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Fig. 1. Our light field segmentation method facilities segmentation of fine structures in light fields with complex occlusions and difficult textures.
Here we show from left to right: two source light fields, the achieved segmentation, mean color regions, and object selection (which requires
additional user input). We also show the EPIs for different horizontal and vertical slices.

Image segmentation is an important first step of many image processing,
computer graphics, and computer vision pipelines. Unfortunately, it remains
difficult to automatically and robustly segment cluttered scenes, or scenes
in which multiple objects have similar color and texture. In these scenarios,
light fields offer much richer cues that can be used efficiently to drastically
improve the quality and robustness of segmentations.

In this paper we introduce a new light field segmentation method that re-
spects texture appearance, depth consistency, as well as occlusion, and creates
well-shaped segments that are robust under view point changes. Furthermore,
our segmentation is hierarchical, i.e. with a single optimization, a whole
hierarchy of segmentations with different numbers of regions is available. All
this is achieved with a submodular objective function that allows for efficient
greedy optimization. Finally, we introduce a new tree-array type data struc-
ture, i.e. a disjoint tree, to efficiently perform submodular optimization on
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very large graphs. This approach is of interest beyond our specific application
of light field segmentation.

We demonstrate the efficacy of our method on a number of synthetic and
real data sets, and show how the obtained segmentations can be used for
applications in image processing and graphics.
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1 INTRODUCTION
Segmentation is a canonical problem in visual computing, and a key
component of many techniques used in computer graphics, image pro-
cessing, and computer vision (Fig. 1). Many previous works address
segmentation problems by splitting 2D image regions based on low-
level similarity [Achanta et al. 2012; Felzenszwalb and Huttenlocher
2004; Liu et al. 2011], mid-level structure [Arbelaez et al. 2011;
Khan et al. 2015, 2017], or high-level semantic meaning [Long et al.
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2015]. State-of-the-art superpixel segmentation methods can achieve
strong results on most general cases. Despite this progress, there are
still many difficult corner cases that will lead to segmentation failure,
e.g., when an object has a similar appearance to the background,
when occlusion occurs, or when an object has a complex shape. Un-
der these challenging situations, the usual object priors (appearance
similarity, contrast, regular shape) are insufficient, and 2D image
segmentation can fail as a result. 3D scene information can be used
as a powerful information source to further remove segmentation
ambiguity. However, 2D image segmentation approaches naturally
lack 3D scene information, and the inference of 3D information from
2D images is challenging, inconvenient, and expensive.

In recent years, 4D light fields [Levoy and Hanrahan 1996] have
become more popular for many tasks, as they not only encode spatial
information but also parallax, and can be recorded with special cam-
eras [Ng et al. 2005; Venkataraman et al. 2013; Wilburn et al. 2005].
Examples for uses of light fields to solve problems in graphics and
vision include synthetic aperture imaging [Isaksen et al. 2000], seg-
mentation [Hog et al. 2016], saliency detection [Li et al. 2014], multi-
object detection [Pei et al. 2012], and visual odometry [Dansereau
et al. 2011]. Wu et al. [2017] provides a recent and detailed review
for light fields.

Many graphics applications can potentially benefit from light field
segmentation. 3D reconstruction from multiple frames [Yücer et al.
2016] requires a light field segmentation as input. 4D segmenta-
tion can be considered as a low level clustering method to facilitate
light field video compression [Miandji et al. 2019]. For tomograph-
ic applications, 4D segmentation can be a benefit for multi-frame
super resolution [Zang et al. 2018a], moreover, dynamic reconstruc-
tion [Zang et al. 2018b, 2019] could reduce computational primitive
to accelerate its speed or refine reconstruction details by separating
data into small full 4D segmentation.

The parallax information in light fields implicitly encodes 3D
scene information as well as object scene position, making it highly
suitable for more robustly solving challenging segmentation cases,
e.g., occlusion, foreground-background similarity, and so forth. How-
ever, light fields not only provide new cues, but they also bring new
challenges in terms of computation time and storage cost. Due to
redundant image view information, loading and processing light field
data requires large computational and memory resources.

In this paper, we explore the way to utilize redundant angular view
information and higher dimensional representations in the light field
image domain, and proposed a submodular objective function to
solve the 4D light field segmentation problem. A small sample of our
results is shown in Fig. 1.

Specifically, our contributions are as follows:

∙ We expand traditional color and texture appearance terms to
also account for depth consistency and align region boundaries
with occlusion edges.

∙ We introduce a new prior on Epipolar Plane Images that en-
courages view consistency of the segmentation, i.e. that the
same object point remains assigned to the same region as the
viewpoint changes.

∙ The segmentation method is formulated as the maximization
of a graph entropy on an undirected weighted graph in the 4D

light field domain. We formulate the segmentation problem
as splitting a graph into several subgraphs to obtain a higher
entropy rate, where each subgraph is a segmentation. This pro-
duces a segmentation hierarchy which avoids experimentation
with different segmentation parameters.

∙ Since this is a submodular problem, a greedy heuristic opti-
mization scheme can guarantee a bound of ( 1

2
) on estimating a

globally optimal solution [Liu et al. 2011, 2014], with a compu-
tational complexity of 𝒪(𝑁 log𝑁) and a memory complexity
of 𝒪(𝑁).

2 RELATED WORK
In this section, we give brief reviews for 2D, video, and 4D light field
segmentation.

Image Segmentation. In general, image segmentation utilizes ob-
ject priors to split image pixels into several non-overlapping regions.
There are several main classes of methods to solve this problem.
We only provide a terse overview and refer the interested reader
to David et al. [2018] for more comparisons of 2D segmentation
methods. Graph-based methods construct a graph to describe the
similarity of neighboring pixels [Felzenszwalb and Huttenlocher
2004] or to find a uniform disjoint pixel set [Liu et al. 2011]. Paris
and Durand [2007] use Morse theory to interpret the mean shift as
a topological decomposition into density modes, which then gen-
erates hierarchy of regions. Edge-based methods utilize an edge
detector as a cue for where to place region boundaries [Arbelaez
et al. 2011]. The assumption behind edge-based methods is that ob-
jects have strong edges surrounding them. However, this assumption
sometimes leads to over-segmentation and tends to fail when the
object blends into the background. Region-based methods try to find
segmentations with similar statistical properties, e.g., color or other
statistical attributes [Van den Bergh et al. 2012], [Chen et al. 2017].
SLIC [Achanta et al. 2012] is one of the most famous superpixel
methods, which adopts k-means clustering using color and spatial
position as features, and they adopt the mean of feature space to
describe the region property. To liberate the user from tuning super-
pixel size and number, Achanta et al. [2018] proposed a method to
automatically adapt to the local texture and scale of an image.

Video Segmentation. Video segmentation also has a long tradition
in the research community. Due to the additional temporal dimension,
video segmentation has additional cues, such as motion, disparity,
frame-coherence, which can be applied to handle more complex
cases. For example, Grundmann et al. [2010] proposed an efficient
and scalable method by first over-segmenting a volumetric video
graph into spatial and temporal 3D superpixels, and then iteratively
merging these. Ayvaci and Soatto [2012] described a video segmen-
tation method that separates surfaces in the scene that are partially
surrounded by integrating appearance and motion into the objective
function. Chen et al. [2017] simultaneously predicts pixel-wise ob-
ject segmentation and optical flow in videos that based on a fully
convolutional network and a FlowNet model. Wang et al. [2015b]
solves video segmentation with a saliency approach by considering
two discriminative visual features: spatial edges and temporal motion
boundaries as indicators of foreground object locations.
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Light Field Segmentation. While video segmentation is able to
utilize extra information over 2D image segmentation, as discussed
above, this information is not very structured – videos can exhibit
complex patterns of different object and camera motions. On the
other hand, 4D light fields provide parallax from multiple views for
a stationary scene. The highly structured parallax information also
makes it easier to analyze angular structures spanning multiple views.
Xu et al. [2015] proposed a transparent object segmentation by utiliz-
ing consistency and distortion on 4D light fields. Yücer et al. [2016]
present a 3D reconstruction algorithm to automatically segment a
static foreground object from a highly cluttered background using a
hand-held camera. This method uses the coherence of data in the light
field to reveal extra structure. Hao et al. [2017] proposed a very effi-
cient 4D light field superpixel method that considers the invariance to
refocusing. However, their method requires extra depth information
as input. It also still has difficulties when background and foreground
objects share similar textures, or when the reflectance of an object is
non-Lambertian. Hog et al. [2016] proposed a novel graph representa-
tion for interactive light field segmentation with a human in the loop.
The graph structure exploits redundancy in the ray space in order to
reduce computational primitives. Later, Hog et al. [2017] proposed an
automatic light field segmentation by clustering super-rays and light
ray bundles. The clustering metric relies on spatial, angular and color
distance, to align multiple view points. Extra sparse view disparity
estimation is utilized for more accurate ray alignment. Wanner et
al. [2013] also proposed a ray based segmentation method to solve
the multi-label segmentation problem using a variational framework.
Mihara et al. [2016] proposed a learning-based light ray detection
method by utilizing appearance and disparity cues, and then adopted
a graph-cut framework to formulate segmentation problem.

Our core method can be seen as an extension of the 2D image
segmentation of Liu et al [2011] to 4D light fields, with additional
energy terms that utilize geometric structure in the higher dimen-
sional space. While our method takes an initial depth estimate as
an input (in our implementation, this depth estimate is generated by
the method of Tao et al. [2013]), our light field segmentation model
does not make a strong assumptions on light ray constancy or EPI
constancy, which does not hold when occlusion occurs. As we show
in Section 6, this approach results in significantly improved view
consistency, as well as better alignment of the segmentation regions
with object boundaries compared state of the art methods. Finally, we
also significantly improve compute time and memory consumption
of submodular segmentation frameworks like Liu et al [2011], as well
as introduce a hierarchical version of this framework that minimizes
iterative parameter adjustments.

3 PRELIMINARIES
In the following we briefly summarize relevant concepts for our work
and introduce notation used throughout the rest of the paper.

3.1 Light Fields
Throughout this work, we denote 4D light fields as 𝐿(𝑥, 𝑦, 𝑢, 𝑣),
where (𝑢, 𝑣) can be interpreted as the coordinates of a view point
and (𝑥, 𝑦) as the 2D image coordinates on a focus plane located at
unit distance from the view point plane (see Fig. 2).

Fig. 2. Diagram of light field geometry and notation used throughout
the paper. The (𝑢, 𝑣) plane contains the view points, while the (𝑥, 𝑦)

plane at unit distance is the canonical focus plane of the light field. The
light field can be refocused to a different plane (𝑥′, 𝑦′) at distance 𝛼
according to Eqn. 1.

Light Field Refocusing. In a refocusing operation, the light field is
re-parameterized for a different location 𝛼 of the (𝑥, 𝑦) plane. This
re-parameterization step can be expressed as a counter-clockwise
shear of the Epipolar Plane Images (EPIs) [Ng et al. 2005; Wang
et al. 2015a]:

𝐿𝛼(𝑥
′, 𝑦′, 𝑢, 𝑣) = 𝐿(𝑢+

𝑥′ − 𝑢

𝛼
, 𝑣 +

𝑦′ − 𝑣

𝛼
, 𝑢, 𝑣). (1)

View plane (𝑢, 𝑣) and synthetic view plane (𝑢′, 𝑣′) are actually co-
located in our setting, since only the refocus plane moves while
the synthetic view plane (𝑢′, 𝑣′) is fixed in Fig. 2. We use same
coordinates system as Ng et al. [2005] for light field refocusing.

Light Field Slicing. For our segmentation method, we analyze 2D
slices of clusters that emerge when fixing two of the light field param-
eters. We denote these slices of the light field domain as, 𝐿𝑥,𝑦(𝑢, 𝑣),
𝐿𝑢,𝑣(𝑥, 𝑦), 𝐿𝑥,𝑢(𝑦, 𝑣), and 𝐿𝑦,𝑣(𝑥, 𝑢). Note that 𝐿𝑢,𝑣(𝑥, 𝑦) cor-
responds to a perspective image, while 𝐿𝑥,𝑢(𝑦, 𝑣) and 𝐿𝑦,𝑣(𝑥, 𝑢)
respectively denote the horizontal and vertical EPIs.

3.2 Light Field Graphs and Submodular Functions
Graph Structure. We denote a graph on a light field as 𝒢 = (𝒱, ℰ),

where 𝒱 = {𝑣𝑖|𝑖 = 1, . . . , 𝑁} is the vertex set, which is composed
of a regularly sampled grid of points 𝑣 in the 4D ray space, i.e. each
node in the graph corresponds to one ray. The edges 𝑒 ∈ ℰ connect
the immediate neighbors along all four dimensions of the light field
and also include a self-loop connecting each ray to itself. Also see
Fig. 3(left).

The edge weight represents an affinity between vertices, and is a
function 𝑤 : ℰ → R+ ∪ {0}. Moreover, a disjoint division of the
vertex set 𝒱 forms a graph partition 𝒮 = {𝑠1, 𝑠2, . . . , 𝑠𝑘}, where 𝑖 is
the partition index. Our goal is to select a subset of edges 𝒜 ⊆ ℰ such
that the resulting graph (𝒱,𝒜) consists of 𝐾 connected components
(i.e., 𝐾 regions), i.e. 𝒜 is missing all edges that cross regions.

In analogy to the light field slicing operators defined above, we
also define slices of the individual clusters, 𝑠𝑥,𝑦𝑘 , 𝑠𝑢,𝑣𝑘 , 𝑠𝑥,𝑢𝑘 , 𝑠𝑦,𝑣𝑘 .

Submodular functions. A submodular function is a set function
ℱ : 2𝑉 → R that has the property of diminishing returns, i.e.,

ℱ(𝐴 ∪ {𝑎1})−ℱ(𝐴) ≥ ℱ(𝐴 ∪ {𝑎1, 𝑎2})−ℱ(𝐴 ∪ {𝑎2}), (2)

where 𝐴 is a set and 𝑎1, 𝑎2 /∈ 𝐴. This property can be utilized
as an efficient way to greedily optimize the objective function by
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finding the element with maximal energy gain. This guarantees a
(1− 1

𝑒
)-approximation of the global optimum [Krause and Golovin

2014].

Entropy rate of a random walk on a weighted graph. Consider
a graph 𝒢 = (𝒱, ℰ) that has 𝑁 vertices {𝑣𝑖|𝑖 = 1, . . . , 𝑁} and
edge weights 𝑤𝑖,𝑗 ≥ 0. A random walk starting from an initial
vertex to other vertices in the graph can be described by a sequence
of vertices {𝑋𝑡|𝑡 ∈ {1, . . . , 𝑁}}. Given the current position 𝑣𝑖,
the next position 𝑣𝑗 is chosen according to the weight of edges
that connected to the vertex 𝑣𝑖, with transition probabilities 𝑝𝑖,𝑗 =

𝑤𝑖,𝑗∑︀
𝑘 𝑤𝑖,𝑘

. The stationary distribution 𝜇𝑃 = 𝜇 is given by

𝜇 = (𝜇1, . . . , 𝜇𝑁 )𝑇 = (
𝑤1

𝑤
, . . . ,

𝑤𝑁

𝑤
)𝑇 , (3)

where 𝑤𝑖 =
∑︀

𝑘 𝑤𝑖,𝑘 and 𝑤 =
∑︀

𝑖 𝑤𝑖 [Cover and Thomas 2006].
The entropy rate of a random walk on 𝒢 = (𝒱, ℰ) can be written

as a set function:

𝐻(ℰ) = −
∑︁
𝑖

𝜇𝑖

∑︁
𝑗

𝑝𝑖,𝑗 log(𝑝𝑖,𝑗), (4)

where log refers to the logarithm with base 2.
Similar to Liu et al. [2011], the transition probability of the seg-

mented graph 𝒢 = (𝒱,𝒜) is defined as:

𝑝𝑖,𝑗 =

⎧⎪⎨⎪⎩
𝑤𝑖,𝑗

𝑤𝑖
, if 𝑖 ̸= 𝑗 and 𝑒𝑖,𝑗 ∈ 𝒜,

0, if 𝑖 ̸= 𝑗 and 𝑒𝑖,𝑗 /∈ 𝒜,

1−
∑︀

𝑘:𝑒𝑖,𝑘∈𝒜 𝑤𝑖,𝑘

𝑤𝑖
if i = j.

(5)

4 LIGHT FIELD SEGMENTATION MODEL
Like 2D image segmentation methods, light field segmentation should
produce clusters with consistent colors and textures. The clusters
should be well shaped, and of similar size. In addition, however, we
can define several additional desired properties that are specific to
light field segmentation and can be used to obtain superior results:

(1) Depth-Awareness: the method should be able to separate ob-
jects with similar appearance according to scene depth.

(2) Occlusion-Awareness: clusters should have sharp edges at
occlusion boundaries.

(3) View Consistency: the clusters should be stable and consistent
under changes in view points.

Our segmentation method maximizes an objective function of the
form

𝐸(𝒜) = 𝐴(𝒜) + 𝜆𝑉 (𝒜) + 𝛽𝐶(𝒜) + 𝛾𝑆(𝒜), (6)

where 𝐴(𝒜) is an occlusion and depth aware appearance term, 𝑉 (𝒜)
encourages view consistency, 𝐶(𝒜) regularizes the spatial shape,
and 𝑆(𝒜) encourages similarly sized clusters.

The four terms are defined in detail in the following subsections.
Each term is monotonic and submodular, and therefore 𝐸(𝒜) can be
maximized using an efficient greedy optimization scheme.

4.1 Occlusion- and Depth-aware Appearance Term
In light field segmentation, refocused depth can be a good indicator to
handle strong texture and isolated objects that are placed at different
scene depth. Moreover, occlusion boundaries can also preserve sharp
edges for segmentation.

Fig. 3. An illustration of our two-stage appearance model. Left: at the
first stage, we construct a graph on a regular grid of 4D ray space,
where the appearance weight for edges is simply determined by the
color of individual rays. Right: when the total number of clusters is
reduced beyond a threshold (e.g., 2 times of spatial resolution), the
appearance weight is jointly determined by ray intensity and each clus-
ters’ intensity histogram. Moreover, we re-initialize all the unselected
edge weights when activating the second stage.

Our edge weight function combines the above information, and is
defined as

𝑤𝑖,𝑗 =
𝑤𝑎

𝑖,𝑗 + 𝑤𝑑
𝑖,𝑗

1 + 𝑘𝑤𝑜
𝑖,𝑗

, (7)

where 𝑖 and 𝑗 represent neighboring rays in the 4D ray space, 𝑤𝑎 is an
appearance weight, 𝑤𝑑 a depth weight, and 𝑤𝑜 an occlusion weight.
These three individual weights are defined below. Fig. 3 illustrates
our graph structure over the ray space in flat land. In 4D, the nodes
are connected along all 4 dimensions, 𝑥, 𝑦, 𝑢, and 𝑣. According to
Eqn. 7, pixel and local histogram features determine edge weight
calculation which shows on the right of Fig. 3.

With these edge weights we can define the transition probabilities
𝑝𝑖,𝑗 as in Eqn. 5 and the graph entropy 𝐻(𝒜) as in Eqn. 4. The first
term of our objective function is then given as

𝐴(𝒜) = 𝐻(𝒜). (8)

Since the entropy rate of a random walk on the graph is a mono-
tonically increasing submodular function [Liu et al. 2011, 2014],
the inclusion of any unselected edge will lead to an increase of the
entropy on the graph. However, this increase is lower when selecting
edges from the set of remaining edges due to the diminishing return
property.

Appearance Weight. The appearance weight 𝑤𝑎 measures the sim-
ilarity in appearance between two rays using an appearance function
𝐷(.):

𝑤𝑎
𝑖,𝑗 = exp(−𝐷(𝑖, 𝑗)

2𝜎2
), (9)

with

𝐷(𝑖, 𝑗) = ‖𝑓(𝑖)− 𝑓(𝑗)‖22 + 𝜂‖ℎ𝑖𝑠𝑡(𝑠(𝑖))− ℎ𝑖𝑠𝑡(𝑠(𝑗))‖22, (10)

Here, the first term simply compares the colors of rays 𝑖 and 𝑗. The
second term is a texture feature in the form of a color histogram
for the two clusters 𝑠(𝑖) and 𝑠(𝑗). The parameter 𝜂 weights these
two distance terms. We use two different values for 𝜂: for small
clusters, the number of rays in the cluster is insufficient for obtaining
robust histogram statistics, so we set 𝜂 = 0. For larger clusters
(more than 2 wide in both 𝑥 and 𝑦) we set 𝜂 > 0 to enable region and
texture descriptors. This term uses 𝐿𝑎𝑏 space for color and histogram
comparisons.
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Depth Weight. The depth weight 𝑤𝑑 encourages that rays which
intersect the scene at similar depths are placed into the same cluster:

𝑤𝑑
𝑖,𝑗 = exp(−‖𝑑(𝑖)− 𝑑(𝑗)‖22

2𝜎2
). (11)

Here, 𝑑(𝑖) is a depth estimate for each ray 𝑖, which we obtain
as follows. We first shear the light field to refocus it at different
candidate depths. We then use the refocused depth cues from Tao
et al. [2013] to determine for each (𝑥, 𝑦) location the candidate
depth that brings it into the best focus. Finally, we propagate this
information back to 4D by backward shearing the result onto the
original light field (see Fig. 4).

(a) Central View EPIs (b) LF Forward Shearing (c) Depth Metric on EPIs

(d) Backward Shearing (e) Central View Depth (f) Depth EPIs

Fig. 4. Computing the 4D depth cost by forward and backward s-
hearing. 4(a) shows a central view and EPIs. We first apply forward
shearing (i.e., refocusing) on the original light field 4(b) with a set of
candidate depths, and calculate the light field depth metric for each
4D ray element 4(c). We then apply backward shearing of the 4D
depth metric 4(d) to the original light field parameterization. Finally, the
4D refocused depth can be estimated by finding the minimum of the
per-element depth metric from different shearing parameters. 4(e) and
4(f) shows the central view of 4D refocused depth and EPIs.

Occlusion Weight. Finally, our graph weights consider depth dis-
continuities as well as intensity edges. Specifically, we define

𝑤𝑜
𝑖,𝑗 = |𝑜𝑑(𝑖) · 𝑜𝐿(𝑖)− 𝑜𝑑(𝑗) · 𝑜𝐿(𝑗)|. (12)

Here, 𝑜𝐿(.) is simply an edge detector [Dollár and Zitnick 2015]
applied to each (𝑥, 𝑦) slice, while 𝑜𝑑 is computed based on the 4D
gradient magnitude of the depth estimates from above:

𝑜𝑑 =

{︂
1 ; ||∇𝑑||

𝑑
≥ 0.8,

0 ; else
(13)

The depth threshold here is quite conservative, since it it intended
mainly to detect occlusion events.

4.2 View Consistency Term
A light field segmentation should be view consistent, i.e. under grad-
ual changes in viewpoint, the 2D slice of the segmentation in the
projected image should not change abruptly; the same object points

should be grouped into the same cluster under all views. This means
that the segmentation should be encouraged to cut along the spatial
(𝑥, 𝑦) dimensions instead of the (𝑢, 𝑣) dimensions for clusters with
similar appearance. Fig. 5 illustrates this principle: assuming that
regions 𝑠2 and 𝑠3 have similar appearance and scene depth, we prefer
the left segmentation from Fig. 5(c) over the one from Fig. 5(d).

(a) Original (b) Depth

(c) View Consistency Case (d) Non View Consistency Case

Fig. 5. An illustration of view consistency. (a) and (b) are the example
cases of RGB synthetic scene and depth scene. (c) and (d) show two
possible segmentations in light field EPIs slices. (c) preserves a good
View Consistency compared to (d). (d) has a disconnected light ray;
the same object point is assigned to different clusters in different views.
This is discouraged by our view consistency term.

Fig. 6 shows an example comparison of the view consistency term.
The “thin and tall” case better preserves view consistency and has
a higher numeric values than “fat and short” case, which leads to a
higher priority to be selected in submodular optimization.

To measure the view consistency of a 4D region, we propose a new
metric based on the entropy rate of 2D (𝑥, 𝑦) slices for a fixed view
point, 𝑠𝑢,𝑣𝑘 (𝑥, 𝑦). The proposed view consistency constraint favors
segmentations where these slices are of uniform size and shape as
the view point changes.

Specifically, we define the distribution of 2D segmentation slice
as follows,

𝑝𝑠𝑘 (𝑢, 𝑣) =
|𝑠𝑢,𝑣𝑘 |
|𝑠𝑘|

, (14)

where | · | represents the number of elements in a region. Then, the
view consistency term is defined as the entropy rate of 𝑝𝑠𝑘 (𝑢, 𝑣), i.e.

𝑉 (𝒜) = −
∑︁
𝑘

𝜇𝑠𝑘

∑︁
𝑢,𝑣

𝑝𝑠𝑘 (𝑢, 𝑣) log 𝑝𝑠𝑘 (𝑢, 𝑣). (15)

4.3 Spatial Compactness Term
As we have just seen, elongated cluster shapes along the 𝑢 and 𝑣
directions are desired in the EPI. However, the cluster shape in the
spatial 𝑥, 𝑦 slices is preferred to be round and compact without com-
plicated boundaries. This is in agreement with the goals of traditional
2D image segmentation methods. Again we measure the spatial shape
regularization by the entropy rate of spatial distribution of clusters.
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(a) VC Constraint = 1.536 (b) VC Constraint = 0.719

Fig. 6. An illustration of the Light Field view-consistency constraint.
Fig. 6(a) and Fig. 6(b) shows two different light field segmentations
with similar size, 4D pixels will be projected to 2D angular coordinates
and count the occurrence. (a) (”thin and tall”) has a more uniform
angular distribution compared to (b) (”fat and short”), thus, (a) has a
higher photo-consistency objective value.

We first project our cluster elements onto the 𝑥 and 𝑦 axes, and
then measure the entropy rate of the cluster in terms of 𝑥 and 𝑦 coor-
dinates. To provide an intuition of our spatial shape regularization,
we illustrate the entropy rate of several shapes in Fig. 7.

(a) C=15.34 (b) C=14.85 (c) C=14.71 (d) C=15.17

Fig. 7. Illustration of the light field spatial compactness term. We
project a region onto the (x,y)-coordinates and enhance spatial com-
pactness by maximizing the entropy rate of the spatial shape distribu-
tion. 7(a) shows that the square shape of segmentation has a higher
objective than the other shapes, and is thus preferred by our system.

To measure the entropy rate of spatial distribution, we count coor-
dinate histogram of 𝑥 and 𝑦 by fixing remaining coordinates as

𝑝𝑠𝑘 (𝑦, 𝑢, 𝑣) =
|𝑠𝑦,𝑢,𝑣𝑘 |
|𝑠𝑘|

, (16)

𝑝𝑠𝑘 (𝑥, 𝑢, 𝑣) =
|𝑠𝑥,𝑢,𝑣𝑘 |
|𝑠𝑘|

, (17)

where 𝑝𝑠𝑘 (𝑦, 𝑢, 𝑣) and 𝑝𝑠𝑘 (𝑥, 𝑢, 𝑣) are 𝑠𝑘’s slices along the 𝑥 and 𝑦
coordinates respectively. The shape regularization terms for the two
axes are then

𝐶𝑥(𝒜) = −
∑︁
𝑘

𝜇𝑠𝑘

∑︁
𝑦,𝑢,𝑣

𝑝𝑠𝑘 (𝑦, 𝑢, 𝑣) log 𝑝𝑠𝑘 (𝑦, 𝑢, 𝑣), (18)

𝐶𝑦(𝒜) = −
∑︁
𝑘

𝜇𝑠𝑘

∑︁
𝑥,𝑢,𝑣

𝑝𝑠𝑘 (𝑥, 𝑢, 𝑣) log 𝑝𝑠𝑘 (𝑥, 𝑢, 𝑣). (19)

The overall shape regularization is the sum of these two terms:

𝐶(𝒜) = 𝐶𝑥(𝒜) + 𝐶𝑥(𝒜). (20)

4.4 Size Balancing Term
Finally, we follow [Liu et al. 2011] and regularize cluster size as an
additional constraint. The entropy rate of the balancing term is given
by

𝑆(𝒜) = −
∑︁
𝑘

𝜇𝑘 log(𝜇𝑘)− |𝒮|. (21)

When maximized, this term encourages equally sized clusters. The
stationary distribution of the 2D segmentation slice is

𝜇𝑠𝑘 =
|𝑠𝑘|
|𝒱| . (22)

5 LARGE-SCALE HIERARCHICAL SUBMODULAR
OPTIMIZATION

Performing standard submodular optimization on a light field graph
will lead to a large-scale submodular optimization problem. Currently
available light field data will generate graphs with up to 109 edges,
while 2D images only have 107 edges due to the more densely
connected graph structure in 4D vs 2D. We develop several strategies
to deal with large-scale optimization problems involving submodular
functions. These include a disjoint tree as a hierarchical way of re-
generating a specific number of regions, as well as a cache system to
efficiently search, modify, merge large-scale trees. These innovations
will be useful for other large-scale submodular optimization problems
including for videos and volumes.

Hierarchical Segmentation with the Disjoint Tree. One challenge
for segmentation problems is always to guess the correct number
of regions. One solution is to generate a hierarchical segmentation,
and let user adjust the number of regions by selecting the appropri-
ate level in the hierarchy. We design the disjoint tree to record the
tree merging procedure. The advantage of the disjoint tree is that it
does not require a large amount of memory to store a segmentation
hierarchy, but can recover any number of segmentations by simply
providing the sequence of merged trees without having to recompute
the segmentations.

The disjoint tree is a variation of a standard disjoint set, which
has a tree-like structure that preserves information about the order
in which elements are added. A disjoint tree is a set of binary trees.
Merging two trees requires connecting the root node of one tree to
the empty child node of another tree, and saving the root id of the
merged tree. Submodular optimization involves selecting the optimal
trees to merge until there is only one tree left. Given the final tree
and the merged root node order, we can search and decompose the
tree node reversely, so that any number of trees (regions) can be
recovered. This is illustrated in Fig. 8.

Max Heap and Partial Update Scheme. For each iteration of Alg. 1,
only the edge with maximal energy gain is selected and the energy
gain of the rest of edges will be updated. Naive implementation will
cost 𝒪(|ℰ|) iterations to find an optimal edge, and 𝒪(|ℰ|)) iterations
to update the rest of the edges, i.e. the computational complexity
will be 𝒪(|ℰ|2). This is too expensive for light fields, which have
tens of millions of pixels. Fortunately, submodular functions have a
diminishing return property; the energy gain for each edge will never
be increased during the iteration. This property enables a lazy, greedy
method [Leskovec et al. 2007; Liu et al. 2011] for quick search and
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Fig. 8. An illustration of merging in the disjoint tree and recovering hierarchy of segmentation by providing merged region sequences. 𝑇𝑖 is one
binary tree of the disjoint tree with root node id 𝑖. When an optimal edge is selected (𝑒58, 𝑒56, 𝑒23) for each iteration, two connected binary trees (𝑇5,
𝑇7), (𝑇3, 𝑇7), (𝑇1, 𝑇3) will be merged respectively. The merged binary tree forms a sequence {𝑇5, 𝑇7, 𝑇1}, i.e., 𝒦 = {. . . , 5, 7, 1}. The hierarchy of
segmentation regions can be recovered by disconnecting the disjoint tree in reverse order. For example, if we disconnect tree nodes 1 from its
parent, the disjoint tree in (D) will roll back to (C), and disconnect nodes 7 and its parent, disjoint tree in (C) will roll back to (B) and so on. Any
possible number of regions can be recovered given the final disjoint tree and the sequence of merges.

update. The basic idea is to adopt a max heap structure to determine
the optimal edge by popping the top element of the heap, and only
partially recalculating the elements near the top of the heap until the
max heap requirements are again satisfied.

However, a naive implementation of max heap may lead to a worst
case of 𝒪(|ℰ|2 log |ℰ|) when the binary max heap becomes unbal-
anced. The updating max heap will cost up to 𝒪(log |ℰ|), depending
on the tree depth. In a small dataset, max heap will only update sever-
al times in general, and therefore ℰ is generally negligible. However,
in large-scale data such as in light fields, max heap updates may
happen many times for each iteration. We make improvements in
two ways: First, the max heap will be re-initialized several times via
fully updating all tree nodes and re-balancing to avoid the worst case.
Therefore, the actual update times will be limited strictly. Second,
our method will drop all redundant edges (edges that connect the
same subgraph) in the disjoint-tree. Therefore, the size of max heap
will reduce dramatically and will decrease accordingly.

Efficient Tree Operation Using Caching. Our submodular func-
tion is optimized with a disjoint tree and a max heap, therefore, the
optimization process involves tree node search, add, modify, find
operations. For large tree sizes, the naive implementation of tree
operations will lead to system stack overflow due to the highly recur-
sive nature of the method. In our implementation, tree operations are
recursion free and apply Breadth-First-Search or Depth-First-Search
to implement the various tree operation. Moreover, we design a cache
system to search for empty child nodes: instead of searching the tree
from the root node, candidate empty child nodes can be directly
popped from a cache queue.

Memory-Efficient Greedy Heuristic Optimization. The aim of our
proposed optimization scheme is to maximize our submodular func-
tion and preserve the hierarchical structure of the segmentation. The
submodularity of the objective function leads to a good guarantee
for estimating the global optimum by greedy optimization [Liu et al.
2011]. The algorithm starts with an empty set (i.e., 𝒜 = ∅), each
vertex is totally disconnected, and then iteratively finds the largest
energy gain edge. An edge that forms a cycle on the edge set 𝒜 is
not ignored immediately. We maintain disjoint pixels set by disjoint
tree, if there is a selected edge to be added to the edge set 𝒜, this
procedure will lead to the merging of two binary trees (no cycle

constraint). We also record the order of the binary tree merging pro-
cess 𝒦 = {𝐾𝑡|𝑡 = 1, . . . , |𝒱|}. The iteration converges when there
is only one binary tree in the disjoint tree. The desired number of
regions 𝐾 is obtained by splitting nodes in the disjoint tree in reverse
order to form new binary trees. The pseudo code is shown in Alg. 1.

Optimizing entropy rates on graphs with submodular functions
is a standard optimization tool. Our work improves the traditional
pipeline by jointly generating hierarchy and objective update scheme,
caching system for large-scale tree operation, which makes large-
scale tree-based submodular optimization to be memory tractable
and computationally efficient.

Data: 4D light field 𝐿(𝑥, 𝑦, 𝑢, 𝑣)
Result: Disjoint Tree 𝒯 , order set 𝒦
Initialize:
𝒯 = {𝒯𝑖|𝑖 = 1, . . . , |𝒱|},
𝒜 = ∅, 𝒰 ← ℰ , t = 0, 𝒦 = ∅.
while 𝒰 ̸= ∅ do

𝑒* = argmax
𝑒∈𝒰

𝐸(𝒜 ∪ {𝑒})− 𝐸(𝒜)).

if 𝑒* connects 𝒯𝑖 and 𝒯𝑗 (𝑖 ̸= 𝑗) then
𝒜 ← 𝒜∪ {𝑒*}
𝒯𝑖 ← 𝒯𝑖 + 𝒯𝑗 (+ stands for tree merge operator)
𝒦𝑡+1 = 𝑗, 𝑡 = 𝑡+ 1

end
𝒰 ← 𝒰 − {𝑒*}

end
Algorithm 1: 4D Light Field Segmentation Algorithm

6 EXPERIMENTS
In this section, we show the visual results and quantitative comparison
for 4D segmentations of both real and synthetic light fields. Please
refer to supplemental material for additional results and comparisons.

Datasets. In the experiment, we mainly use several publicly avail-
able datasets: the 4D Light Field Dataset [Honauer et al. 2016], the
CVPG Dataset [Zhu et al. 2017], as well as the Stanford Light
Field Archive [Dansereau et al. 2019]. For the 4D Light Field
Dataset, we select data with a segmentation mask for evaluation.
Of these, the first two mainly provide synthetic datasets with highly
accurate ground truth for disparity and segmentations. The Stanford
Light Field Archive contains examples of very high angular reso-
lution light fields, where it is a challenge for segmentation methods
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Fig. 9. Quantitative comparison of our method with four competing methods: SLIC [Achanta et al. 2012], LFSP [Zhu et al. 2017], Super-Rays [Hog
et al. 2017] and VideoSeg [Grundmann et al. 2010]. The different comparison metrics are shown from left to right: Boundary Recall, Under-
Segmentation Error, Achievable Segmentation Accuracy, and our View Similarity metric. Each graph shows the progression of each metric as the
number of regions in the segmentation is increased. Different datasets are shown from top to bottom: CVPG dataset, 4D Light Field Dataset, and
our own dataset.

to preserve view consistency. Also, system issues such as memory
efficiency are highlighted by this dataset. The CVPG Light Field
Dataset [Zhu et al. 2017] provides 6 synthetic light field datasets
with ground truth disparity and 4D segmentation labels. We augment
these standard datasets with our own dataset, captured using a first
generation Lytro camera. This dataset includes a manually labeled
ground truth 4D segmentation and will be made public.

Parameter Settings. In the experiments, we set weight param-
eters in our objective functions weight as 𝜆 = 0.1, 𝛽 = 0.1,
𝛾 = [0.5, 100], 𝜎 = 0.005, 𝑘 = 0.5, 𝜂 = 0.5.

6.1 Quantitative Evaluation
Evaluation Metric. To evaluate segmentation performance, we

employ widely used 2D segmentation evaluation metrics: boundary
recall (BR), under-segmentation error (UE), and achievable segmen-
tation accuracy (ASA), which are all standard metrics in 2D image
segmentation [Achanta et al. 2012; Liu et al. 2014; Zhu et al. 2017].
To evaluate the view consistency of the light field segmentation for
different views, we design a new View Similarity (VS) metric as
follows. Given a segmentation, we determine for each region 𝑠𝑘
and each pair of views (𝑢, 𝑣) and (𝑢′, 𝑣′), the region slices 𝑠𝑢,𝑣𝑘 and

𝑠𝑢
′
,𝑣

′

𝑘 . These are then aligned in image space for maximum pixel

overlap, before the metric is computed as

𝑉 𝑆 =
1

𝑁𝑣𝑠

∑︁
𝑘

∑︁
𝑢
′

∑︁
𝑣
′

∑︁
𝑢

∑︁
𝑣

|𝑠𝑢
′
,𝑣

′

𝑘 ∩ 𝑠𝑢,𝑣𝑘 |

|𝑠𝑢
′
,𝑣

′

𝑘 ∪ 𝑠𝑢,𝑣𝑘 |
, (23)

where ∩ and ∪ are the union and intersection of the pixel regions
after finding the best alignment between the slices by 2D translation
in image space, 𝑁𝑣𝑠 = |𝒮| · 𝑁𝐴 · 𝑁𝐴, and 𝑁𝐴 is the number of
views in the light field.

Quantitative results. Figure 9 shows the quantitative comparison
of our method on the three datasets that have ground truth infor-
mation. The comparison methods are VideoSeg [Grundmann et al.
2010], a state-of the art video segmentation method, and finally LF-
SP [Zhu et al. 2017] and Super-Rays [Hog et al. 2017], two recent
automatic light field segmentation methods. Note that we do not
compare against other light field segmentation methods that require
manual user input. More detail on the chosen comparison methods is
provided in the next section.

Of the four metrics, lower values are better for UE while for the
other three metrics (BR, ASA, and VS), higher values are better.
The results clearly demonstrate that our method outperforms the
comparison methods on all metrics. Compared to image and video
segmentation methods, the light field methods (LFSP, Super-Rays,
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and ours) are able to use the richer information of light fields for
better segmentation results. At the same time, our submodular energy
term proves more effective than the competing Light field approaches.
Please refer to the supplement for additional quantitative results on
other datasets. We use the implementation of the metrics from the
segmentation toolkit [Stutz et al. 2018].

Due to the hierarchical nature of our light field segmentation
we only need to run the method once on each light field and then
can extract the segmentations with different numbers of regions to
produce the data in Fig. 9. All other methods need to be run many
times with adjusted parameters to produce the same data. A single
execution takes on average 4 min for LFSP, 2 min for SLIC, and
20 min for VideoSeg, and 1 min for Super-Rays. More details of
computational time comparison is shown in Table 1. This compares
to 5 min for the full hierarchical segmentation in our approach.

Trade-off Between Region Number and Shape. The graphs in Fig. 9
show evaluation metrics against the number of regions. Our evalu-
ation covers different possible applications of segmentation: super-
pixels, smoothing and denoising [Bi et al. 2015], semantic segmenta-
tion [Fulkerson et al. 2009] etc. For semantic object segmentation, a
small number of regions is preferable (100 ∼ 200) to capture small
objects or components. For smoothing or editing tasks, fine image
structure should be preserved, therefore, a large number of regions
(> 200) is better in general. Overall, our method is the most compet-
itive algorithm against other state-of-the arts in the major range of
region number Fig. 9.

Earlier methods (e.g., SLIC, Videoseg) have a worse performance
when only requiring less than 200 regions, because those methods
generate very compact regions with simple boundaries, which mean-
s that boundary adherence is poor for segmentations with a small
number of regions. LFSP and Super-Rays are two state-of-the-art
competitors, these two methods share similar performance and visual
behavior due to use SLIC-like data term (color and spatial distance)
with extra LF-based constraint. Like SLIC, the compact region shape
is not suitable for faithfully representing objects in a light field with
a small number of regions. The view consistency metric is not sig-
nificantly affected by the region number, and Super-rays, LFSP and
our method achieve a better performance than those traditional 2D
segmentation methods. Our method shows superior performance a-
gainst all state-of-the-art methods numerically and visually due to
our approach of directly optimizing a full 4D graph.

Computation Time. Our method emphasizes reconstruction quality
over speed, and as such cannot match the speed of some existing
methods, especially those optimized for GPU computation. Nonethe-
less, the comparison in Table 1 shows that the execution times our
method is within a small factor of the times for other CPU methods.
All experiments were conducted on a workstation with an Intel Xeon
E5-2687 CPU (3.0GHz) and 192 GB RAM.

In evaluating the the computational efficiency of the algorithms,
we also note that the all comparison methods produce a single seg-
mentation would in many practical settings need to be re-run multiple
times to determine the appropriate number of clusters for a given
light field. By comparison, our hierarchical approach produces all
possible segmentation granularities in a single run within the time

listed in the table, thus significantly reducing the amount of time
needed to conduct experiments.

Table 1. Compute time in seconds of the different methods (Angular
Resolution is 9×9).

Method 378×378 375×540 512×512
SLIC 4D 102s 124s 180s
Videoseg ˜900s ˜1020s -
LFSP 142s 162s 192s
Super-Rays 34s 42s 61s
Our 177s 289s 434s

6.2 Visual Comparison
Next, we visually compare our light field segmentation method with
other state-of-the art alternatives. We perform comparisons on three
datasets: 4D Light Field Dataset, Stanford Light Field Archive, and
our dataset. We strongly encourage the reader to also refer to the
video and supplemental material for more dynamic visualizations.

Visual 4D Segmentation Comparison. Fig. 10 and Fig. 11 show
visual comparisons with state-of-the-art 2D, video, and light field
segmentation methods.

For the next comparison, we simply rearrange the light field to for-
m a sequence of views, and then apply a video segmentation method
to process the light field sequence. VideoSeg [Grundmann et al. 2010]
is a popular video segmentation method that utilizes appearance sim-
ilarity and optical flow to group small regions. Video segmentation
exploits inter-frame optical flow and appearance similarity to sepa-
rate objects that contain motion in the video sequence. However, in
the light field sequence, optical flow on different view points may
contain discontinuities, especially when light field sequence change
view from right to left or down to up, this may affect the grouping of
small regions. Moreover, a light field has comparatively low variance
in terms the disparity, therefore, traditional optical flow methods may
not have obvious flow output from neighboring view points.

LFSP [Zhu et al. 2017] builds a 4D segmentation in a SLIC-like
fashion, with added view invariance constraints. Its performance is
similar to SLIC in the spatial dimensions. Since LFSP requires a
depth map, we first compute depth the same way as in Section 4,
and provide it as input to LFSP. LFSP relied rather heavily on this
depth map, while our method builds the segmentation from full
4D ray space (not from grouping superpixels). The core difference
between the LFSP [Zhu et al. 2017]’s view consistency and ours is
that our term can guarantee a good error bound and that it is a dense
pixelwise constraint on region shape to preserve view consistency
in EPIs and spatial slices, while theirs can only apply a constraint
on the segmentation centroid, which is sparse and lacks control over
region shape.

Since Super-Rays [Hog et al. 2017]’s code is not public available,
we re-implemented their work. Their pipeline is quite fast, stable and
simple. Since super-rays metric is also based on SLIC-like spatial
and color distance, this metric tends to generate very regularly shaped
spatial regions, at the expense of alignment with boundary features,
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(a) VideoSeg (b) LFSP (c) Super-Rays (d) Our method

Fig. 10. Visual comparison with state-of-the-art methods on our real scene dataset. We visualize 3 different alternative methods:
VideoSeg[Grundmann et al. 2010], LFSP[Zhu et al. 2017] and Super-Rays[Hog et al. 2017]. To emphasize the view consistency of segmentation,
we also show the EPIs on vertical and horizontal directions (e.g., RED, GREEN, BLUE dash line and EPIs with same color rect). The number of
regions are around 100 for all the alternatives.

which becomes particularly apparent when segmenting fine spatial
features (also see Fig. 12).

As a result, our method is more robust to mistakes in depth map,
and achieves better view consistency in 4D domain. By jointly con-
sidering appearance, depth, occlusion as well as the prior knowledge
of 4D segmentation shape, we obtain better robustness in complex
scenes and gain the ability to find fine structures in the light field.

Depth Refinement. Segmentation can be utilized as extra cue to
refine depth boundary, interior noisy region and depth holes. Fig. 12
illustrates the depth refinement results by state-of-the-art LF segmen-
tation methods and our proposed methods. We simply utilize the
median of 4D segmentation depth as output value, and then adopt
light field refocused depth estimation method [Wang et al. 2015a] as
raw depth refinement input. When scenes light field contain small
structures (first row) or lens glare (second row), traditional depth

metrics will tend to fail on such cases. Fortunately, our light field
segmentation was able to utilize view consistency constraints to re-
move short-term lens flashing and preserve fine structure of tiny
scene, e.g., black holes in depth map (second row) can be fixed by
our segmentation methods.

Hierarchical Segmentation. The hierarchical aspect of the seg-
mentation allows us to very efficiently adjust the number of regions
without having to re-run the segmentation. One straightforward ap-
plication is simply to minimize times for experimentation. In our
experience, the results in many previous image/video/LF works re-
quire extensive experiments parameter adjustments to produce good
results, and only the time to produce the final result is actually re-
ported. Our approach can overcome this issue. Examples of this
adjustment are shown in the video and supplementary materials.
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Fig. 11. Additional visual results. From left to right, we show original views, segmentation contour, random color and mean color within segmentations
with EPIs.

(a) Original (b) Input Depth (c) LFSP (d) Super-Rays (e) our

Fig. 12. Comparison of depth maps encoded in the segmentations created by different methods. (a) Original central scene view. (b) Input raw depth
for our method. Depth results for (c) LFSP [Zhu et al. 2017], (d) Super-Rays [Hog et al. 2017], and (e) our method. Our method shows significantly
better preservation of thin structures and straight edges in both example scenes, demonstrating a better alignment of segmentation boundaries with
scene structure. The red crop regions in both scenes show that our method manages to refine and correct errors in the initial depth map. In the top
scene, a region of the sky is erroneously merged with the flower, while in the bottom example, lens flare creates an erroneous floating structure in
the original depth estimates. Both of these artifacts are corrected by our segmentation method.

6.3 Ablation Study
We conduct several ablation experiments to test our objective compo-
nents: ablation study by canceling objective terms, ablation study by
varying weights, and quantitative evaluation. We simply canceling
objective weights (i.e., 𝜆, 𝛽, 𝛾 = 0) to show the actual behavior of
individual terms, which shown in Fig. 13(a). The example figure
contains smooth region (sky), complex texture (grass) and fine struc-
ture. Our full method with all objective components can handle the
above cases, and canceling view consistency terms will lead to a

large amount of inconsistent small regions Fig. 14, which may dis-
appear in other view. Fig. 13(c) shows that the removal of spatial
compactness term will lead to a irregular shape, especially on the
smooth region. Fig. 13(d) illustrates that size balancing term regu-
larize the imbalanced size of region, canceling it will generate tiny
small regions.

Fig. 14 varies view consistency weight 𝜆, small inconsistency may
appear in some of the views without view consistency constraints,
and the increasing of 𝜆 significantly removes those small noise re-
gions. Fig. 15 compares different spatial compactness weights 𝛽, the
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increasing of 𝛽 provides higher strength of spatial regularization to
separate smooth regions (e.g., sky), which mainly generates region
with concentrating spatial distribution. Fig. 16 shows the results of
varying 𝛾 to generate different granularity of region.

Quantitative results of the ablation study are shown in Fig. 17,
showing the different quality metrics for different combinations of
parameters 𝜆 and 𝛽. Overall, a fine-tuned 𝛾 can improve BR, UE and
ASA, since this term provides extra prior to remove false segmenta-
tion between multiple frames. 𝛽 only regularize shape and generates
visually better results (especially in non-boundary or non-texture
parts), but does not significantly change evaluation metrics.

(a) Full Method (b) 𝜆 = 0

(c) 𝛽 = 0 (d) 𝛾 = 0

Fig. 13. Ablation Test. (a) example results with all objectives. (b) the re-
moval of view consistency term. (c) the removal of spatial compactness
term. (d) the removal of size balancing term.

(a) 𝜆 = 0.001 (b) 𝜆 = 0.05 (c) 𝜆 = 0.1

Fig. 14. Ablation test by varying 𝜆 for view consistency test. (a) Grass
regions contain small inconsistency due to a low 𝜆. (b) increasing 𝜆 for
inconsistency removal. (c) higher strength of inconsistency removal.

6.4 Failure Cases and Limitations
We show failure cases of wide baseline and non-Lambertian in Fig. 18
with color EPIs. Certain types of light field can lead to a failure of our
method, e.g., wide baseline light fields captured by captures by cam-
era arrays. In this scenario, the EPI is severely undersampled, so that
the tracking of view consistency can fail. Non-Lambertian reflectance
causes several challenges, including non-uniform appearance, which

(a) 𝛽 = 0.001 (b) 𝛽 = 0.01 (c) 𝛽 = 0.1

Fig. 15. Ablation test by varying 𝛽 for spatial shape regularization. (a)
segmentation will not be a central symmetry shape with a small 𝛽 in
smooth region (i.e., sky). (b) increasing 𝛽. (c) regular and symmetry
shape of region in smooth and edgeless regions with a higher 𝛽.

(a) 𝛾 = 1 (b) 𝛾 = 5 (c) 𝛾 = 10

Fig. 16. Ablation test by varying 𝛾 for elements number in each regions.
(a) small value of 𝛾 will have a more flexible segmentation but tends to
ignore small region (b) when increasing 𝛾, the region size will tend to
be uniform and balanced.

Fig. 17. Ablation test for the quantitative evaluation of varying 𝛾, 𝜆 and
𝛽. We set parameters pairs as the combination three weight choices
𝛾={0.1, 1, 5, 10, 100}, 𝜆={0.001, 0.01, 0.05, 0.1, 1}, 𝛽 = {0.001, 0.01,
0.05, 0.1, 1}, region number is 100.

affects the initial depth estimation, but also the view consistency
term. Our method can find the correct edge of object, however the
segmentation within the object can be fail since the appearance is
not consistent under view point changes. Another limitation of our
method comes from submodular optimization, the weights (i.e., 𝜆, 𝛽,
𝛾) for each objective components need to be normalized, therefore,
these parameters will be affected by extrema in objective values due
to noise or light exposure.
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Fig. 18. Failure case illustration. First Row: we test our method in wide
baseline cases of light field, segmentation tends to inconsistent due to
large view point changes. Second Row: The visual results of the non-
Lambertian cases. Our method discovers correct object boundaries,
but mistakenly separates objects due to incorrect depth matches.

7 APPLICATIONS
Segmentation is a starting point for many processes in image manip-
ulation and computer vision. In the following we highlight several
applications of our light field segmentation method.

7.1 User-guided Object Segmentation.
Like most 2D and video segmentation methods, our method seg-
ments the light field into regions of consistent appearance, but not
into semantic objects. However with a simple user interface, we can
can manually select multiple regions that comprise a single objec-
t. Examples of this user-guided object segmentation are shown in
Fig. 19.

7.2 Light Field Flattening
Image flattening refers to the suppression of texture detail while
preserving strong scene edges and overall image structure. Here, we
extend an existing 2D method [Bi et al. 2015] to 4D. Specifically,
we take into consideration the 𝐿1 sparsity in spatial slices, angular
patches as well as the 4D light field segmentation, and jointly mini-
mize the pixel variation and approximation error as detailed in the
following.

Spatial Term. f𝑖 is the 𝐿𝑎𝑏 feature vector of pixel 𝑝𝑖.

𝐸𝑙 =
∑︁
𝑖

∑︁
𝑝𝑗∈𝑁ℎ(𝑝𝑖)

𝑤𝑖𝑗‖𝐿(𝑖)− 𝐿(𝑗)‖1, (24)

where 𝑁ℎ(𝑝𝑖) is a spatial local ℎ × ℎ patch. 𝑤𝑖𝑗 is the affinity
between pixel 𝑝𝑖 and 𝑝𝑗 . Here, we simply use Euclidean distance
with a normalization function.

Fig. 19. User guided object segmentation. Regions comprising a s-
ingle object are selected by a user. The regions themselves are not
manually altered.

Angular Term. We prefer a uniform intensity values over simple
angular patches of the light field, and smooth exposure variation in
different spatial slices. Similar to Eqn. 24, we formulate our angular
flattening term as

𝐸𝑎 =
∑︁
𝑖

∑︁
𝑝𝑗∈𝑁𝑎(𝑝𝑖)

𝑤𝑖𝑗‖𝐿(𝑖)− 𝐿(𝑗)‖1, (25)

where 𝑁𝑎𝑝𝑖 is the angular patch that 𝑝𝑖 lies in.

Segmentation Term. The segmentation provides extra cues to in-
clude more pixels for avoiding the influence of shading, reflectance
or noise.

𝐸𝑠 =
∑︁

𝑝𝑖∈𝑠𝑘

∑︁
𝑝𝑗∈𝑠𝑘

𝑤𝑖𝑗‖𝐿(𝑖)− 𝐿(𝑗)‖1, (26)

Data Fidelity Term. To avoid trivial solution, smoothed light field
should be similar to original light field, which is formulated as,

𝐸𝑑 =
∑︁
𝑖

‖𝐿(𝑖)− 𝐿𝑖𝑛𝑖(𝑖)‖2, (27)

where 𝐿𝑖𝑛𝑖 is original light field data. The overall objective function
is the sum of those terms,

𝐸 = 𝐸𝑑 + 𝛼𝐸𝑙 + 𝛽𝐸𝑎 + 𝛾𝐸𝑠, (28)

where 𝛼, 𝛽, 𝛾 are weight parameters.
Fig. 20 shows the results of the light field segmentation, where we

then utilize the segmentation cue to remove fine details and preserve
the main edges of the light field.

In the example of Fig. 21, we visualize our light field segmentation,
edge detection results and pencil sketching. We first utilize our light
field segmentation for removing fine details of light field. Then, we
apply conventional edge detection method [Dollár and Zitnick 2015]
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(a) Original (b) LF 𝐿1 Flattening

Fig. 20. Light field flattening results.

(a) Original LF (b) LF Segmentation (c) LF Smoothing

(d) Angular Patch (e) Pencil Sketching (f) Abstraction

Fig. 21. The illustration of light field flattening and pencil sketching.
(a) is original light field. (b) is our light field segmentation, we visu-
alize segmentation as mean color of regions. (c) is angular patch of
smoothed light field. (d) example light field angular patch of red rect in
(a). (e) pencil sketching rendering on smoothed light field. (f) light field
abstraction and edge enhancement.

on smoothed light field to capture main edge. Light field segmentation
provide a closure and compact region cues from light field flattening,
yields a larger range smoothing. The removal of details texture shows
the abstraction of light field with more clean edge, which forms a
art-composition style of pencil sketching.

7.3 User-Guided Refocus Enhancement
A well-known and often used feature of light fields is the ability to
refocus at different scene depths. The main target at a user-specified
depth is sharp, while other depth ranges will be blurry. However, the
adjustment of refocus depth is limited by the physical aperture of the
light field camera, and therefore the level of blur cannot exceed a
certain value. We combine light field segmentation with refocusing,
and propose a way to enhance the blur. The refocus objective function
is described as

𝐿𝛼(𝑥
′, 𝑦′, 𝑢, 𝑣) = 𝐿(𝑢+

𝑥′ − 𝑢

𝛼(𝑥′, 𝑦′)
, 𝑣 +

𝑦′ − 𝑣

𝛼(𝑥′, 𝑦′)
, 𝑢, 𝑣), (29)

𝛼(𝑥′, 𝑦′) = 𝛼×𝑚(𝑥′, 𝑦′), (30)

𝑚(𝑥′, 𝑦′) =

{︂
1, if (𝑥′,𝑦′) is masked,
𝑘, if (𝑥′,𝑦′) is not masked.

(31)

where 𝑚(𝑥, 𝑦) is a mask generated by user. Our light field segmen-
tation can simplify user input to several mouse clicks, just like in
the case of object segmentation, described above. For user-specified
objects, we apply the original refocus function, for the background,
we enhance the refocus ratio by multiplying extra parameters 𝑘.

(a) Naive Refocus (b) User-guided Refocus

Fig. 22. The illustration of user-guided refocus. (a) Naive refocus, (b)
user selection of light field segmentation.

Fig. 22 shows the results of our user-guided refocusing results.
Our method provides more blur for background when comparing the
naive refocusing method.

User-Guided Edge Enhancement. In a similar fashion, we can
highlight edges on user-defined objects. Fig. 23 shows the results of
user-guided edge detection and pencil sketching. Our user-guided
edge detection weaken the significant edge on unmasked area, yields
a more significant edge for user-specified region.
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(a) Refocus (b) Edge Map (c) Pencil Sketching (d) Detail

Fig. 23. User-guided edge enhancement and sketching.

8 CONCLUSION
In this paper, we solve the 4D light field segmentation problem using
a new depth and occlusion consistent appearance term in combination
with a novel view consistency term. Crucially, the resulting energy
function is submodular, and can therefore be optimized efficiently
using a greedy heuristic approach. We combine this new light field
segmentation concept with several innovations to solve submodular
optimization problems on very large graphs hierarchically, and very
efficiently in both memory and time. In the future, we will explore
other applications of light field segmentation, as well as new uses of
the hierarchical submodular optimization.
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