. @)  PSNRT  SSIM{  LPIPS|

Table 2: Comparison of training time for Synthetic-NeRF dataset. level 0 (1) 20.11 0.852 0.220
level 1 (8) 23.42 0.871 0.180
level 2 (64) 27.82 0.941 0.110
Table 3: Ablation study on unit network architecture. We fix an level 3 (512) 29.96 0.958 0.091
optimized octree and replace network architecture in each node to level 4 (2048) 30.20 0.959 0.080
show rendering performance, test on the fruit dataset (1008 x 756). level all (2633) 30.75 0.961 0.078
Network  PSNRT SSIM{T LPIPS] Train/ep Render
W64-D4 26.55 0.921 0.104 4 min 10's ing when initializing the system. Level 4 has the best performance
W64-D8 29.21 0.952 0.093 6 min 12s with the highest number of networks, but will also lead to the high-
W128-D4  27.85 0.922 0.105 18 min 45 s est computation and storage burden, and is therefore, only active in
W128-D8  29.36 0.953 0.093 20 min 47 s regions of high complexity. In general, we start training in level O or
W256-D4  28.65 0.922 0.105 25 min 553 1 for a warm initialization and initial octree structure, and level 2,
W256-D8 __ 29.89 0.958 0.091 35min 1.5 min 3 are active levels during the main training and rendering process.

show novel view rendering results for various sub-networks for a
training epochs of 20. Experiments show that the higher approx-
imation power of larger networks improves the image quality, al-
though at significantly higher computational cost. Our default pa-
rameters (W64-D8) are on the lower end of the quality scale but
provide excellent training and rendering times, and still provide
better quality than the comparison methods.

Octree Structure. We also compare rendering performance for
different granularity of the octree, i.e., the number of octree lev-
els. In general, finer scale octree will have smaller block size
and higher representation capacity with higher quantity of sub-
networks, therefore, there is a trade-off between the number of sub-
networks and the representation capacity. The network architecture
is W64 — D8, and use same dataset as Tab. (3). Tab. (4) shows that
a reduction of the octree levels (level 0, 1) has poor performance
in rendering, and are thus, and is thus only used for initial train-

© 2022 The Author(s)
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5. Conclusions

In this paper, we have presented Neural Adaptive Scene Tracing
(NAScenT ), a hybrid explicit-implicit neural rendering approach
that can be trained directly in the 2D image data. The model rep-
resentation consists of a hierarchical and adaptive octree structure
with a per-node implicit network. We use this model in combina-
tion with an optimized two-stage sampling process that maximizes
the re-use of view-independent data in order to reduce the num-
ber of neural network evaluations. This, together with a strong spa-
tial clustering of the samples near interesting object surfaces, en-
ables improved training times as well as superior results compared
to other neural rendering approaches. The ablation studies show
that the quality of the reconstructions can be further improved by
utilizing more powerful networks in each node, albeit at signifi-
cantly increased training and rendering times. We believe this topic
merits further investigation. For example one may choose different
network hyper parameters for nodes in different regions, based on
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either a heuristic or neural architecture search. This could further
improve the quality while bounding the increase in compute time.
Source code and dataset will be available at the time of publication.
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