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Fig. 1. Neural Adaptive Tomography uses a hybrid explicit-implicit neural representation for tomographic image reconstruction. Left: The input is a set of
X-ray images, typically with an ill-posed geometric configuration (sparse views or limited angular coverage). Center: NeAT represents the scene as an octree
with neural features in each leaf node. This representation lends itself to an efficient differentiable rendering algorithm, presented in this paper. Right: Through
neural rendering NeAT can reconstruct the 3D geometry even for ill-posed configurations, while simultaneously performing geometric and radiometric
self-calibration.

In this paper, we present Neural Adaptive Tomography (NeAT), the first adap-
tive, hierarchical neural rendering pipeline for multi-view inverse rendering.
Through a combination of neural features with an adaptive explicit repre-
sentation, we achieve reconstruction times far superior to existing neural
inverse rendering methods. The adaptive explicit representation improves
efficiency by facilitating empty space culling and concentrating samples in
complex regions, while the neural features act as a neural regularizer for the
3D reconstruction.

The NeAT framework is designed specifically for the tomographic set-
ting, which consists only of semi-transparent volumetric scenes instead of
opaque objects. In this setting, NeAT outperforms the quality of existing
optimization-based tomography solvers while being substantially faster.

CCS Concepts: • Computing methodologies → Reconstruction; 3D
imaging; Computational photography; Camera calibration; Hierarchical
representations; Regularization; Unsupervised learning; Computational
photography.

Additional Key Words and Phrases: X-ray computed tomography, Implicit
neural representation, Octree

1 INTRODUCTION
Computed Tomography (CT) is an important scientific imaging
modality in a wide range of fields, from medical imaging to material
science. While most CT imaging is performed with X-rays due to
their ability to penetrate a wide range of materials [Kak and Slaney
2001], there have also been a number of works utilizing visible light,
especially in the visual computing community (e.g. [Atcheson et al.
2008; Eckert et al. 2019; Gregson et al. 2012; Hasinoff and Kutulakos
2007; Zang et al. 2020]).

Authors’ addresses: Darius Rückert, darius.rueckert@fau.de, KAUST and University
of Erlangen-Nuremberg, Erlangen, Germany; Yuanhao Wang; Rui Li; Ramzi Idoughi;
Wolfgang Heidrich, wolfgang.heidrich@kaust.edu.sa, KAUST, Thuwal, Saudi Arabia.

The tomographic reconstruction problem is the task of estimating
the 3D structure of a sample from its 2D projections. This task is
well-posed under certain conditions, such as a sufficiently large num-
ber of projections/views, good angular coverage of these views, and
low noise. In this situation, transform-based methods like filtered
backprojection [Feldkamp et al. 1984] provide a fast and accurate
reconstruction. Unfortunately, these methods no longer produce sat-
isfactory results if the above conditions are violated (small number
of views, poor angular distribution, or high noise). For these types
of difficult settings, a range of iterative optimization-based methods
have been developed in recent years (e.g. [Huang et al. 2013, 2018;
Sidky and Pan 2008; Xu et al. 2020; Zang et al. 2018a]. These new
methods greatly expand the envelope of feasible tomographic recon-
struction problems, albeit at a significantly increased computational
cost.

In parallel to this development, both neural rendering (e.g. [Garbin
et al. 2021; Liu et al. 2020b; Reiser et al. 2021]) and differentiable
rendering in general (e.g. [Nimier-David et al. 2019]) have recently
garnered a lot of interest in visual computing. In particular, Neural
Radiance Fields (NeRF) [Mildenhall et al. 2020], and related inverse
rendering frameworks have been at the focus of attention due to
their ability to provide superior reconstructions of everyday scenes
with opaque objects. Similar concepts have also already been ap-
plied to the tomographic reconstruction problem [Sun et al. 2021;
Zang et al. 2021]. However, all the existing neural inverse rendering
frameworks suffer from very long computing times. This is also true
for the tomographic methods, despite operating only on 2D slice
geometry, which has limited their applicability to high-resolution
datasets and to the full 3D cone beam data we use in this work.
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In this paper, we present Neural Adaptive Tomography (NeAT),
the first adaptive, hierarchical neural rendering pipeline for multi-
view inverse rendering. Through a combination of neural features
with an adaptive explicit representation, we achieve reconstruction
times far superior to existing neural inverse rendering methods. The
adaptive explicit representation improves efficiency by facilitating
empty space culling and concentrating samples in complex regions,
while the neural features act as a neural regularizer for the 3D
reconstruction.
NeAT is specifically tuned towards tomographic reconstruction

problems, where samples are widely scattered throughout the vol-
ume, while many existing systems like NeRF [Mildenhall et al. 2020]
rely on a strong concentration of samples near opaque surfaces.
In this tomographic setting, we demonstrate that the purely ex-
plicit hierarchical representation of NeAT outperforms both purely
implicit as well as hybrid explicit-implicit representations akin to
ACORN [Martel et al. 2021] in terms of both quality and compute
time. Furthermore, NeAT shows improved reconstruction quality
compared to state-of-the-art tomographic reconstruction methods,
while matching their performance.

In summary, the main contributions of our work are:
• An adaptive, hierarchical neural rendering pipeline based on
an explicit octree representation with neural features.

• A differentiable physical sensor model for x-ray imaging that
can be optimized during the reconstruction.

• An efficient open-source implementation that can be readily
used on new datasets.

• An extensive evaluation of our proposed framework on dif-
ferent challenging tomographic reconstruction (sparse-view,
limited angle, and noisy projections) of both synthetic and
real data.

2 RELATED WORK

2.1 Classical Computed Tomography
Computed tomography is a well-established technique used for
imaging the internal structures of a scanned object. It has appli-
cations in many domains, such as medicine and biology [Kiljunen
et al. 2015; Piovesan et al. 2021; Rawson et al. 2020; Van Ginneken
et al. 2001], material science [Brisard et al. 2020; Vásárhelyi et al.
2020], and fluid dynamics [Atcheson et al. 2008; Eckert et al. 2019;
Gregson et al. 2012; Hasinoff and Kutulakos 2007; Zang et al. 2020].
In all CT modalities, multiple projection images (sinogram) are

captured from different directions. Then, reconstruction algorithms
are applied to retrieve a 3D representation of the scanned object
from the set of acquired projections. Several algorithm families
have been deployed for tomographic reconstruction. Analytic meth-
ods based on the Radon transform and its inverse, such as filtered
back projection (FBP) and its 3D cone-beam variant FDK (Feldkamp,
Davis, and Kress) [Feldkamp et al. 1984], are the most used in com-
mercial CT devices [Pan et al. 2009]. These methods are fast, and
accurate when a large number of uniformly sampled projections is
available. However, in many situations, the number of acquired pro-
jections is low for a variety of reasons, such as the reduction of the
X-ray dose [Gao et al. 2014], the deformation of the sample [Zang
et al. 2018b, 2019], or its inaccessibility from some directions [Du

et al. 2021a]. For such scenarios, iterative reconstruction approaches
have been proposed to solve a discrete formulation of the ill-posed
tomography problem. The main interest of these techniques is the
possibility to incorporate regularization terms like total variation in
an optimization framework [Abujbara et al. 2021; Huang et al. 2013,
2018; Kisner et al. 2012; Sidky and Pan 2008; Xu et al. 2020; Zang et al.
2018a]. The hyper-parameter tuning and the high computational
requirements are the main downsides of these approaches.

2.2 Learning-based Computed Tomography
Recently, learning-based methods have been emerging as an alter-
native to optimization-based reconstruction. Most of the initial pro-
posed approaches apply neural networks either as a pre-processing
or a post-processing step for traditional reconstruction methods to
improve the reconstruction quality. The pre-processing networks
improve the conditioning of the inverse problem by in-painting the
projections [Anirudh et al. 2018; Ghani and Karl 2018; Tang et al.
2019; Yoo et al. 2019]; while the post-processing networks correct
and denoise the reconstructed volume [Liu et al. 2020a; Lucas et al.
2018; Pelt et al. 2018]. A third strategy consists of using a network
with a differentiable forward model in order to learn a reconstruc-
tion operator [Adler and Öktem 2018; Chen et al. 2018; He et al. 2020;
Kang et al. 2018]. These approaches achieve high quality results on
data similar to that used for the training. They do, however, suffer
from a substantial lack of generalization when applied to unseen
data.
To overcome this limitation, recent studies introduce the Deep

Image Prior (DIP) [Baguer et al. 2020; Barutcu et al. 2021] com-
bined with classical regularization to constraint the reconstruction
problem. On the other hand, some works proposed new approaches
based on an implicit neural representation [Sun et al. 2021; Zang et al.
2021] to handle the tomography reconstruction in a self-supervised
learning-based fashion. In such methods, a Multi-Layer Perceptron
(MLP) network is used to represent a density field of the scanned
object as a function of the input coordinates. This network is then
learned from the captured projections. This representation offers an
improved flexibility to generate synthetic projections at any desired
resolution. This approach outperforms other existing techniques in
terms of reconstruction quality. However, they are memory hun-
gry and require a considerable learning time in the range of hours
despite operating only on 2D slices based on parallel beam data.
They are therefore not suitable for full 3D cone beam reconstruc-
tion. In the current paper, we propose an adaptive neural rendering
framework to overcome these limitations and achieve high quality
reconstructions of full 3D cone-beam data in a matter of minutes.

2.3 Implicit Neural Representations
In most tomography applications, an explicit, regular voxel grid is
the representation of choice due to the simplicity of the operators.
In computer graphics and computer vision, coordinate-based neural
networks, also known as implicit neural representations, have recently
emerged as an alternative. These consist of a neural network, typi-
cally a MLP, to learn functions that map spatial coordinates to some
physical properties field (e.g. occupancy, density, color etc.). The
main advantage of this representation is that the represented signal
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Fig. 2. Overview of our adaptive neural rendering pipeline for tomographic reconstruction. To render a single pixel, we generate the corresponding ray,
compute the ray-octree intersection, sample the neural volume, decode the neural features, and integrate them by a weighted sum. The estimated pixel
value is then passed through a photometric calibration module resulting in the final pixel intensity. All elements in green boxes are optimized during the
reconstruction. This includes the geometric and photometric calibration, the octree structure, the neural features volumes, and the neural decoder network.

or field is implicitly defined for any given coordinate. In other words,
this representation is continuous, in contrast of the discretized voxel
grids. In the last two years, these coordinate-based networks have
been successfully applied for modeling both static and dynamic
3D scenes and shapes [Du et al. 2021b; Martin-Brualla et al. 2021;
Park et al. 2019; Sitzmann et al. 2020; Xian et al. 2021], synthesizing
novel views [Chan et al. 2021; Eslami et al. 2018; Mildenhall et al.
2020; Niemeyer et al. 2020; Schwarz et al. 2020; Sitzmann et al. 2019],
synthesizing texture [Chibane and Pons-Moll 2020; Oechsle et al.
2019; Saito et al. 2019], estimating poses [Su et al. 2021; Wang et al.
2021; Yen-Chen et al. 2020], and for relighting and material edit-
ing [Boss et al. 2021; Srinivasan et al. 2021; Xiang et al. 2021; Zhang
et al. 2021]. In addition to a huge learning time, coordinate based
networks suffer also from a slow rending speed when switching to
a 3D voxel grids. Indeed, the network has to be evaluated for each
single voxel, instead of querying directly a data structure.

2.4 Improving Neural Rendering
Several techniques have been proposed to speed up the volumetric
rendering of coordinate-based neural networks. In Neural Sparse
Voxel Fields (NSVF) approach [Liu et al. 2020b], the scene is or-
ganized into a sparse voxel octree, which is dynamically updated
during the learning process. During the rendering, empty spaces
are skipped, and an early rays termination are enforced. In kiloN-
eRF approach [Reiser et al. 2021], the standard NeRF network is
factorized into a 3D grid of smaller MLPs, in order to quicken the
rendering process. The AutoInt technique [Lindell et al. 2021] is
based on a network that learns directly the volume integral along a
ray, which makes the rendering step faster in comparison to NeRF
network. FastNeRF [Garbin et al. 2021] uses caching to have a faster
rendering. The standard NeRF network is split into two MLPs: a
position-dependent network that generates a vector of deep radiance
map, while the second network outputs the corresponding weights
for a given ray direction. Yu et al. [2021] proposes a modified ver-
sion of NeRF network to predict a volume density and spherical
harmonic weights, which are stored in a "PlenOctree" structure. This
octree structure is then fine-tuned using a rendering loss to improve
its quality. This approach allows a real-time rendering, however, the
training step is still slow.
In parallel to the neural rendering approaches, researchers have

also worked on simply using neural networks to represent existing

images and volumes, without first solving an inverse problem. In the
ACORN approach [Martel et al. 2021], the authors introduce a hy-
brid implicit-explicit coordinate neural representation. The learning
process is accelerated through a multi-scale network architecture,
which is optimized during the training in a coarse-to-fine scheme.

NeAT is somewhat inspired by all these approaches, but it is the
first to solve a scene reconstruction problem by directly training a
hierarchical neural representation. We show higher quality results at
drastically improved training times.

3 METHOD
We represent the 3D scene as a sparse octree, where each leaf-node
can be empty or contain a uniform grid of neural features. To query
the density at a given position, the trilinear interpolated neural
feature vector is passed through a small decoder network. Given
a set of X-ray input images, the neural features are optimized by
differentiable volume rendering. During the optimization, the octree
structure is refined, and empty leaf nodes are removed from the
tree. Since all steps are differentiable, we can also perform self-
calibration to compute the exact camera poses, the photometric
detector response and the per-image capture energy. An overview
of our rendering pipeline is shown in Figure 2.

3.1 Image Formation
The raw images of digital X-ray devices represent the transmission
images of a particular ray passing through an object. The image
formation model in this setting derives from a continuous version
of the Beer-Lambert Law [Kak and Slaney 2001]. For a given image
pixel 𝑝 , the observed pixel value is given as

𝐼 (𝑝) = 𝐼0 (𝑝) exp
[
−
∫ 𝑡𝑓

𝑡𝑛

𝜎 (𝑟𝑝 (𝑡)) 𝑑𝑡
]
, (1)

where 𝐼0 is the (potentially spatially varying) intensity of the x-ray
source, 𝑟𝑝 is the ray associated with the image pixel 𝑝 , and 𝑡𝑛 and 𝑡𝑓
are the ray parameters representing the entry (near) and exit (far)
point for a bounding box of the scene that represents the recon-
struction region. In tomographic imaging, we seek to reconstruct
the 3D distribution of 𝜎 (x) (the attenuation cross section or density)
within this bounding box. This reconstruction is usually performed
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in logarithmic space, i.e.

(𝐼0 (𝑝) − 𝐼 (𝑝)) =
∫ 𝑡𝑓

𝑡𝑛

𝜎 (𝑟𝑝 (𝑡)) 𝑑𝑡, (2)

with 𝐼 = log 𝐼 and 𝐼0 = log 𝐼0. In this formulation, each pixel value
𝐼 (𝑝) is computed as the line integral along the corresponding view-
ing ray 𝑟𝑝 . The discretization of (2) converts the integral into a finite
sum.

(𝐼0 (𝑝) − 𝐼 (𝑝)) ≈
𝑁𝑝∑︁
𝑖=1

𝜎 (𝑟𝑝 (𝑡𝑖 ))𝛿𝑖 . (3)

Here, 𝑁𝑝 represents the number of samples for the particular ray,
and 𝛿𝑖 denotes the length of the ray segment covered by sample 𝑖
(see next subsection).

3.2 Ray Sampling
Given the octree structure and a specific ray 𝑟 , the first step in ray
tracing is to generate a list of weighted samples {(𝑡0, 𝛿0), (𝑡1, 𝛿1), . . . }.
This process is visualized in Figure 3 and starts by computing the
ray segments {(𝑛0, 𝑡𝑛0, 𝑡𝑓 0), (𝑛1, 𝑡𝑛1, 𝑡𝑓 1), . . . } that correspond to
the intersection of the ray with octree node 𝑛𝑖 . Each segment con-
sists of the node ID as well as the scalar ray parameters 𝑡𝑛𝑖 , 𝑡𝑓 𝑖
corresponding to the near and far points of the segment. We then
determine how many samples should be placed along each of the
segments as

𝑘𝑖 =

⌈
𝑁 ·

𝑡𝑓 𝑖
− 𝑡𝑛𝑖

𝑑𝑖𝑎𝑔(𝑛𝑖 )

⌉
, (4)

with 𝑁 being a hyper parameter that represents the maximum
number of samples per node and 𝑑𝑖𝑎𝑔(𝑛𝑖 ) being the diagonal size
of node 𝑛𝑖 .

This approach ensures𝑘𝑖 ∈ [1, 𝑁 ] and that the number of samples
is proportional to the relative length of the segment but independent
of node size. Small nodes obtain, on average, the same number of
samples as large nodes, which in turn yields a higher sample density
in subdivided regions that have been identified as regions of high
geometric complexity.

Once 𝑘𝑖 has been determined, the interval is sampled either uni-
formly (during the test stage) or with stratified random sampling
(during the training stage). Finally, we compute the sample weight
𝛿 𝑗 as:

𝛿 𝑗 =


1
2 (𝑡0 + 𝑡1) − 𝑡𝑛, if 𝑗 = 0
𝑡𝑓 − 1

2 (𝑡𝑘−2 + 𝑡𝑘−1), if 𝑗 = 𝑘 − 1
1
2 (𝑡 𝑗 + 𝑡 𝑗+1) − 1

2 (𝑡 𝑗−1 + 𝑡 𝑗 ), else
(5)

Note that Eq. (5) corresponds to numerical integration with central
differences while related work, i.e. NeRF [Mildenhall et al. 2020],
make use of forward differences only. That approach is incompatible
with hierarchical adaptive sampling because empty nodes in the
middle break forward integration across node boundaries.

3.3 TreeQuery
After sampling the rays, the next step is to retrieve the neural feature
vector at the sample locations. To that end, we compute the global
coordinate x𝑔 = 𝑟 (𝑡) and convert it into local space of the containing
leaf node. This local coordinate is then used to sample a regular

𝑡𝑛0 𝑡𝑓 0

𝑡𝑛1 𝑡𝑓 1

𝑡𝑛2 𝑡𝑓 2

𝑘=3

𝑘=3

𝑘=2 𝑡0 𝑡1 𝑡2

𝛿0 𝛿1 𝛿2

1
2 (𝑡0+𝑡1)

Empty Leaf

Octree

1. Ray-Tree Intersection 2. Stratified Sampling 3. Weight Calculation

Fig. 3. Ray-sampling of the sparse octree structure. (1.) Intersection intervals
of non-empty leaf nodes are computed. (2.) Samples are distributed by
stratified random sampling. Note here that the intervals (𝑡𝑛0, 𝑡𝑓 0) and
(𝑡𝑛2, 𝑡𝑓 2) are assigned the same 𝑘 = 3 number of samples even though the
latter covers more space. (3.) The integration weight 𝛿 is computed using
Eq. (5).

Neural FeaturesNon-Manifold

Duplicate

Fig. 4. Section of an octree structure that shows the alignment and sampling
of the uniform grid inside each node. At the boundary of different nodes,
some features are duplicated, and others are non-manifold.

grid of neural features 𝑓𝑖 and interpolate with trilinear weights to
obtain a feature vector 𝑓 (x) for the sample location. The process is
visualized in Figure 4. Note here that at the boundary between two
nodes, duplicated and non-manifold features are stored in memory.
A regularizer is used to resolve this issue (see Section 3.5).

Due to our sampling strategy (see Section 3.2), each ray and each
node can have a different number of samples assigned to them.
To this end, we implement an indirect 3D grid sample kernel that
can compute the neural feature vector from the local coordinate
and the node ID in one step. Experiments show that this custom
layer is around three times more efficient than a sort-and-batch
implementation using standard deep learning operators.

3.4 Decoder Network
Once the feature vector has been obtained, we transform it into the
desired output domain using a global decoder network

Φ : {𝑓 (x)} → 𝜎 (x)

that is shared among all nodes. In the case of tomography, the output
is a single scalar, representing the volume density 𝜎 (x) at the sample
point x. The decoder itself is a three layer MLP with 64 neurons
each, for a total of 4801 parameters to learn. We use SiLU activation
functions [Elfwing et al. 2018] inside the MLP and a single SoftPlus
activation after the last layer to obtain a physically meaningful
positive density value. Finally, the density values are multiplied
by the per-sample weight 𝛿 and summed up using a scatter-add
operation resulting in the ray-integral of Eq. (3).
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3.5 Loss and Regularization
We optimize the neural features and the decoder’s parameters us-
ing the mean squared error between the estimated and measured
ray integrals, a total variation (TV) regularizer, and a boundary
consistency (BC) regularizer.

L𝑡𝑜𝑡𝑎𝑙 =
∑︁
𝑝

| |𝐼 (𝑝) − 𝐼 ′(𝑝) | |2 + _𝑇𝑉L𝑇𝑉 + _𝐵𝐶L𝐵𝐶 , (6)

where 𝐼 ′(𝑝) is the estimated ray integral for ray 𝑟𝑝 , 𝐼 (𝑝) the mea-
sured image intensity, and _𝑇𝑉 , _𝐵𝐶 are hyper parameters that con-
trol the strength of each regularizer.
The TV loss acts as an additional spatial regularized during the

training, and has a similar role to the TV loss used in optimization-
based methods. To compute the TV loss, we utilize the regular
structure of the feature grids 𝑓𝑛 for each node. The loss can either
be computed directly on the feature vectors, or on the decoded
densities:

L (1)
𝑇𝑉

=
∑︁
𝑛

∥∇𝑓𝑛 ∥1 or L (2)
𝑇𝑉

=
∑︁
𝑛

∥∇Φ(𝑓𝑛)∥1 . (7)

We experimented both variants and found that the former variant
produces slightly better results in addition to being faster.
The boundary consistency regularizer ensures a smooth transi-

tion between two neighboring nodes. This is important, because
as described in Section 3.3, duplicated and non-manifold features
are stored along the node boundary. This will result in block-like
artifacts especially if only few images are used. The regularizer
minimizes the feature error on the boundary surface Λ𝑛𝑚 for two
neighboring octree nodes 𝑛 and𝑚

L𝐵𝐶 =
∑︁

(𝑛,𝑚) ∈N

∑︁
𝑥 ∈Λ𝑛𝑚

|𝑓𝑚 (𝑥) − 𝑓𝑛 (𝑥) |, (8)

where N denotes the set of all pairs of neighboring nodes.

3.6 Self-Calibration
CT reconstruction of real data often requires several calibration
steps both regarding the camera geometry and the radiometric
properties.

Radiometric self-calibration. As can be seen in Eq. (2), tomographic
reconstruction requires a reference image 𝐼0 representing the illu-
mination pattern without an object present. In cone-beam CT, this
image captures effects such as the intensity dropoff towards the
image boundaries due to the cosine and 1/𝑟2 terms, as well as any
other non-uniformities in the illumination. Unfortunately, adding
or removing the object from the setup can also disturb the validity
the reference image, causing artifacts in the reconstruction. The
differentiable nature of the NeAT framework allows us to refine (or
estimate from scratch) the reference image 𝐼0, as well as a per-view
multiplier representing potentially different exposure times for each
view. Variations in exposure time are appropriate if the object is
much thicker in one direction than in another. Optimizing these
parameters can significantly improve the reconstruction quality,
depending on the dataset.

Geometric self-calibration. High resolution tomographic recon-
struction also relies on the availability of high precision camera
extrinsics and intrinsics. Although in cone-beam CT the camera
pose is usually controlled with a high precision turntable, param-
eters such as the precise field-of-view or the exact location of the
rotation axis in the image plane can be much harder to calibrate
accurately, and in fact they may drift over time due to heat expan-
sion and other factors. We instead propose to only use approximate
parameter estimation to get the camera model into the right ball-
park, and to then rely on gradient backpropagation to update the
camera parameters, including the relative positioning of the source
and detector, as well as the exact rotation angles between the views.

3.7 Octree Update
To automatically update the octree structure during the reconstruc-
tion, we loosely follow the method of ACORN [Martel et al. 2021].
However, while ACORN has access to a ground truth image/volume
data at every point in the cell, this ground truth is not available
in tomographic reconstruction tasks where the only error metric
available is the 2D reprojection error in each of the views.
From this 2D image space error we estimate a volumetric error

distribution by summing over all the reprojection errors for ray
intersecting a given node. I.e. for a specific node 𝑛, the node error
becomes

𝐸 (𝑛) = 𝜎max (𝑛) ·
∑︁

(𝑝,𝑡,𝛿) ∈Ω𝑛

𝛿 | |𝐼 (𝑝) − 𝐼 (𝑝) | |2, (9)

where Ω𝑛 refers to the set of all samples (𝑡, 𝛿) in 𝑛 from any ray
passing through the node 𝑛, paired with the pixel coordinates 𝑝
that generated the ray. 𝐼 refers to the reprojection of the current
volume estimate. The summation term therefore corresponds to
a coarse tomographic reconstruction of the reprojection error, in-
tegrated over the octree node. This volumetric measure of error
is additionally weighted by the maximum density of the node,
𝜎max (𝑛) = max(𝑡,𝛿) ∈Ω𝑛

𝜎 (𝑟 (𝑡)).
Using this per-node error we then solve a mixed-integer program

(MIP), which finds the best tree configuration with respect to a real-
valued objective function. Linear constraints ensure that at most
𝑇𝑚𝑎𝑥 leaf nodes are used and the configuration is a valid octree. The
details can be found in [Martel et al. 2021] as well as in our source
code.

4 EXPERIMENTS

4.1 Datasets and Evaluation Metric
In the following, we present several reconstruction experiments
on various CT datasets. We divide these datasets into two classes:
Real Data and Synthetic Data. The real datasets are captured using
a Nikon industrial CT scanner. These images are noisy and some
geometric and radiometric calibration errors are expected. Since we
don’t have a ground-truth volume of the real datasets, we evaluate
the performance using the reprojection error. In particular, the scan-
ner provides us with a set of real X-ray images, which we split into
a training and test set. The training set is used to reconstruct the
volume and the test set is used for the evaluation. Figure 5 shows
3D renderings of NeAT reconstructions for all real datasets.
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NeRF 
~24 Hours

NeRF 
~45 Minutes 

NeAT 
~45 Minutes 

Fig. 5. 3D volume renderings of the real datasets, as reconstructed by NeRF and NeAT using 25-50 projections. From left to right: ceramic coral, pepper,
pomegranate, wind-up teapot. See Figure 12 for a 2D slice comparison.

BC-Regularizer Disabled BC-Regularizer Enabled

Fig. 6. Sparse view tomography on the Pepper dataset with and without
boundary consistency (BC) regularizer. Sharp edges at the boundary be-
tween neighboring octree nodes are successfully removed.

The synthetic datasets are given in the form of a volume sampled
on a regular voxel grid, which we use to generate synthetic X-ray
images from different angles. By construction, there is no calibration
error or image noise in the rendered views, however we add some
synthetic Gaussian noise back in. To evaluate the reconstruction
quality of synthetic datasets, we can directly compare the estimated
volume towards the ground-truth volume, although the reprojection
error can also be useful to assess overfitting.

4.2 Ablation Studies
Regularziation. To regularize the reconstruction, we have im-

plemented the TV- and BC-regularizer (see Section 3.5). The BC-
regularizer (Eq. 8) ensures a smooth transition between neighboring

Sparse View Limitted Angle

_𝑇𝑉 Train ↑ Test ↑ Vol. ↑ Train ↑ Test ↑ Vol. ↑
0.00000 43.97 38.58 34.41 48.07 26.37 22.20
0.00002 43.21 39.32 35.96 46.74 27.1 22.81
0.00010 41.74 39.17 35.25 44.95 27.92 23.56
0.00025 40.69 38.63 34.67 43.50 27.36 23.38
0.00050 39.44 37.47 33.10 42.67 26.89 23.02

Table 1. Reprojection error (PSNR) of the training and test views, as well as
volumetric PSNR on the pepper dataset for different values of TV regular-
ization.

octree nodes. This is demonstrated in Figure 6, which shows block-
like artifacts if BC is disabled. We found that _𝐵𝐶 = 0.01 gives good
result on all datasets and is therefore used in the further experiments.
The TV-regularizer (Eq. 7) is used to further constrain underdeter-
mined reconstruction problems, i.e., sparse view and limited angle
tomography. Table 1 shows both the reprojection errors on training
views as well as on previously unseen test views. In addition we
show the volume error directly. The training and test reprojection
errors demonstrate that overfitting can be reduced by increasing
_𝑇𝑉 . This also improves the volumetric error. We found that for
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ReferenceBaseline Baseline + Noise Baseline + Noise + GSC

PSNR35.9617.3333.71

Fig. 7. Ablation study of geometric self calibration on real data. Baseline
(left column) is the reconstruction using the initial calibration provided by
the CT scanner. Adding noise to that calibration significantly degrades the
result (second column). Our geometric self-calibration (GSC) can recover
from the noisy input and even outperform the baseline calibration slightly
(third column).

Baseline Exposure Opt. Exposure Opt. + Resp. Opt

34.307 35.242 35.996

x4 x4 x4

Reference

PSNR

x4

Fig. 8. Sparse view tomography on the pepper dataset with and without
radiometric self calibration. The bottom row shows the same volume multi-
plied by four to highlight noisy empty regions.

sparse view problems _𝑇𝑉 = 0.00002 and for limited angle problems
_𝑇𝑉 = 0.00010 gives the best results.

Geometric Self-Calibration. As described in Section 3.6 our system
can optimize the geometric parameters, such as detector orientation
and source position, during the reconstruction. In Figure 7, we show
the difference on a real dataset with geometric self-calibration en-
abled and disabled. On the left, the baseline experiment is presented
using the geometry configuration from the CT scanner. Then we
add Gaussian noise to the position and rotation of each view. This
degrades the reconstruction by 15 dB. Using our geometric self cali-
bration (GSC) our pipeline recovers from this bad initial calibration
and then even outperform the baseline setting. It is therefore robust
and improves the reconstruction of real CT data.

Radiometric Self-Calibration. To test the effectiveness of radio-
metric self-calibration, we run our reconstruction pipeline on the
real datasets and disables individual steps. The results are presented
in Figure 8. The first experiment is the baseline with radiometric
self calibration disabled. After that we enable exposure and sensor
bias estimation which improves the reconstruction by around 1 dB.

No Decoder With Decoder (ours) With Decoder + CN Reference

Fig. 9. Limited angle reconstruction without decoder, with decoder, and
with decoder and ACORN-style coordinate network (CN).

Enabling the response curve optimization, further improves the
result, which can be seen in the amplified image at the bottom.

Decoder. Next, we want to analyze the usefulness of the decoder
network with respect to reconstruction quality and regularization
properties. In our current implementation, we use an eight-element
feature vector which is transformed into a single density value by
the decoder network. The counterpart is a pipeline without decoder
but double resolution blocks in x,y,z direction. The volume has
then exactly the same amount of variables but without the feature
decoder. Figure 9 shows the result of this comparison on a limited
angle problem. On the left hand side, we have the no-decoder variant
with a grid resolution of 1 × 333. On the right, our full pipeline is
displayed, which uses a grid resolution of 8× 173. Using the decoder
network, the sides of the fruit are reconstructed more accurately.
Without it, blurry artifacts appear, which are similar to artifacts
of the iterative reconstructions methods. We can therefore infer
a regularizing property of the decoder network that improves the
reconstruction in difficult conditions.

Explicit vs. Hybrid explicit-implicit representation. The neural fea-
ture volumes in our reconstruction pipeline is stored explicitly as a
large tensor (see Figure 2). An alternative design would be a hybrid
explicit-implicit model, like ACORN [Martel et al. 2021] in which
the feature volumes are not stored explicitly, but are further com-
pressed into an implicit neural network in the hope of achieving
additional compression and regularization. Unfortunately, this hope
does not materialize in the context of tomographic reconstruction
(Figure 9, third sub-image). Specifically, we found that the PSNR
for hybrid explicit-implicit representations are worse than for our
purely explicit hierarchical representation, especially in the case
of limited angle tomography. In limited angle tomography, recon-
structions are already blurred in the direction orthogonal to the
missing viewing direction (missing wedge problem). The additional
regularization of the implicit network further encourages this blur
instead of repairing it.

Moreover, adding an implicit network dramatically increases the
training times. Finally, while final explicit-implicit representation
is more compact than our explicit one, the intermediate memory
consumption during training is actually higher, since all feature
volumes need to be decoded in order to trace all rays for one view.

Structure Refinement. In Section 3.7, we describe the structural
octree optimization, which is performed every few epochs during
the reconstruction. This optimization consists of merging, splitting,
and culling leaf nodes from the tree. From these transformations, we
expect a shorter reconstruction time, due to empty space skipping,
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FDK SART PSART-TV NeRFKilo-NeRF Ours Ground Truth

Flower

Orange

Sparse View N = 25

Sparse View N = 25

Lim. Angle      = 80°

Lim. Angle      = 80°

PSNR36.1633.64 35.5133.0431.9918.58

34.6531.03 32.8731.7730.7617.64

33.7929.99 32.0030.6829.1721.99

33.5930.87 32.4330.9929.1622.76

PSNR

Fig. 10. Sparse view and limited angle reconstructions on synthetic CT datasets. In the left most column, some raw input images are shown together with the
reconstruction configuration. In the right most column, we show the Ground Truth, and illustrating images of the scanned objects. This comparison shows
that our method (Ours) outperforms other baseline methods both qualitatively and quantitatively.

0 2,000 4,000 6,000

10−4

10−3

10−2

Fig. 11. Adaptive reconstruction of the pepper dataset. At the right side
of each slice the octree structure is visualized. The color indicate the per-
node error as defined in Eq. (9). This error is used to optimally distribute
a fixed number of leaf nodes onto the scene. The bottom right shows the
training loss during the reconstruction. The tree structure is optimized once
a convergence has been detected, here at step 2200 and 5400.

and amore accurate reconstruction, due to allocatingmore resources
to difficult parts of the scene. The structure optimization process
is presented in Figure 11 on the pepper dataset with a maximum
number of 1024 leaf nodes. The octree is initialized by a uniform
grid of resolution 43 = 64. Once the training has converged on
that resolution the per-node error is computed using Eq. (9) and
the structure refinement is applied. From top left to top right all
leaf nodes are split because a full split doesn’t exceed the leaf node
budged 83 = 512 < 1024. However, at the next structure refinement
step, splitting all nodes again is not possible 163 = 4096 > 1024. The
optimization therefore automaticallymerges low-error nodes to split

more high-error leaves. Note that in this example, the empty space
culling has been disabled to demonstrate adaptive node allocation.
The graph in the bottom left of Figure 11 shows the loss curve during
the reconstruction. The steep steps indicate the points of structure
optimization.

4.3 Comparison to Existing Methods
Wehave evaluated our CT reconstructionmethod on various datasets
and compare it to other state-of-the-art approaches. The other
methods are cone-beam filtered backprojection (FDK) [Feldkamp
et al. 1984], the Simultaneous Algebraic Reconstruction (SART)[Kak
and Slaney 2001], the proximal SART with TV regularizer (PSART-
TV) [Zang et al. 2018a], The Neural Radiance Fields (NeRF) [Milden-
hall et al. 2020]), and a NeRF variant making use of separate local
implicit functions (Kilo-NeRF) [Reiser et al. 2021]. The first three are
traditional CT-reconstruction approaches and variants of these are
usually found in commercial CT systems. The latter two are modern
rendering approaches originally designed for novel view synthesis
and multi-view reconstruction. We have adapted them to handle
X-ray input data by changing the compositing operator to our image
formation model. Furthermore, we modified Kilo-NeRF by disabling
the student-teacher distilling to validate if a direct training of local
MLPs is possible.
The algebraic reconstruction techniques are run until conver-

gence which takes between 5-30 minutes for simple methods like
SART, according to the number of projections used, but takes about
40-50 minutes on for more advanced methods like PSART-TV. For
the optimization-based methods, we conduct a parameter search
and present the best quality results. NeRF and Kilo-Nerf are trained
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FDK SART PSART-TV NeRFKilo-NeRF Ours

Sparse View N = 50

Lim. Angle      = 120°

Pomegranade

Pepper

Ceramic Coral

Wind-Up Teapot

Sparse View N = 25

Lim. Angle      = 80°

Sparse View N = 25

Sparse View N = 25

Lim. Angle      = 80°

Lim. Angle      = 80°

Fig. 12. Sparse view and limited angle reconstructions on real CT datasets. In the left most column, some raw input images are shown together with the
reconstruction configuration. In the right most column, we show illustrating images of the scanned objects. This comparison show that our method (Ours)
achieves high-quality results for all data and for the two configurations.

for 24h and our approach is run for 40 epochs corresponding to
around 45 minutes on an A100 GPU. When comparing the times,
it is important to keep in mind the vastly different code bases, and
the fact that all methods have a significant number of parameters
and hyper parameters that affect the timing. The provided times

are therefore only to be interpreted as rough indicators of compute
performance. Please also see the discussion in Section 5.

In the first experiments, we measure the reconstruction quality on
synthetic data. The volume is known a priori and the projection im-
ages are generated by volume rendering. On each projection, we add
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Gaussian noise with a standard deviation of 𝜎 = 0.02 ·𝐼𝑚𝑎𝑥 . No other
calibrations errors are simulated. The resulting reconstructions of
each method are presented in Figure 10. The first two rows depict
sparse-view and limited angle tomography on the flower dataset.
The same is done for the Orange dataset in the following rows. All
methods (except FDK) achieve decent results on both datasets and
configurations. However, on the Flower dataset our method is the
clear favorite with a PSNR improvement of almost 2dB over the
second best. On the Orange dataset, both NeRF and Neat show a
high quality reconstruction. Quantitatively our method has the edge
due to its sharpness but in the limited angle reconstruction (last
row), NeRF is able to complete the orange’s skin better.
After the synthetic experiment, we evaluate the same systems

on four real datasets captured by a commercial CT scanner. These
datasets are Pomegranate, Pepper, Ceramic Coral, and Wind-Up
Teapot. They cover a wide range of interesting aspects such as
the low-contrast internal structure of the pomegranate and the
sophisticated mechanics of the wind-up teapot. Sample raw-images
of each object are shown in Figure 12 on the left. Next to that,
the current reconstruction configuration is visualized. On all four
datasets and two configurations, NeAT provides the visually best
reconstructions. The volume is almost noise-free, edges are sharp
and fine details such as the pepper seeds are preserved. There are
a few artifacts in the limited angle reconstruction, however the
artifacts and noise of the other approaches are more severe.

5 DISCUSSION AND CONCLUSIONS

5.1 Discussion
In the previous section we have compared NeAT to other CT recon-
struction approaches. We have shown that our approach achieves
significantly improved results than baseline methods both on syn-
thetic and real datasets. We believe that the reasoning is multilateral.
First of all, we use a neural regularizer in the form of a decoder net-
work that is able to steer the reconstruction to a physically plausible
solution. Secondly, our geometric and photometric self calibration
eliminates tiny errors of real-world data. Lastly, the adaptive octree
refinement ensures a smart distribution of memory and computa-
tional resources to complex parts of the scene.
In terms of compute times, NeAT is comparable in compute

time with advanced optimization-based methods like PSART-TV,
although precise comparisons of compute time of course depend
on the hyper parameters of either method, as well as the degree of
code optimization.

Most of the computational effort of NeAT is spent on evaluating
the decoder network, while the ray-tracing itself is substantially
faster than the PSART-TV implementation. This is primarily due to
two factors: our adaptive, octree-based approach that can efficiently
allocate samples to interesting volume regions, and our effective use
of GPUs as opposed to (already highly optimized) multicore CPU
code in the reference implementations of the optimization-based
approaches.
It is therefore likely that a careful GPU implementation of a hi-

erarchical version of, for example, PSART-TV could realize similar
performance gains as NeAT. However, doing so would be signifi-
cantly more difficult than for NeAT: iterative solvers are based on a

volume projection operatorA and the corresponding backprojection
operator A𝑇 . Since the matrices are far too large to store, A and
A𝑇 are implemented procedurally as separate operators, where A
is a gather operator while A𝑇 is a scatter operator. Even with CPU
code on a uniform grid it is not trivial to get the two operators to
perform well while maintaining an exact transpose relationship to
each other, which is a condition for the convergence and correct-
ness of most solvers. GPU implementations with hierarchical data
structures would dramatically complicate this task further.
This is where the differentiable rendering approach of NeAT

shines: instead of having to implement both operators, we only need
to implement the forward operator A in a differentiable fashion, and
can then rely on backpropagation for the optimization. By using an
appropriate environment such as the PyTorch backend, the effort to
implement this efficiently on a GPU is much reduced.

5.2 Limitations and Future Work
Despite these advantages, during our experiments we also found
some limitations that should be worked on in the future. One general
problem in adopting neural networks for scientific applications is
that artifacts of traditional approaches are usually easy to spot for
a human since they come in the form of strong blurriness or long
streaks. In the case of neural adaptive tomography, the artifacts look
physically plausible and are therefore harder to distinguish from a
correct reconstruction. For example, in the teapot dataset (Figure 12
bottom), all limited angle reconstructions exhibit a topology change
in the lower right corner. For the optimization-based methods it
is obvious that these regions cannot be trusted, whereas the deep
learning methods show plausible low-frequency completions of the
geometry, which however do not match reality.

As a further limitation, we also note that our method is currently
only suitable for a tomographic image formation model, which can
be evaluated in an order-independent fashion (2). Reconstructions
of opaque objects require a compositing image formation model
similar to NeRF [Mildenhall et al. 2020], which requires all volume
samples to be ordered front to back. With our hierarchical octree
subdivision of space this would require additional book keeping
efforts. Furthermore, we believe the sampling strategy would likely
have to be adapted for this type of scene to concentrate the samples
close to object surfaces.

5.3 Conclusion
In summary, we have presented NeAT, the first neural rendering
architecture to directly train an adaptive, hierarchical neural repre-
sentation from images. This approach yields superior image qual-
ity and training time compared to other recent neural rendering
methods. Compared to traditional optimization-based tomography
solvers, NeAT shows better quality while matching the computa-
tional performance.
While NeAT is at the moment optimized for tomographic re-

construction, we believe that similar concepts can be employed to
reconstruct complex scenes with opaque surfaces. This, however,
we leave for future work.
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