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S U M M A R Y 

Seismic inversion translates seismic data into subsurface elastic property models, enabling 

geophysicists to better understand underground rocks and fluids. Due to the inherently ill- 
posed nature of this inverse problem, accurately capturing the uncertainty associated with 

the solution is essential for reliable interpretations. Traditional Bayesian inversion methods, 
such as Markov Chain Monte Carlo and Laplace approximations, have been employed for this 
purpose but face significant limitations in terms of scalability and computational efficiency for 
large-scale problems. Combined with deep learning, Variational Inference (VI) has emerged 

as a promising alternative, striking a balance between computational efficiency and flexibility 

(i.e. the ability to approximate complex posterior distributions). Ho wever , selecting an appro- 
priate proposal distribution remains a key challenge, as it directly influences the quality of the 
estimated posterior distribution. In this study, we extend IntraSeismic, an implicit neural rep- 
resentation (INR)-based framework for seismic inversion applications, to Bayesian inversion 

using VI with different parametrizations of the proposal distribution. We introduce two meth- 
ods: B-IntraSeismic (BIS), which uses a mean-field Gaussian proposal, and B-IntraSeismic 
with Conditional Normalizing Flo ws (BIS-Flo w), which utilizes a mean-field unparametrized 

proposal distribution to better capture deviations from Gaussianity in the posterior distribution. 
These methods are e v aluated on a synthetic data set (Marmousi) and two field data (Volve and 

Sleipner). Our results indicate that both BIS and BIS-Flow can accurately capture structural 
details and produce high-resolution mean models and standard deviation maps. BIS-Flow is 
also shown to be able to model complex posterior distributions, offering a more comprehensive 
characterization of uncertainty while maintaining computational feasibility. 
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 I N T RO D U C T I O N  

eismic inversion is the foremost technique to extract quantitative
nformation of the subsurface, such as P -wave and S -wave veloci-
ies, from seismic data (Tarantola 1984 ). Having access to a quanti-
ative estimate of the physical properties of the subsurface enables
 number of downstream applications in various fields, including
ivil engineering (Steeples & Miller 1988 ; Oz & Miller 2015 ),
atural resource exploration (Telford et al. 1990 ; Yilmaz 2001 ),
ubsurface hazard analysis and more. Conducted in the seismic im-
ge domain (i.e. post-migration) to estimate acoustic impedance
odels, post-stack seismic inversion is routinely employed for de-

ailed subsurface anal ysis, particularl y in reservoir characterization
tudies (Houck 2002 ; Bosch et al. 2010 ). Ho wever , seismic in-
erse problems are inherently challenging due to three main factors:
Work for this study was conducted while affiliated with KAUST. 
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he limited frequency bandwidth acquired in a seismic experiment,
arious types of noise in the data and the simplifying assumptions
n modelling operators that may not fully capture the underlying
hysics. These challenges make the problem ill-posed, meaning
here is no an exact solution to it. 

The non-uniqueness inherent in seismic inverse problems leads
o uncertainties in the recovered subsurface proper ties. Uncer tainty
uantification (UQ) applied to seismic inversion enables not only
he estimation of the most likely subsurface model but also the quan-
ification of the range of plausible solutions that fit the observed data
Tarantola & Valette 1981 ; Ulrych et al. 2001 ). This enhanced un-
erstanding of subsurface variability and non-uniqueness is crucial
or numerous applications. For example, in reservoir characteriza-
ion, UQ helps identify regions of high uncertainty that may re-
uire additional data acquisition or alternative interpretation strate-
ies (Strutz & Curtis 2024 ). For resource assessment, uncertainty
stimates enable more reliable volumetric calculations and risk
nalysis, leading to better-informed investment decisions (Talarico
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et al. 2020 ). Fur ther more, UQ facilitates the integ ration of seismic 
inversion results with other geophysical and geological data by 
providing probability distributions rather than single deterministic 
solutions. 

The probabilistic approach to seismic inversion treats subsurface 
model parameters as random variables characterized by probabil- 
ity distributions, where the inference process aims to estimate the 
posterior distribution of these unknown parameters conditioned on 
the seismic data. Exact computation of the posterior distribution 
is feasible for small-scale problems as long as the likelihood and 
prior distributions belong to conjugate families but becomes com- 
putationall y prohibiti v e in more general cases. In seismic inv ersion, 
simplifying assumptions are often made, such as assuming lateral 
independence between seismic traces (Buland & Omre 2003 ), to fa- 
cilitate cov ariance computation. Gi ven the inherentl y large-scale na- 
ture of seismic inversion, geophysicists commonl y rel y on approx- 
imate inference algorithms that balance computational efficiency 
and accuracy. Traditional approaches such as Markov Chain Monte 
Carlo (MCMC) methods and Laplace approximations have been 
e xtensiv ely used in seismic inversion applications to estimate the 
reliability of predictive models (Mosegaard & Tarantola 1995 ; Sen 
& Stoffa 1996 ; Sambridge & Mosegaard 2002 ). While effective 
for small examples, these methods still face significant scalability 
and computational ef ficiency challenges, especiall y for large and 
high-dimensional data sets. 

Variational Inference (VI), on the other hand, reformulates the 
inference problem as an optimization task, where the true posterior 
distribution is approximated by the closest member of a family of 
tractab le distributions, w hose parameters are obtained by minimiz- 
ing the Kullback–Leibler divergence with the true posterior (Jordan 
et al. 1998 ; Blei et al. 2017 ). This approach combines the advan- 
tages of optimization techniques with probabilistic modelling, mak- 
ing it particularly suitable for large-scale problems where traditional 
sampling methods become computationally intractable. Moreover, 
recent advances in stochastic optimization and deep learning have 
further increased the practicality of VI for large-scale inverse prob- 
lems (Zhang et al. 2018 ), like those commonly found in geophysi- 
cal applications. These advancements enable efficient and accurate 
computation of gradients, facilitating the optimization of improved 
v ariational objecti ves that can enhance the stability and accuracy 
of the entire optimization process. One prominent example of the 
use of VI in deep learning is the variational autoencoder (VAE) 
(Kingma & Welling 2022 ), a model designed to learn complex, 
high-dimensional probability distributions through a combination 
of probabilistic inference and convolutional neural networks. This 
success has inspired various applications in inverse prob lems, w here 
neural networks can learn to capture complex posterior distribu- 
tions while maintaining computational efficiency. More specifi- 
call y, these de v elopments hav e opened new possibilities for UQ 

in high-dimensional problems like seismic inversion, where tradi- 
tional methods struggle to balance computational efficiency with 
accurate uncertainty estimation (Zhang et al. 2021 ; Li et al. 2024 ). 

Implicit neural representations (INR) are a novel family of neural 
networks that learn a direct mapping from the spatial coordinates 
to one or more output values in a domain of interest (Sitzmann 
et al. 2020 ; Tancik et al. 2020 ). A notable example is Neural Ra- 
diance Fields (NeRF) (Mildenhall et al. 2020 ), which has revo- 
lutionized image reconstruction by directly representing a scene 
using its spatial coordinates as input. Inspired by the capabilities 
of neural networks to act as pre-conditioners in image reconstruc- 
tion problems, INR has also been leveraged for seismic inversion 
tasks (Romero et al. 2024 ; Sun et al. 2023 ). Recent research has 
shown that INR offer a powerful strategy for parametrizing models 
(or acting as deep pre-conditioners) for seismic inverse problems, 
leading to state-of-the-art inversion results with faster convergence 
compared to conventional methods. One such method, IntraSeismic 
(Romero et al. 2024 ), offers additional benefits such as fast data ac- 
cess, compression capabilities and the ability to seamlessly conduct 
UQ via Monte Carlo Dropout (MCD). 

In this paper, we present a Bayesian extension of the IntraSeismic 
framework, termed Bayesian-IntraSeismic (B-IntraSeismic), which 
extends IntraSeismic’s capabilities by providing an estimate of the 
uncertainty of the inverted model parameters. We develop and eval- 
uate two distinct approaches: (1) a mean-field Gaussian method 
(BIS), in which IntraSeismic’s nonlinear mapping module is mod- 
ified to predict both the mean and standard deviation of the sub- 
surface model parameters at each location, offering a scalable and 
computationall y ef ficient solution; and (2) a second approach that 
uses conditional normalizing flo ws (BIS-Flo w) to estimate non- 
parametric posterior distributions for each input point, where a fea- 
ture vector from IntraSeismic’s nonlinear mapping module serves as 
the context for the flow. This paper is organized as follows: we begin 
with an overview of exact and approximate inference algorithms for 
post-stack seismic inversion; this is followed by a review of VI and 
its integration into the B-IntraSeismic framework, with a practical 
focus on its parametrization through INRs. Next, we describe the 
implementation of the two approaches—BIS and BIS-Flow—for 
post-stack seismic inversion. In the results section, we apply BIS 

and BIS-Flow to synthetic (Marmousi) and field (Volve and Sleip- 
ner) data sets, comparing their results against analytical and other 
approximate solutions to demonstrate their ef fecti veness in captur- 
ing complex posterior distributions and characterizing uncertainty. 
Finally, we discuss the advantages, limitations and potential future 
directions for these methods in the context of seismic inversion. 

2  T H E O RY  A N D  M E T H O D S  

2.1 Deterministic post-stack inversion 

Post-migration angle-dependent seismic data d θ ( t) can be math- 
ematically represented via the so-called convolutional model 
(Goupillaud 1961 ). This entails convolving a source function or 
wavelet w( t) with the earth P -wave reflectivity series r pp ( t) : 

d θ ( t) = w( t) ∗ r pp ( t) (1) 

The Aki-Richards approximation (Aki & Richards 2002 ), which 
builds on the foundational Zoeppritz equation (Zoeppritz 1919 ), 
expresses r pp as follows: 

r pp ( t, θ ) = 

3 ∑ 

i= 1 
c i ( t, θ ) 

d 

dt 
log ( m i ( t) ) , (2) 

where the mixing coefficients c i are given by 

c 1 ( t, θ ) = 

1 

2 

(
1 + tan 2 ( θ ) 

)
c 2 ( t, θ ) = −4 

(
V̄ s ( t) 

V̄ p ( t) 

)2 

sin 2 ( θ ) 

c 3 ( t, θ ) = 

1 

2 
− 2 

(
V̄ s ( t) 

V̄ p ( t) 

)2 

sin 2 ( θ ) 

, (3) 

where θ represents the incidence angle of the seismic ray path, 
V p ( t) is the P -wave velocity, V s ( t) the S -wave velocity and ρ( t) is
the density of the medium of interest. When only zero offset data is 
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onsidered, that is, θ = 0 , eq. ( 2 ) becomes: 

 P P = 

1 

2 

d 

dt 
log ( m ( t)) , (4) 

here r P P is referred in this case as post-stack reflectivity and m ( t)
s the P -wave or acoustic impedance. Post-stack seismic data is
ence modelled as: 

( t ) = 

1 

2 
w( t ) ∗ d 

dt 
log ( m ( t )) (5) 

n compact matrix–vector notation: 

 = WDm , (6) 

here W ∈ R 

N y N x N t ×N y N x N t is a block-Toeplitz convolution matrix,
hich encapsulates the seismic wavelet, while D ∈ R 

N y N x N t ×N y N x N t 

s a first-order deri v ati ve operator. From here onwards, we use G =
D for the post-stack modelling operator to simplify our notation.
P ost-stack seismic in version is the process aimed at transforming

eismic images or 3-D seismic volumes d ∈ R 

N y N x N t into quantita-
ive estimates of the subsurface’s acoustic impedance m ∈ R 

N y N x N t 

Oldenburg et al. 1983 ; Russell & Hampson 2005 ); the associated
ptimization problem can be expressed in the following generic
orm: 

 

∗ = arg min 
m 

1 

2 
‖ Gm − d ‖ 2 2 + αR ( m ) . (7) 

he objective of eq. ( 7 ) is to minimize the discrepancy between the
odelled and observed seismic data, adjusted by a regularization

erm R( m ) . 

.2 Bayesian post-stack seismic inversion 

ayesian post-stack seismic inversion is formulated using a proba-
ilistic framework to estimate subsurface properties while explicitly
ccounting for uncertainties in both the data and prior geological
nowledge. This approach is grounded in Bayes’ theorem, which
tates that the posterior probability distribution p( m | d ) of model
arameters m giv en observ ed seismic data d is proportional to the
roduct of the likelihood function p( d | m ) and the prior probability
istribution p( m ) , normalized by the evidence p( d ) : 

p ( m | d ) = 

p ( d | m ) · p( m ) 

p ( d ) 
(8) 

he posterior distribution obtained through this Bayesian formu-
ation provides not only the most probable impedance model but
lso a complete characterization of the uncertainty space, including
arameter correlations and multiple modes in the solution space.
he deterministic post-stack seismic inversion eq. ( 7 ) can be in-

erpreted as finding the maximum a posteriori (MAP) estimate in
he Bayesian framework. In this interpretation, the data misfit term
orresponds to the ne gativ e log-likelihood function (under the as-
umption of Gaussian noise in the data). The regularization term
epresents the ne gativ e logarithm of the prior distribution (which
an be represented by any distribution from the exponential fam-
ly), where the regularization parameters act as the inverse variance
f the prior distribution (when the prior is Gaussian). This Bayesian
nterpretation provides a probabilistic foundation for the determin-
stic optimization problem and reveals how different choices of
egularization terms correspond to different prior beliefs about the
ubsurface properties. In the following, we provide a detailed anal-
sis of the key elements in the Bayesian seismic inversion formula-
ion, including the likelihood functions, prior distributions and their
mplications for UQ. 
.2.1 The prior model 

he prior model, also known as the prior distribution, is a fundamen-
al concept in Bayesian statistics as it represents our initial beliefs or
nowledge about unknown parameters before observing any data.
n the context of seismic inversion, the prior typically embodies the-
retical considerations about subsurface elastic properties (Curtis
 Lomax 2001 ; Scales & Tenorio 2001 ). These considerations may

nclude assumptions about the proximity to a background or initial
 elocity model, e xpectations of smoothness or blockiness in the
olution and time-lag dependencies (Buland & Omre 2003 ), among
thers. For instance, geophysicists might incorporate prior knowl-
dge that velocities generally increase with depth or that certain
eological formations are likely to exhibit specific ranges of elastic
roperties (Grana et al. 2017 ). Within the definition of the prior, one
an also incorporate the degree of certainty or uncertainty in these
nitial assumptions. In some cases, this might be based on well-
og data, regional geological knowledge or results from previous
nversions in similar areas. 

In this work, we consider three types of priors, which will be
ombined in different ways for the two methods discussed later.
hese priors serve to further constrain the solution by incorporat-

ng different aspects of our prior knowledge about the subsurface
roperties. 

(i) Proximity to a low-frequency background model – This prior
onstrains the solution to remain close to a known low-frequency
ackground model m 0 , ensuring stability and incorporating prior
eological knowledge into the inversion: 

 ∼ N ( m 0 , � 1 ) → p( m ) ∝ exp 

(
−1 

2 
( m − m 0 ) 

T � 

−1 
1 ( m − m 0 ) 

)
,

(

here � represents the covariance matrix. In this work, we assume
n isotropic Gaussian distribution, implying equal variance in all
irections. This simplifies the covariance matrix to � = 

1 
λ1 

I , where

1 controls the strength of the prior constraint. 
(ii) Smoothness prior (generalized Tikhonov regularization) –

his prior promotes smoothness in the solution by penalizing rapid
patial variations: 

m ∼ N ( 0 , � 2 ) → p( Dm ) ∝ exp 

(
−1 

2 
( Dm ) T � 

−1 
2 Dm 

)
, (10) 

here D represents the Laplacian operator, enforcing smoothness
y penalizing second-order variations in the model. The covariance
atrix is assumed to be isotropic, given by � 2 = 

1 
λ2 

I , where λ2 

ontrols the degree of regularization. This formulation discourages
brupt changes in impedance while still allowing for necessary
tructural variations. 

(iii) Blockiness prior (total variation regularization) – This prior
romotes piecewise-constant solutions, preserving sharp bound-
ries in the model, which is particularly useful for detecting geo-
ogical discontinuities: 

m ∼ Laplace ( 0 , 
1 

λ3 
I ) → p( ∇m ) ∝ exp ( −λ3 ||∇m || 1 ) (11) 

here ∇ is the gradient operator, enforcing blocky structures by
enalizing large variations in m . The prior follows a multi v ari-
te Laplace distribution, which naturally promotes sparsity in the
 radient domain. This for mulation ensures that abr upt impedance
ontrasts, such as fault zones and layer boundaries, are preserved
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2.2.2 The Likelihood model 

The likelihood function provides a direct link between the observed 
data and the model parameters. It quantifies the probability of ob- 
serving the data given a particular set of parameter values in the 
model. Unlike the prior, which encapsulates our initial beliefs about 
the parameters, the likelihood encodes the information contained in 
the data. It measures how well different parameter values explain 
the observed data, with higher likelihood values indicating a better 
fit. In practice, the likelihood often incorporates assumptions about 
the data-generating process and measurement errors. For the seis- 
mic inversion case, we usually assume Gaussian distributed noise 
in the seismic data such that: 

d ∼ N ( Gm , σ 2 
ε I ) → p( d ) ∝ exp 

(
− 1 

2 σ 2 
ε

|| d − Gm || 2 2 

)
, (12) 

where G is the seismic modelling operator that computes the seismic 
data from the logarithm of the acoustic impedance model m to be 
compared with the observed data d . Here, we choose to have a 
fixed noise level with a standard deviation of σε . Ho wever , the VI 
framew ork allo ws one to choose an y data cov ariance of choice, 
provided that its inverse is tractable. 

2.3 The posterior model 

2.3.1 Exact inference 

The posterior distribution combines our prior knowledge with ob- 
served data to provide an updated belief about the parameters of 
interest. A closed-form solution for the posterior distribution exists 
when the prior and likelihood are from conjugate families, for ex- 
ample, Gaussian distributions. In other cases, finding an analytical 
expression for the posterior becomes impossible as the marginal 
likelihood often inv olves intractab le integrals. In the specific case 
of post-stack seismic inversion, when we incorporate the Gaussian 
priors in eqs ( 9 ) and ( 10 ), the ne gativ e log-posterior becomes: 

J = −log p( d | m ) − log p 1 ( m ) − log p 2 ( m ) 

= 

1 

2 
|| d − Gm || 2 2 + 

λ1 

2 
|| m − m 0 || 2 2 + 

λ2 

2 
|| Dm || 2 2 (13) 

Minimizing this objective function is equi v alent to finding the 
least-squares solution of the following system of equations: ⎡ 

⎣ 

G √ 

λ1 I √ 

λ2 D 

⎤ 

⎦ m = 

⎡ 

⎣ 

d √ 

λ1 m 0 

0 

⎤ 

⎦ (14) 

Because in the case of Gaussian priors and Gaussian likelihood, the 
posterior is also Gaussian, this also corresponds to the mean of the 
posterior distribution, which can be written as: 

m post = ( G 

T G + λ1 I + λ2 D 

T D ) −1 ( G 

T d + λ1 m 0 ) (15) 

Moreover, an analytical expression exists also for the posterior co- 
variance matrix: 

Cov( m post ) = ( G 

T G + λ1 I + λ2 D 

T D ) −1 , (16) 

which can be computed ef ficientl y for small problems using standard 
matrix inversion techniques. 

2.3.2 Appro ximate inf erence: RTO 

The ’randomize-then-optimize’ (RTO) method is a novel technique 
for sampling from posterior distributions in Bay esian inference, par - 
ticularl y ef fecti ve when the data errors and priors are modelled as 
Gaussian distributions (Bardsley et al. 2014 ). RT O con verts a de- 
terministic optimization problem into a stochastic one, facilitating 
the efficient sampling of high probability models within the poste- 
rior distribution. This transformation requires two key adjustments 
(Blatter et al. 2022 ). First, the data is perturbed to incorporate 
uncertainty directly into the inversion process, ensuring that data 
variability is reflected in the solutions. Secondly, the regularization 
target is also adjusted to a randomly generated model that satis- 
fies the regularization constraints. This randomly generated model 
does not necessarily minimize the data misfit but aligns with the 
regularization criteria, thereby capturing the uncertainty inherent 
in the prior model covariance during the inversion. For the post- 
stack seismic inversion problem described in eq. ( 13 ), the RTO 

method introduces a modified objective function with perturbed 
terms: 

1 

2 

∥∥Gm − ˜ d 

∥∥2 

2 
+ 

λ1 

2 
‖ m − ˜ m 0 ‖ 2 2 + 

λ2 

2 
‖ D ( m − ˜ m ) ‖ 2 2 , (17) 

where 

˜ d ∼ N ( d , C d ) , ˜ m 0 ∼ N 

(
m 0 , 

1 

λ1 
I 

)
, 

× ˜ m ∼ N 

(
0 , 

1 

λ2 
( D 

T D ) −1 

)
. (18) 

In this formulation, ˜ d is drawn from a Gaussian distribution centred 
at the observed data d with a data covariance matrix C d (in our 
case C d = I ), introducing noise into the data. ˜ m 0 is sampled from 

a Gaussian distribution centred at the background model m 0 , with 
covariance 1 

λ1 
I , allowing for uncertainty around the prior model. 

Finally, ˜ m is a zero-mean Gaussian distribution with covariance 
1 
λ2 

( D 

T D ) −1 , reflecting the uncertainty in the smoothing regulariza- 
tion constraint. One convenient way to draw a realization of ˜ m is to 
solve the linear system 

D ̃

 m = η, η ∼ N ( 0 , 
1 √ 

λ2 

I ) . (19) 

Substituting this definition of ˜ m into eq. ( 17 ) yields an equi v alent 
form of the RTO objective function: 

1 

2 

∥∥Gm − ˜ d 

∥∥2 

2 
+ 

λ1 

2 
‖ m − ˜ m 0 ‖ 2 2 + 

λ2 

2 

∥∥Dm − η
∥∥2 

2 
(20) 

Solving this objective for many random draws of ( ̃ d , ˜ m 0 , η) pro- 
duces an ensemble of RTO solutions that sample the posterior. The 
main limitation of RTO is that the repeated optimization for each 
randomized instance may be time-consuming as the dimensional- 
ity of the problem increases. This makes RTO less practical for 
extremely large-scale models or when computational resources are 
limited. 

2.3.3 Appro ximate inf erence: VI 

VI provides a principled framework for approximating intractable 
probability distributions, particularly in our case, the posterior dis- 
tribution of the latent variables representing subsurface properties 
in a domain of interest. Let d denote the observed seismic data and 
m represent the latent subsurface properties. Our goal is to approx- 
imate the intractable posterior distribution p( m | d ) with a tractable 
proposal distribution q � 

( m ) , where � represents the optimized free 
parameters that characterize the proposal distribution. VI achieves 
this by minimizing the so-called Kullback–Leibler (KL) divergence, 
a measure of the dissimilarity between two distributions, here the 
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roposal or variational distribution and the true posterior distribu-
ion: 

L ( q � ( m ) ‖ p( m | d )) = E m ∼q � 

[
log 

q � ( m ) 

p( m | d ) 
]

= E m ∼q � [ log q � ( m )] − E m ∼q � [ log p( m | d )] 

= E m ∼q � [ log q � ( m )] − E m ∼q � 

[
log 

p ( d | m ) p ( m ) 

p( d ) 

]
= E m ∼q � [ log q � ( m )] − E m ∼q � [ log p( d | m )] 

−E m ∼q � [ log p( m )] + E m ∼q � [ log p( d )] , (21) 

here E x ∼q � denotes the expectation with respect to the variational
istribution q � 

, p( d | m ) corresponds to the likelihood distribution
f the data given the model and p( m ) is the prior distribution. Since
omputing the KL divergence as in eq. ( 21 ) is often intractable,
I uses a lower bound on the lo g-e vidence, known as the evidence

ower bound (ELBO): 

 m ∼q � [ log p( d | m )] − KL ( q � 

( m ) ‖ p( m )) . (22) 

s maximizing the ELBO is equi v alent to minimizing the KL diver-
ence, VI ultimately entails minimizing the ne gativ e of the ELBO: 

rgmin 
� 

KL ( q � 

( m ) ‖ p( m )) − E m ∼q � [ log p( d | m )] . (23) 

y optimizing the ELBO with respect to the variational parameters
 , we ef fecti vel y find the variational distribution that best approxi-
ates the true posterior while maintaining tractability. 
Key factors to the success of VI are: (i) the proposal and prior are

hosen such that their KL divergence can be computed efficiently
or, ideally, a closed-form solution e xpression e xists), (ii) the e x-
ectation in the second term can be approximated by the sample
ean, obtained by sampling multiple models from the proposal

istributions and e v aluating this term as: 

 m ∼q � [ log p( d | m )] ≈ − 1 

n r 

n r ∑ 

i= 1 

‖ d − Gm i ‖ 2 
2 σ 2 

ε

, (24) 

here n r represents the number of samples drawn from the proposal
nd used to estimate the expectation of the likelihood distribution.
ote that when VI is used in the context of machine learning (e.g.

raining of neural networks), this term can be computed from a
atch of training samples: in other words, one leverages stochastic
ptimization techniques, ensuring computational efficiency even for
arge-scale problems. Unlike MCMC methods that require numer-
us iterations to converge and often struggle with high-dimensional
paces (Curtis & Lomax 2001 ), VI’s optimization-based approach
nables efficient parameter updates through mini-batch process-
ng and automatic differentiation. Fur ther more, VI’s deter ministic
ature ensures reproducible results across multiple runs, while its
ptimization objectiv e (ELBO) serv es as a reliable metric for model
omparison and convergence monitoring. 

The success of VI critically depends on the choice of the vari-
tional family—the class of distributions used to approximate the
rue posterior. This choice represents a fundamental trade-off be-
ween approximation accuracy and computational tractability. The

ean-field approximation is a variational family were the proposal
istribution q � 

( m ) is factorized as: 

 � 

( m ) = 

N y ×N x ×N t ∏ 

i= 1 
q � 

( m i ) (25) 

This approach estimates the diagonal of the covariance matrix,
roviding high computational efficiency and a general assessment
f uncertainty for each inverted parameter. While appealing from
 computational perspective, it assumes parameter independence,
hich can lead to underestimated uncertainties and fails to capture
ey features of the true posterior, such as multimodality or pa-
ameter correlations. To address these limitations, we present two
pproaches, building on the IntraSeismic framework (Romero et al.
024 ): 

(i) B-IntraSeismic ( BIS ): we first explore the use of a standard
ean-field approximation with a Gaussian proposal distribution,
here the parameters (mean and standard deviation) are learned

hrough the nonlinear mapping module of IntraSeismic; 
(ii) B-IntraSeismic with CNF ( BIS-Flow ): we enhance the mean-

eld approximation by implementing a 1-D CNF, allowing for the
earning of a non-parametric proposal distribution that captures
omplexities such as asymmetry and multimodality in the inverted
arameters. 

A detailed methodology and implementation of each variant are
resented in the following section. 

.4 BIS 

nspired by the implementation in NeRF by Shen et al. ( 2021 ), we
rst parametrize our Gaussian proposal distribution with parame-

ers � , which are the weights of an INR (Fig. 1 ). This INR takes
oordinates of the subsurface model x i = [ x i , y i , z i ] as input and
tilizes a nonlinear mapping module to predict the mean μ� 

and
tandard deviation σ� 

of a Gaussian distribution, which aims to
pproximate the model’s posterior distribution: 

 i ∼ N ( μ� 

( x i ) , σ
2 
� 

( x i )) = q � 

( m i ) , (26) 

here x has been added to both the mean and standard deviation
o remark the fact that different values are predicted from different
nput coordinates: 

 μ� 

( x i ) , σ
2 
� 

( x i )] = F � 

( x i ) , (27) 

here F � 

represents our network. For the prior distributions, we
rst implement two Gaussian priors as detailed in eqs ( 9 ) and ( 10 ),
hich ensure proximity to the background model and smoothness,

especti vel y. As we assume these priors to be independent from
ach other, the overall prior equals to the product of each individual
rior: 

p( m ) = p 1 ( m ) p 2 ( m ) , (28) 

here p 1 ( m ) and p 2 ( m ) are the two selected priors. This combina-
ion allows for direct comparison with the analytical solution, as it
ses the same priors. Subsequently, we employ the blockiness prior
n combination with the proximity prior to showcase the flexibil-
ty of the proposed methods. In both cases, when the prior term is
nserted in eq. ( 23 ), p 1 is used alongside the proposal to compute
he KL divergence (which in the case of a Gaussian prior and a
aussian proposal has a closed-form solution). On the other hand,

p 2 is taken out of the KL divergence and computed in a similar
anner to the likelihood term. For the Gaussian case: 

 m ∼q � [ log p 2 ( m )] ≈ − 1 

n r 

n r ∑ 

i= 1 

λ2 

2 
‖ Dm i ‖ 2 (29) 

nd for the Laplace term: 

 m ∼q � [ log p 2 ( m )] ≈ − 1 

n r 

n r ∑ 

i= 1 
λ3 ‖∇m i ‖ 1 . (30) 

o conclude, the BIS w orkflo w consists of the following steps: 
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Figure 1. Schematic representation of the BIS framework. Input coordinates are processed through a nonlinear mapping module to produce the mean and 
standard deviation of a point-wise Gaussian distribution. Multiple acoustic-impedance models are sampled from this Gaussian proposal; those samples are 
then used to compute the likelihood term and one of the priors in the ELBO loss. 
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(i) Parameter prediction: The nonlinear mapping module pro- 
cesses input coordinates to predict the mean and standard deviation 
of the posterior distribution at each coordinate point (mean-field 
approximation). This module employs a trainable multigrid-hash 
encoding scheme followed by a two-la yer Multi-La yer Perceptron 
(MLP) with 64 neurons and ReLU acti v ation functions. 

(ii) Posterior sampling: Using the predicted mean and standard 
deviation for all the input points x i , we draw N samples from 

the proposal distribution, where each sample represents a possible 
realization of the subsurface model parameters. 

(iii) Forward modelling: Each of the n r sampled models is fed 
to the seismic modelling operator, generating n r predicted seismic 
data sets corresponding to each model realization. 

(iv) Loss computation: The predicted seismic data are incorpo- 
rated into the Gaussian-likelihood term of the loss function, and 
the predicted Gaussian distribution is used to compute the KL di- 
vergence with one of the priors. Additionally, the n r realizations 
are used to compute the sample log probability for the other prior 
distribution. 

(v) Optimization: Through backpropagation, the parameters of 
the nonlinear mapping module are optimized to maximize the 
ELBO. 

2.5 BIS-Flow 

Normalizing flows (NF) is a class of generative models that trans- 
form a simple base distribution through a series of lear nable, inver t- 
ib le mappings, enab ling the representation of multimodal, skewed 
and otherwise complex distributions (Kob yze v et al. 2021 ; Papa- 
makarios et al. 2021 ). The key idea behind NFs is to apply a se- 
quence of bijective transformations to a simple base distribution, 
making it possible to compute both the probability density and gen- 
erate samples ef ficientl y. The flow can be defined as: 

x = f ( z ) = f n ( f n −1 ( ... f 1 ( z ))) , (31) 

where 

z ∼ N (0 , I ) = p z ( z ) (32) 

and x is a sample from an unknown complex distribution p x ( x ) . 
Each transformation f i must be both invertible, so the original data 
can be recovered from the transformed data, and differentiable, to 
be able to compute the probability density function of the output 
variable. The transformation from a simple distribution p z ( z ) to a 
more complex distribution p x ( x ) is computed using the change of 
variables formula: 

p x ( x ) = p z ( z ) 

∣∣∣∣det 
∂ f −1 ( x ) 

∂x 

∣∣∣∣ = p z ( z ) 

∣∣∣∣det 
∂ f ( z ) 

∂z 

∣∣∣∣
−1 

, (33) 

where z = f −1 ( x ) is the latent variable, and the term 

∣∣∣det ∂ f −1 ( x ) 
∂x 

∣∣∣
is the determinant of the Jacobian of the transformation, which 
accounts for how the transformation changes volume. This flex- 
ibility proves especially valuable in scenarios with intricate pos- 
terior landscapes, where standard VI might miss critical features. 
The iterative nature of flow-based transformations allows for the 
pro gressi ve refinement of the approximation, potentially capturing 
finer details of the true posterior while maintaining computational 
tractability. By proper mixing of v ariables b y the transform used, 
the NF automatically discover relevant correlation structures in the 
posterior, eliminating the need for manual specification of varia- 
tional families. Several recent studies have demonstrated the use 
of normalizing flows (NF) for Bayesian inference in seismic ap- 
plications. Siahkoohi et al. ( 2020 ) propose a two-step Bayesian 
framework in which a conditional normalizing flow (CNF) is first 
trained on paired data to approximate the posterior distribution and 
subsequently reused as a prior or warm start for inference under 
ne w observ ation distributions. Zhao et al. ( 2022 ) apply NF to fully 
nonlinear seismic tomography, showing that it can produce accurate 
posterior approximations with lower computational cost compared 
to Monte Carlo methods. In a follow-up work, Siahkoohi et al. 
( 2023 ) employ conditional NFs for amortized variational inference 
in seismic imaging, introducing a latent space correction where the 
standard Gaussian prior is replaced by a learnable Gaussian distri- 
bution with optimized mean and diagonal covariance to better match 
the physics-based posterior. Finally, Rizzuti & Vasconcelos ( 2024 ) 
present a multiscale variational inference framework for seismic 
uncertainty quantification, based on a wavelet-structured NF archi- 
tecture that generates posterior samples hierarchically, from coarse 
to fine scales. 

In this work, we leverage NF to create a more e xpressiv e proposal 
distribution whilst still remaining within the mean-field approxi- 
mation regime (Fig. 2 ). For each input coordinate, this approach 
involves passing a single scalar drawn from a Gaussian distribution 
into a CNF, where the condition is composed of a feature vector 
generated by the nonlinear mapping module of IntraSeismic. The 

art/ggaf249_f1.eps
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Figure 2. Schematic representation of the BIS-Flow framework. Input coordinates are processed through a nonlinear mapping module to produce a context 
vector, which is fed into the CNF along with samples from the base distribution. The output of the CNF provides both samples and log probabilities from a 
non-parametric proposal distribution, which are used to compute the terms of the ELBO loss. 

Figure 3. Marmousi acoustic impedance model used as the reference solution, background model used as the mean for the proximity prior and post-stack 
seismic data with added Gaussian noise. The vertical dashed line in the reference model corresponds to the location of the profile shown in Fig. 6 . 
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nput is then transformed by the flow into a sample of the non-
arametric proposal distribution (Fig. 2 ). The log probability of the
roposal is then computed for each sample using the change of
ariables formula in eq. ( 33 ). In this study, we employ Gaussianiza-
ion flows (Meng et al. 2020 ), a powerful method for distribution
odelling that maps non-Gaussian data to a Gaussian distribution.
he fundamental concept involves applying monotonic, invertible

ransformations to the input data, producing outputs that resemble
amples from a standard nor mal distribution. The transfor mation is
efined as: 

f ( x) = 
 

−1 

( 

1 

K 

K ∑ 

i= 1 

 ( exp ( a i ) x + b i ) 

) 

, (34) 

here 
 is the cumulative distribution function (CDF) of the stan-
ard normal distribution N (0 , 1) , 
 

−1 is the inverse CDF mapping
robabilities to corresponding standard normal values, a i (scale)
nd b i (shift) are transformation parameters, and K is the number
f components in the transformation. In our implementation, a and
 are parametrized by a MLP N � 

as: 

 a , b ] = N � 

( c ) , (35) 

here � represents the learnable parameters and c is the context
 ector. Here, the conte xt v ector is a 64-dimensional feature output
rom the IntraSeismic MLP module. For the prior distributions,
n this case, we use the proximity and blockiness promoting prior
i

eqs 9 and 11 ). The BIS-Flow workflow consists of the following
teps: 

(i) Context vector: The nonlinear mapping module processes the
nput coordinates, mapping each point to a 64-dimensional feature
ector that serves as the context vector for the CNF, following the
pproach in Shen et al. ( 2022 ). 

(ii) Base distribution sampling: The base distribution of the NF
s sampled n r times for each input point. 

(iii) Flow transformation: The n r sampled points, along with
he context vector, are passed through the CNF Gaussianization
ow, producing outputs that represent values from a complex, non-
arametric distribution. 
(iv) Forward modelling: Each of the n r sampled model param-

ter realizations is fed to the seismic modelling operator, generating
 r predicted seismic data sets corresponding to each realization. 
(v) Loss computation: The predicted seismic data are used in

he Gaussian-likelihood term of the loss function, while the n r 

ealizations contribute to the computation of the proposal and prior
erms. Note that here we do not rely on a closed-form solution
or the KL divergence, instead the negative log-probability of the
roposal is computed using eq. ( 33 ) and those from the prior terms
re computed using eqs ( 29 ) and ( 30 ). 

(vi) Optimization: The parameters of the nonlinear mapping
odule and the CNF are optimized using backpropagation to max-
mize the ELBO. 
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Figure 4. Comparison of the analytical, RT O , BIS and BIS-Flow for the Bayesian inversion of the post-stack modelled Marmousi data. 
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Figure 5. (a) Precision matrix (inverse of the covariance) and (b) covariance matrix in the log domain for the post-stack seismic inversion problem with 
Gaussian priors. 

Figure 6. 1-D comparison of the analytical, RT O , BIS and BIS-Flo w methods for the Bayesian in version of the post-stack modeled Marmousi data. The 
extracted profile corresponds to the dashed vertical line in Fig. 3 . 
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This w orkflo w enables the model to approximate more flexible
osterior distributions, capturing complexities such as asymmetry
nd multimodality. 

.6 Implementation details 

or the experiments presented in the next section, we use n r = 100
amples during training to e v aluate the ne gativ e log-likelihood and
he ne gativ e log-prior distributions. For all the experiments of BIS
nd BIS-Flow (synthetic and field data), we use Adam optimizer
ith a learning rate of 10 −2 . The entire framework is implemented

n PyTorch 2.0.1. All our experiments are conducted on a single ma-
hine equipped with an AMD EPYC 7713 64 Core Processor and
 single NVIDIA TESLA A100 GPU. The post-stack seismic mod-
lling operator is implemented using the PyLops library (Ravasi &
asconcelos 2020 ) and integrated into the PyTorch framework to
nable seamless automatic differentiation across multiple indepen-
ent computational frameworks. 
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Figure 7. Loss and SNR of the mean through iterations of BIS and BIS-Flow for the Bayesian inversion Marmousi data. 

Figure 8. Kernel density estimates of the proposal distributions predicted by BIS and BIS-Flow at the six locations highlighted in Figs 4 (g) and 4 (i). 

Figure 9. Volve post-stack seismic data and background model used in this study. 
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Figure 10. Bayesian inversion results for the Volve data set. (a)–(b) display the posterior mean and standard deviation estimated with BIS, whereas (c)–(d) 
show the corresponding statistics obtained with BIS-Flow. 
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 R E S U LT S  

.1 Synthetic example: Marmousi model 

he Marmousi model (Brougois et al. 1990 ) is a synthetic 2-D
ubsurface velocity model that mimics complex geological struc-
ures characterized by sharp velocity contrasts (Fig. 3 a). We utilize
 smooth version of the Marmousi model as the initial background
odel for the inversion process (Fig. 3 b). To generate synthetic

ost-stack seismic data, we apply the linear post-stack modelling
perator to the logarithm of the acoustic impedance model (com-
uted by scaling the provided velocity model by a constant density
alue) using a 15 Hz peak-frequency Ricker wavelet. The data and
avelet are then scaled and the former is contaminated with Gaus-

ian noise having a standard deviation of 1.0 (Fig. 3 c). 

.1.1 Analytical solution 

irst, we calculate the analytical mean and covariance matrix of the
coustic impedance model from the post-stack data, following eqs
 15 ) and ( 16 ). This calculation utilizes two Gaussian priors: one that
nforces proximity to a background model and another that ensures
moothness in the solution (see Section 2.2.1 ). Figs 4 (a) and (b)
isplay the analytical mean and standard deviation (computed as
he square root of the covariance matrix diagonal). The recovered
ean ef fecti vel y reconstructs the structural features and impedance
 w  
alues of the ground truth model, albeit with a lower signal-to-noise
atio (SNR) compared to the deterministic solution using advanced
egularization terms (Romero et al. 2024 ). The standard deviation
xhibits strong structural conformance, with maximum variance
orresponding to regions of high impedance contrast. 

Fig. 5 presents the precision and covariance matrices for the least-
quares post-stack seismic inversion problem. The precision matrix
i.e. the inverse of the covariance matrix) provides insights into the
onditional dependencies between v ariables, gi ven the influence of
he modelling operator and the priors. In this case, the precision

atrix has dominant diagonal elements that correspond to the mod-
lling operator and off-diagonal bands representing the smoothing
rior (eq. 10 ). The covariance matrix in Fig. 5 (b) presents a blocky
tructure, where each block displays the correlation between two
races. Parameters within the same block (or trace) are more strongly
orrelated, with diagonal dominance highlighting that uncertainty
variance) is highest for individual parameters and decreases with
istance from the diagonal. This suggests that nearby parameters
nfluence each other to some extent. 

The sensitivity kernel in Fig. 4 (c) (one row of the covariance ma-
rix) provides an alternative visualization of parameter uncertainty
nd spatial correlation of the inverted parameters. For a selected
oint in the model (black dot), the kernel reveals high sensitivity
n the surrounding region, indicating that parameter changes in this
rea significantly impact the predicted data at the selected point,
hile changes in the blue areas have minimal effect. The vertical

art/ggaf249_f10.eps
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Figure 11. Profile view along a well trajectory for the Bayesian inversion results for the Volve data set using BIS and BIS-Flow, compared to acoustic 
impedance well log. 
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elongation is primarily due to the modelling operator, characterized 
by a Toeplitz convolutional matrix with a filter size of 60 samples. 
The overall shape of the sensitivity kernel reflects the Laplacian 
regularization, which promotes smoother models. 

A more detailed comparison of the results is presented in Fig. 6 , 
which illustrates the marginal posterior distributions of the acoustic 
impedance model along a single vertical profile (indicated by a red 
dashed line in Fig. 3 ) for the various inference methods shown in 
Fig. 4 . 
3.1.2 RTO solutions ensemble 

Figs 4 (d)–(f) display the mean, standard deviation and sensitivity 
kernel of the RTO solutions obtained for the post-stack seismic 
inversion of the Marmousi synthetic data. In this analysis, 1000 
perturbations of the data and priors were performed, and each of 
the 1000 inverse problems is solved using a conjugate gradient 
solver with 200 iterations. The posterior mean and standard devia- 
tion closely match the analytical solution, successfully reproducing 
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Figure 12. Selected subvolume from the full stack 2001 Sleipner data set. 
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he key features of the Marmousi model. The RTO sensitivity kernel
Fig. 4 f) likewise demonstrates the strong agreement between the
TO-estimated covariance and the analytical covariance, with the

ormer only slightly noisier owing to the finite number of realiza-
ions and the limited iterations of the linear solver. 

.1.3 Gaussian posterior and Gaussian priors 

ext, we utilize BIS to estimate the parameters of our Gaussian
roposal distribution. For this estimation, we have also used a com-
ination of two Gaussian priors as applied in the analytical case
eqs 9 and 10 ). The predicted mean and standard deviation are illus-
rated in Figs 4 (g)–(h) and are shown to closely resemble those from
he analytical posterior distribution. Ho wever , since each point is
arametrized independently in BIS, the resulting covariance matrix
s diagonal, and therefore, it does not make sense to display the
esulting sensitivity kernel. 

.1.4 Flexible posterior and non-Gaussian priors 

e finally employ BIS-Flow to estimate a non-parametric version
f the proposal distribution for the Marmousi model; in this case,
e use a blockiness-promoting prior (as shown in 11 ). This prior
ncourages higher resolution realizations of the posterior distribu-
ion while maintaining the same computational cost as when using
urely Gaussian priors. Figs 4 (i)–(j) present the predicted mean and
tandard deviation for the inversion of the Marmousi post-stack
eismic data. Fig. 7 illustrates the loss and SNR evolution over it-
rations for both BIS and BIS-Flow corresponding to the results in
igs 4 (i)–(j). The loss in both cases exhibits a steep decline during

he first 100 iterations, with SNR converging at different points:
IS reaches a plateau after 400 iterations, whereas BIS-Flow con-
erges more quickly, matching the SNR of BIS at 200 iterations and
howing a marginal increase until 800 iterations. 

Fig. 8 compares the proposal distributions predicted by BIS and
IS-Flow at the locations marked in Figs 4 (g) and 4 (i). Whereas
IS uses a Gaussian proposal distributed and therefore explicitly
roduces a Gaussian approximation of the posterior distribution,
IS-Flow is allowed to produce more flexible distributions—for
xample, distributions with slight skewness and sharper modes, a
irect consequence of the blockiness-promoting prior. This addi-
ional flexibility enables BIS-Flow to approximate the true poste-
ior more faithfully, free from the restrictive Gaussian assumption.
y accommodating local asymmetries and pronounced peaks, BIS-
low provides a more realistic description of the uncertainty and
ariability in the inverted parameters, which is essential for mod-
lling the complex behaviour of subsurface properties in seismic
nversion. 
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Figure 13. Mean acoustic impedance model obtained by BIS from the full stack 2001 Sleipner data set. 
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3.2 Field data example 1: Volve data set 

Next, we e v aluate the performance of BIS and BIS-Flow on a field 
data set. We use a 2-D composite section extracted along a well 
of the Volve data set (refer to Ravasi & Birnie 2021 for details 
about the Volve data set processing). Fig. 9 shows the post-stack 
seismic data along the well fence and the background acoustic 
impedance model constructed from well logs, which serves as the 
mean for the pro ximity prior. F ig. 10 presents the predicted mean 
and standard deviation for both BIS and BIS-Flow. Although the 
two models are similar, we note that BIS-Flow produces a mean 
model with better horizontal continuity and improv ed v ertical res- 
olution compared to the mean model predicted by BIS. The stan- 
dard deviation maps for BIS and BIS-Flow exhibit similar value 
ranges; ho wever , the BIS-Flo w standard deviation map displays 
higher resolution, with more detailed layering and defined zones 
of uncertainty. These standard deviation values are consistent with 
state-of-the-art Bayesian inversion results on the Volve data set 
obtained using multiscale wavelet flows (Rizzuti & Vasconcelos 
2024 ). 

F inally, F ig. 11 presents the predicted mean and standard devia- 
tion along the well impedance log (NO/15-9 19 BT2). Both BIS and 
BIS-Flow face challenges in accurately predicting the mean, with 
the well impedance log falling outside the 95 per cent confidence 
inter val in cer tain regions. These discrepancies likely arise from two 
main factors: the presence of significant non-Gaussian noise in the 
Volve seismic data, which is not fully captured by BIS and BIS-Flow, 
and misalignment in depth between the well log and seismic data. 

3.3 Field data example 2: 3-D Sleipner data set 

We further e v aluate the performance of BIS and BIS-Flow on 
a second field data set—that is, a subvolume of dimensions of 
200 × 200 × 200 extracted from the 2001 full-stack seismic data of 
the Sleipner field (Fig. 12 ). This data is composed of predominantly 
horizontal geological structures intersected by strong reflection re- 
sponses due to CO 2 injection within the main reservoir. Details 
regarding the creation of the background model, statistical wavelet 
extraction and other pre-processing steps can be found in Romero 
et al. ( 2023b ). In this case, we use 50 samples to compute the log 
likelihood and the sample log probability for the priors. In the case 
of the BIS-Flow, allocating all of the samples at the same time 
on a GPU requires substantial memory; this can be managed by 
processing in batches of points in 3-D domain, utilizing multiple 
GPUs or reducing the model complexity. In this case, we follow 

the first approach, dividing the domain into two subvolumes of 
200 × 200 × 100 v o xels and processing them sequentially. 
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Figure 14. Standard deviation of the BIS solution from the full stack 2001 Sleipner data set. 
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The predicted mean and standard deviation of the acoustic
mpedance model obtained using BIS for the Sleipner data are
hown in Figs 13 and 14 . Both the mean and standard deviation ap-
ear noisy, lacking the clear horizontal layering observed in the de-
erministic inversion results reported by Romero et al. ( 2024 ). This
uggests that BIS struggles to produce a reliable, high-resolution
coustic impedance model for this data set. The primary reason for
his limitation is attributed to the presence of anomalous ampli-
ude values in the upper layers of the data, likely associated with
as chimneys. Since BIS employs a smoothing prior, these anoma-
ies may be preventing the inversion from converging ef fecti vel y
cross the entire volume, leading to reduced model accuracy and
esolution. 

On the other hand, the predicted mean of BIS-Flow (Fig. 15 )
xhibits a robust representation of the model parameters, producing
 result visually similar to the model originally obtained with the
eterministic IntraSeismic inversion method (Romero et al. 2024 ).
his suggests that BIS-Flow ef fecti vel y captures the key features of

he subsurface structure. The BIS-Flow standard deviation (Fig. 16 )
ighlights that zones with the highest uncertainty primarily cor-
espond to layers with high impedance values, such as the thick
ayer at the top and some thin layers within the CO 2 reservoir
potentially due to wavelet distortions). Comparing the predicted
coustic impedance mean and standard deviation for Sleipner with
he impedance well log (Fig. 17 ) shows that the well log generally
alls within the 5–95 per cent confidence interval. This suggests
hat BIS-Flow provides robust and reliable uncertainty estimates
lso in this 3-D field data example. Fig. 18 presents the BIS-Flow
osterior distributions at the six positions marked in Fig. 17 . In this
ase, some distributions are nearly Gaussian, whereas others exhibit
 much sharper peak, highlighting the influence of the blockiness-
romoting prior. 

 D I S C U S S I O N  

his work presents the adaptation of IntraSeismic, an INR-based
ramework for deterministic seismic inversion, to the realm of
ayesian inversion using VI with different parametrizations for

he proposal distribution. More specifically, we explored a proposal
ased on the mean-field approximation with point-wise Gaussian
istributions (BIS) and a mean-field approximation with a non-
arametric distributions (BIS-Flow). Both approaches offer com-
utationall y ef ficient alternati ves to state-of-the-art methods for as-
essing the uncertainty of the post-stack seismic inversion problem.
IS-Flo w, in particular , demonstrated the ability to capture com-
lexities such as multimodality and asymmetry in the posterior dis-
ribution, providing a valuable option for obtaining high-resolution
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Figure 15. Mean acoustic impedance model obtained by BIS-Flow from the full stack 2001 Sleipner data set. 
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estimates of the uncertainty of each inverted parameter whilst pro- 
ducing a high-resolution mean model. The primary limitation of 
both methods is their assumption of parameter independence, which 
restricts their usefulness for generating realistic posterior samples 
where interparameter correlations are important. 

Fig. 4 compares the mean, standard deviation and a row of the co- 
variance matrix for a single point using three approximate inference 
algorithms (RT O , BIS, BIS-Flo w) against the exact analytical solu- 
tion for the posterior distribution of the inverted acoustic impedance 
from post-stack Marmousi seismic data. The different approximate 
inference methods predicted mean models that visually capture the 
key features of the Marmousi model, such as fault locations and 
layer boundaries, resulting in models with SNR close to the an- 
alytical one (23.3 dB) and comparable to the deterministic case 
(24.73 dB) (Romero et al. 2024 ). BIS produced the lowest SNR 

for the mean, while BIS-Flow achieved the highest SNR due to 
its blockiness-promoting prior and additional flexibility in the pro- 
posal distribution that allowed for higher resolution estimates. The 
standard deviation maps in Fig. 4 approximate the analytical re- 
sults reasonably well, showing higher values in regions with greater 
impedance contrasts. Fig. 6 provides a 1-D view of the mean and 
the 5th and 95th percentile confidence intervals, illustrating that for 
all methods, the true Marmousi model mostly lies within this range, 
with higher impedance contrast layers located near the interval 
edges. Note that the sensitivity kernel is not shown for the BIS and 
BIS-Flow methods, as the mean-field approximation assumes pa- 
rameter independence. 
For the Bayesian inversion of field data, we present two exam- 
ples: the 2-D inversion of the Volve data set and the 3-D inversion 
of the Sleipner data set. In the Volve data set example, both BIS 

and BIS-Flow demonstrated strong performance, producing high- 
resolution estimates of the mean and standard deviation. While 
there is no ground truth for direct comparison, the standard devia- 
tion map aligns well with state-of-the-art results, such as those pro- 
duced by multiscale wavelet flows (Rizzuti & Vasconcelos 2024 ). 
The Sleipner data set highlights a significant advantage of the pro- 
posed BIS and BIS-Flow methods: scalability. Using INR that con- 
verges more quickly than traditional variational and deep learning- 
assisted inversion methods (Romero et al. 2024 ), combined with 
VI, we achieved reliable uncertainty estimation while maintaining 
low computational costs. 

Estimating the covariance matrix for Gaussian priors or the scale 
matrix for Laplace priors is a crucial step in Bayesian seismic 
inversion. Although some studies model these parameters as ad- 
ditional latent random variables, this approach typically increases 
the computational cost significantly due to the added dimensional- 
ity of the problem. For the field data used in this work, we chose to 
set these parameters based on available well-log data, enabling us 
to incorporate prior information without increasing the complexity 
of the inversion. For the proximity prior, we selected the standard 
de viation b y calculating the maximum de viation of the background 
model from the impedance values in the well log. This provides 
a reasonable bound on variability based on the well data. For the 
Laplace prior, we computed the gradient of the impedance from 
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Figure 16. Standard deviation of the BIS-Flow solution from the full stack 2001 Sleipner data set. 
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he well log and selected an interval for the scale parameter of the
aplace distribution that best reflects this gradient information. 

.1 Computational cost 

n this section, we compare the four methods used to perform un-
ertainty quantification in post-stack seismic inversion from a com-
utational standpoint. 

.1.1 Analytical 

o estimate the covariance matrix of the posterior distribution, the
recision matrix must be inv erted. Moreov er, to compute the mean,
wo additional matrix–vector multiplications must be performed.
ince the direct inversion of a dense matrix of size N params ×

N params has a complexity of O( N 

3 
params ) , this represents the most

omputationall y expensi ve step of this approach, and it becomes
rohibiti vel y expensi ve as the size of the problem grows. As an
xample, for a problem of size 220 by 600 (Marmousi model used
n this study), the inversion process took approximately 2.3 hr in
he machine specified in 2.6 . 
.1.2 RTO 

he RTO method requires solving an inverse problem for each
erturbation (sample); this is typically carried out using an iterative
olver like the Conjugate Gradient (CG) method. The computational
ost of solving a system of equations of size N params × N params is
pproximately equal to O( N iter · N 

2 
params ) , where N iter is the number

f CG iterations required to reach convergence. Since this process
s repeated for N samples number of samples, the overall cost is given
y: O( N samples · N iter · N 

2 
params ) . 

.1.3 BIS and BIS-Flow 

he computational cost of each iteration of the BIS method is com-
osed of three main parts. First, the forward and backward passes
hrough the MLP network, which is proportional to the size of
he model and that of each matrix of the MLP layers. Given a
wo-layer MLP with 64 neurons and N params parameters, this is equal
o O(2 · (2 · 64 · N 

2 
params ) + 64 · N 

2 
params )) where the first 2 is based

n the assumption the forward and backward passes have the same
ost. Secondly, there is the multiresolution hash-encoding process,
here each hash lookup has a cost of O(1) , and the bilinear interpo-

ation conducted at each resolution level L has a cost of O( L · 4 · 2) ,
ith 4 representing the neighbouring points and 2 representing the

ncoding dimensionality. For all the points in multiresolution hash
ncoding has a rough estimate of O( N params · ( L · 8 + 1)) . Thirdly,

art/ggaf249_f16.eps


18 J. Romero, W. Heidrich and M. Ravasi 

Figure 17. Profile view along a well trajectory for the Bayesian inversion results for the Sleipner data set using BIS-Flow and comparing it to acoustic 
impedance well log. The red dots show the vertical location of the histograms shown in Fig. 18 . 
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the cost of computing the modelling operator, which is equal to 
O( n r · N 

2 
params ) . Note that although n r < N samples , BIS takes a larger 

number of iterations to converge than each single RT O in version. 
Overall, the cost of BIS grows with N 

2 
params compared to N 

3 
params 

for the other two methods, making it more suitable to large-scale 
applications. The computational cost of BIS-Flow is similar to that 
of BIS, with the additional overhead of the CNF, which for a 1-D 

flow is O( N params ) . The total computational time for both BIS and 
BIS-Flow in the Marmousi data inversion w as approximatel y 2 min 
on the hardware specified in Section 2.6 . 

The main limitation of the BIS and BIS-Flow methods compared 
to RTO is their memory footprint; these method require in fact one 
to approximate the expectations in the loss function via a sample 
mean over a number of realizations. When the optimization process 
is carried out on GPUs, this requires that all realizations are be stored 
in GPU memory at the same time (in the simplest implementation 
of the algorithm). This constraint becomes particularly challenging 
for high-dimensional problems, such as the 3-D Sleipner example 
presented earlier. To address this issue, several strategies can be em- 
ployed: (1) Batch Processing: performing the inversion in smaller 
batches rather than processing all input points simultaneously, al- 
lowing results to accumulate over multiple iterations and reducing 
peak memory usage; (2) Leveraging Multiple GPUs: distributing 
the different realizations across multiple GPUs to increase available 
memory and improve processing efficiency, and reducing over their 
gradients before updating the parameters of the MLP network and 
hash-encoding table and (3) Reducing Model Complexity: simpli- 
fying the parametrization of the INR block used in the inversion to 
decrease the overall memory footprint. These strategies offer viable 
solutions for managing memory requirements without compromis- 
ing inversion quality. A summary of the computational efficiency 
for the methods studied in this work is presented in Table 1 . 
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Figure 18. Kernel density estimation of BIS-Flow predicted proposal distribution samples at six locations along the well-trajectory in the Sleipner volume, 
shown by red dots in Fig. 17 . 

Table 1. Computational efficiency of the four Bayesian–inference schemes. Runtimes correspond to inversion of the 2-D 220 ×600 Marmousi synthetic data 
(Fig. 4 ), run on an AMD EPYC 7713 (64 cores) and a single NVIDIA A100. 

Method Peak memory Scalability Accuracy considerations 
Runtime z 

(min) 

Analytical High (dense n ×n matrix) Poor Exact mean / covariance; prohibitive for 
large n 

134 

RTO Moderate (storage of realisations in 
CPU / GPU) 

Poor Asymptotically exact; for each sample, 
an inverse problem is solved 

25.5 

BIS Moderate (realizations and network 
weights on GPU) 

Good Mean-field Gaussian; no spatial 
covariance between parameters 

2.2 

BIS-Flow Moderate (realizations and network 
weights on GPU) 

Good Mean-field, non-Gaussian marginals via 
1-D normalizing flows; no spatial 
covariance 

2.5 

z Wall-clock times for: Analytical; RTO–1000 posterior samples; BIS and BIS-Flow–full training run (500 epochs, 100 samples / epoch). All timings include 
forw ard-model e v aluations but exclude I/O. 
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.2 Beyond mean-field appr o ximation 

ccurately modelling inter parameter cor relations across the sub-
urface while maintaining computational feasibility is essential for
omprehensiv e posterior e xploration and remains a significant chal-
enge in uncertainty quantification for seismic inversion. Subsurface
arameters are neither independent nor isolated; rather, they exhibit
patial dependencies due to geological structures and stratigraphic
ontinuity. In a fully Gaussian Bayesian setting, the posterior co-
ariance matrix can capture these spatial correlations, providing
nsight into how changes in one area of the subsurface might influ-
nce or be influenced by adjacent regions. When dealing with more
omplex prior distributions or nonlinear modelling operators and/or
odel parametrization, ho wever , no analytical expression exists for

he mean and covariance of the posterior distribution. It is therefore
ssential for approximate inference methods to predict posteriors
istributions that can be sampled leading to realistic, spatially co-
erent models that reflect the natural variability and connectivity
f subsurface properties. Access to geolo gicall y plausible samples
rom the posterior distribution is crucial for risk assessment and
ecision-making in applications like resource exploration and CO 2 

torage monitoring. Realistic samples that respect spatial correla-
ions provide a more accurate representation of possible subsurface
onfigurations, allowing geoscientists to e v aluate a broader range
f scenarios and anticipate potential geological risks. 

This paper introduces an innov ati ve approach using INR com-
ined with 1-D CNF to model point-wise probability distributions
f fecti vel y. Future work should focus on extending this framework
o capture spatial correlations between input points more compre-
ensi vel y. Preliminary experiments by the authors indicate that by
martly sharing the input noise samples from CNF base distribution
cross various spatial location we may be able to model dependen-
ies between selected points while maintaining low computational
osts. These findings are preliminary and will be detailed in a future
ublication. 
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5  C O N C LU S I O N S  

In this paper, we introduce two innov ati ve methods to perform un- 
certainty quantification in seismic inversion: B-IntraSeismic (BIS), 
which employs a mean-field Gaussian proposal for efficient yet 
simplified uncertainty quantification, and B-IntraSeismic with Con- 
ditional Normalizing Flows (BIS-Flow), which utilizes a non- 
parametric proposal distribution to capture complex posterior char- 
acteristics. Our results on synthetic and field data sets demonstrate 
that both BIS and BIS-Flow can produce high-resolution mean mod- 
els and accurate standard deviation maps, with BIS-Flow excelling 
at capturing more complex posterior distributions. The enhanced 
capability of BIS-Flow to model complex uncertainties while main- 
taining computational feasibility underscores its potential for more 
comprehensive subsurface analysis. Additionally, we demonstrate 
the scalability of both BIS and BIS-Flow to large-scale applica- 
tions. By using a 3-D field example, we show that these methods 
can provide reliable 3-D uncertainty estimates at a reasonable com- 
putational cost. The implications of this work are significant for 
post-stack seismic inversion, as they offer a scalable approach for 
obtaining reliable uncertainty estimates and more informative poste- 
rior representations. Future research should build on this foundation 
b y de v eloping methods that e xplore shared base sampling strate gies 
to capture parameter correlations in larger and higher dimensional 
settings. These advancements will contribute to a more nuanced 
understanding of subsurface proper ties, suppor ting more accurate 
decision-making in exploration and risk management. 
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