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SUMMARY

Seismic inversion translates seismic data into subsurface elastic property models, enabling
geophysicists to better understand underground rocks and fluids. Due to the inherently ill-
posed nature of this inverse problem, accurately capturing the uncertainty associated with
the solution is essential for reliable interpretations. Traditional Bayesian inversion methods,
such as Markov Chain Monte Carlo and Laplace approximations, have been employed for this
purpose but face significant limitations in terms of scalability and computational efficiency for
large-scale problems. Combined with deep learning, Variational Inference (VI) has emerged
as a promising alternative, striking a balance between computational efficiency and flexibility
(i.e. the ability to approximate complex posterior distributions). However, selecting an appro-
priate proposal distribution remains a key challenge, as it directly influences the quality of the
estimated posterior distribution. In this study, we extend IntraSeismic, an implicit neural rep-
resentation (INR)-based framework for seismic inversion applications, to Bayesian inversion
using VI with different parametrizations of the proposal distribution. We introduce two meth-
ods: B-IntraSeismic (BIS), which uses a mean-field Gaussian proposal, and B-IntraSeismic
with Conditional Normalizing Flows (BIS-Flow), which utilizes a mean-field unparametrized
proposal distribution to better capture deviations from Gaussianity in the posterior distribution.
These methods are evaluated on a synthetic data set (Marmousi) and two field data (Volve and
Sleipner). Our results indicate that both BIS and BIS-Flow can accurately capture structural
details and produce high-resolution mean models and standard deviation maps. BIS-Flow is
also shown to be able to model complex posterior distributions, offering a more comprehensive
characterization of uncertainty while maintaining computational feasibility.
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1 INTRODUCTION

Seismic inversion is the foremost technique to extract quantitative
information of the subsurface, such as P-wave and S-wave veloci-
ties, from seismic data (Tarantola 1984). Having access to a quanti-
tative estimate of the physical properties of the subsurface enables
a number of downstream applications in various fields, including
civil engineering (Steeples & Miller 1988; Oz & Miller 2015),
natural resource exploration (Telford et al. 1990; Yilmaz 2001),
subsurface hazard analysis and more. Conducted in the seismic im-
age domain (i.e. post-migration) to estimate acoustic impedance
models, post-stack seismic inversion is routinely employed for de-
tailed subsurface analysis, particularly in reservoir characterization
studies (Houck 2002; Bosch et al. 2010). However, seismic in-
verse problems are inherently challenging due to three main factors:

*Work for this study was conducted while affiliated with KAUST.

the limited frequency bandwidth acquired in a seismic experiment,
various types of noise in the data and the simplifying assumptions
in modelling operators that may not fully capture the underlying
physics. These challenges make the problem ill-posed, meaning
there is no an exact solution to it.

The non-uniqueness inherent in seismic inverse problems leads
to uncertainties in the recovered subsurface properties. Uncertainty
quantification (UQ) applied to seismic inversion enables not only
the estimation of the most likely subsurface model but also the quan-
tification of the range of plausible solutions that fit the observed data
(Tarantola & Valette 1981; Ulrych et al. 2001). This enhanced un-
derstanding of subsurface variability and non-uniqueness is crucial
for numerous applications. For example, in reservoir characteriza-
tion, UQ helps identify regions of high uncertainty that may re-
quire additional data acquisition or alternative interpretation strate-
gies (Strutz & Curtis 2024). For resource assessment, uncertainty
estimates enable more reliable volumetric calculations and risk
analysis, leading to better-informed investment decisions (Talarico
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et al. 2020). Furthermore, UQ facilitates the integration of seismic
inversion results with other geophysical and geological data by
providing probability distributions rather than single deterministic
solutions.

The probabilistic approach to seismic inversion treats subsurface
model parameters as random variables characterized by probabil-
ity distributions, where the inference process aims to estimate the
posterior distribution of these unknown parameters conditioned on
the seismic data. Exact computation of the posterior distribution
is feasible for small-scale problems as long as the likelihood and
prior distributions belong to conjugate families but becomes com-
putationally prohibitive in more general cases. In seismic inversion,
simplifying assumptions are often made, such as assuming lateral
independence between seismic traces (Buland & Omre 2003), to fa-
cilitate covariance computation. Given the inherently large-scale na-
ture of seismic inversion, geophysicists commonly rely on approx-
imate inference algorithms that balance computational efficiency
and accuracy. Traditional approaches such as Markov Chain Monte
Carlo (MCMC) methods and Laplace approximations have been
extensively used in seismic inversion applications to estimate the
reliability of predictive models (Mosegaard & Tarantola 1995; Sen
& Stoffa 1996; Sambridge & Mosegaard 2002). While effective
for small examples, these methods still face significant scalability
and computational efficiency challenges, especially for large and
high-dimensional data sets.

Variational Inference (VI), on the other hand, reformulates the
inference problem as an optimization task, where the true posterior
distribution is approximated by the closest member of a family of
tractable distributions, whose parameters are obtained by minimiz-
ing the Kullback—Leibler divergence with the true posterior (Jordan
et al. 1998; Blei et al. 2017). This approach combines the advan-
tages of optimization techniques with probabilistic modelling, mak-
ing it particularly suitable for large-scale problems where traditional
sampling methods become computationally intractable. Moreover,
recent advances in stochastic optimization and deep learning have
further increased the practicality of VI for large-scale inverse prob-
lems (Zhang et al. 2018), like those commonly found in geophysi-
cal applications. These advancements enable efficient and accurate
computation of gradients, facilitating the optimization of improved
variational objectives that can enhance the stability and accuracy
of the entire optimization process. One prominent example of the
use of VI in deep learning is the variational autoencoder (VAE)
(Kingma & Welling 2022), a model designed to learn complex,
high-dimensional probability distributions through a combination
of probabilistic inference and convolutional neural networks. This
success has inspired various applications in inverse problems, where
neural networks can learn to capture complex posterior distribu-
tions while maintaining computational efficiency. More specifi-
cally, these developments have opened new possibilities for UQ
in high-dimensional problems like seismic inversion, where tradi-
tional methods struggle to balance computational efficiency with
accurate uncertainty estimation (Zhang et al. 2021; Li et al. 2024).

Implicit neural representations (INR) are a novel family of neural
networks that learn a direct mapping from the spatial coordinates
to one or more output values in a domain of interest (Sitzmann
et al. 2020; Tancik et al. 2020). A notable example is Neural Ra-
diance Fields (NeRF) (Mildenhall et al. 2020), which has revo-
lutionized image reconstruction by directly representing a scene
using its spatial coordinates as input. Inspired by the capabilities
of neural networks to act as pre-conditioners in image reconstruc-
tion problems, INR has also been leveraged for seismic inversion
tasks (Romero ef al. 2024; Sun et al. 2023). Recent research has

shown that INR offer a powerful strategy for parametrizing models
(or acting as deep pre-conditioners) for seismic inverse problems,
leading to state-of-the-art inversion results with faster convergence
compared to conventional methods. One such method, IntraSeismic
(Romero et al. 2024), offers additional benefits such as fast data ac-
cess, compression capabilities and the ability to seamlessly conduct
UQ via Monte Carlo Dropout (MCD).

In this paper, we present a Bayesian extension of the IntraSeismic
framework, termed Bayesian-IntraSeismic (B-IntraSeismic), which
extends IntraSeismic’s capabilities by providing an estimate of the
uncertainty of the inverted model parameters. We develop and eval-
uate two distinct approaches: (1) a mean-field Gaussian method
(BIS), in which IntraSeismic’s nonlinear mapping module is mod-
ified to predict both the mean and standard deviation of the sub-
surface model parameters at each location, offering a scalable and
computationally efficient solution; and (2) a second approach that
uses conditional normalizing flows (BIS-Flow) to estimate non-
parametric posterior distributions for each input point, where a fea-
ture vector from IntraSeismic’s nonlinear mapping module serves as
the context for the flow. This paper is organized as follows: we begin
with an overview of exact and approximate inference algorithms for
post-stack seismic inversion; this is followed by a review of VI and
its integration into the B-IntraSeismic framework, with a practical
focus on its parametrization through INRs. Next, we describe the
implementation of the two approaches—BIS and BIS-Flow—for
post-stack seismic inversion. In the results section, we apply BIS
and BIS-Flow to synthetic (Marmousi) and field (Volve and Sleip-
ner) data sets, comparing their results against analytical and other
approximate solutions to demonstrate their effectiveness in captur-
ing complex posterior distributions and characterizing uncertainty.
Finally, we discuss the advantages, limitations and potential future
directions for these methods in the context of seismic inversion.

2 THEORY AND METHODS

2.1 Deterministic post-stack inversion

Post-migration angle-dependent seismic data dy(¢) can be math-
ematically represented via the so-called convolutional model
(Goupillaud 1961). This entails convolving a source function or
wavelet w(?) with the earth P-wave reflectivity series 7,,,(7):

dy(1) = w(?) 5 rpp(2) (1)

The Aki-Richards approximation (Aki & Richards 2002), which
builds on the foundational Zoeppritz equation (Zoeppritz 1919),
expresses 7, as follows:

3
d
rp(t,0) = Y ci(t, ) log (mi(1)), @)
i=1
where the mixing coefficients ¢; are given by

oi(t,0) = % (1 4 tan’(9))

=, 2
o(t,0) = —4 ( ;p((?)) sin’(0) 3)

= 2
e(t,0) = % -2 < ;Z))) sin(6)
P

where 6 represents the incidence angle of the seismic ray path,
V,(t) is the P-wave velocity, V;(¢) the S-wave velocity and p(t) is
the density of the medium of interest. When only zero offset data is
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considered, that is, § = 0, eq. (2) becomes:

1d
rpp = Sdar log(m(1)), )

where 7 pp is referred in this case as post-stack reflectivity and m(#)
is the P-wave or acoustic impedance. Post-stack seismic data is
hence modelled as:

1 d
d(t) = Sw(t) x - log(m(1)) ®)
In compact matrix—vector notation:
d = WDm, (6)

where W € RYyMxNexNyNeNe g 3 block-Toeplitz convolution matrix,
which encapsulates the seismic wavelet, while D € RNy Ve NoxNy Ne Vi
is a first-order derivative operator. From here onwards, we use G =
WD for the post-stack modelling operator to simplify our notation.

Post-stack seismic inversion is the process aimed at transforming
seismic images or 3-D seismic volumes d € RV»"* into quantita-
tive estimates of the subsurface’s acoustic impedance m € RMVxNi
(Oldenburg et al. 1983; Russell & Hampson 2005); the associated
optimization problem can be expressed in the following generic
form:

1
m* = arg min 3 [Gm — d|? + o« R(m). @)

The objective of eq. (7) is to minimize the discrepancy between the
modelled and observed seismic data, adjusted by a regularization
term R(m).

2.2 Bayesian post-stack seismic inversion

Bayesian post-stack seismic inversion is formulated using a proba-
bilistic framework to estimate subsurface properties while explicitly
accounting for uncertainties in both the data and prior geological
knowledge. This approach is grounded in Bayes’ theorem, which
states that the posterior probability distribution p(m|d) of model
parameters m given observed seismic data d is proportional to the
product of the likelihood function p(d|m) and the prior probability
distribution p(m), normalized by the evidence p(d):

p(m|d) = p(djm) - p(m) ®)

p(d)

The posterior distribution obtained through this Bayesian formu-
lation provides not only the most probable impedance model but
also a complete characterization of the uncertainty space, including
parameter correlations and multiple modes in the solution space.
The deterministic post-stack seismic inversion eq. (7) can be in-
terpreted as finding the maximum a posteriori (MAP) estimate in
the Bayesian framework. In this interpretation, the data misfit term
corresponds to the negative log-likelihood function (under the as-
sumption of Gaussian noise in the data). The regularization term
represents the negative logarithm of the prior distribution (which
can be represented by any distribution from the exponential fam-
ily), where the regularization parameters act as the inverse variance
of the prior distribution (when the prior is Gaussian). This Bayesian
interpretation provides a probabilistic foundation for the determin-
istic optimization problem and reveals how different choices of
regularization terms correspond to different prior beliefs about the
subsurface properties. In the following, we provide a detailed anal-
ysis of the key elements in the Bayesian seismic inversion formula-
tion, including the likelihood functions, prior distributions and their
implications for UQ.
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2.2.1 The prior model

The prior model, also known as the prior distribution, is a fundamen-
tal concept in Bayesian statistics as it represents our initial beliefs or
knowledge about unknown parameters before observing any data.
In the context of seismic inversion, the prior typically embodies the-
oretical considerations about subsurface elastic properties (Curtis
& Lomax 2001; Scales & Tenorio 2001). These considerations may
include assumptions about the proximity to a background or initial
velocity model, expectations of smoothness or blockiness in the
solution and time-lag dependencies (Buland & Omre 2003), among
others. For instance, geophysicists might incorporate prior knowl-
edge that velocities generally increase with depth or that certain
geological formations are likely to exhibit specific ranges of elastic
properties (Grana et al. 2017). Within the definition of the prior, one
can also incorporate the degree of certainty or uncertainty in these
initial assumptions. In some cases, this might be based on well-
log data, regional geological knowledge or results from previous
inversions in similar areas.

In this work, we consider three types of priors, which will be
combined in different ways for the two methods discussed later.
These priors serve to further constrain the solution by incorporat-
ing different aspects of our prior knowledge about the subsurface
properties.

(i) Proximity to a low-frequency background model — This prior
constrains the solution to remain close to a known low-frequency
background model my, ensuring stability and incorporating prior
geological knowledge into the inversion:

m ~ N(my, X;) — p(m) x exp (—%(m —my) 7 (m — m0)> ,
©)

where X represents the covariance matrix. In this work, we assume
an isotropic Gaussian distribution, implying equal variance in all
directions. This simplifies the covariance matrix to X = ﬁl, where
A1 controls the strength of the prior constraint.

(i) Smoothness prior (generalized Tikhonov regularization) —
This prior promotes smoothness in the solution by penalizing rapid
spatial variations:

Dm ~ N(0, ¥,) — p(Dm) o exp (—%(Dm)TEZ’IDm) . (10)

where D represents the Laplacian operator, enforcing smoothness
by penalizing second-order variations in the model. The covariance
matrix is assumed to be isotropic, given by X, = il, where A,
controls the degree of regularization. This formulation discourages
abrupt changes in impedance while still allowing for necessary
structural variations.

(iii) Blockiness prior (total variation regularization) — This prior
promotes piecewise-constant solutions, preserving sharp bound-
aries in the model, which is particularly useful for detecting geo-
logical discontinuities:

1
Vm ~ Laplace(0, )\—31) — p(Vm) oc exp (—As3||Vml]l|y) (11)

where V is the gradient operator, enforcing blocky structures by
penalizing large variations in m. The prior follows a multivari-
ate Laplace distribution, which naturally promotes sparsity in the
gradient domain. This formulation ensures that abrupt impedance
contrasts, such as fault zones and layer boundaries, are preserved
while reducing unnecessary smoothness in homogeneous regions.
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2.2.2 The Likelihood model

The likelihood function provides a direct link between the observed
data and the model parameters. It quantifies the probability of ob-
serving the data given a particular set of parameter values in the
model. Unlike the prior, which encapsulates our initial beliefs about
the parameters, the likelihood encodes the information contained in
the data. It measures how well different parameter values explain
the observed data, with higher likelihood values indicating a better
fit. In practice, the likelihood often incorporates assumptions about
the data-generating process and measurement errors. For the seis-
mic inversion case, we usually assume Gaussian distributed noise
in the seismic data such that:

1
d ~ N(Gm, o2T) — p(d) o exp (—2—2||d - Gm||§> , (12)
UE

where G is the seismic modelling operator that computes the seismic
data from the logarithm of the acoustic impedance model m to be
compared with the observed data d. Here, we choose to have a
fixed noise level with a standard deviation of o.. However, the VI
framework allows one to choose any data covariance of choice,
provided that its inverse is tractable.

2.3 The posterior model

2.3.1 Exact inference

The posterior distribution combines our prior knowledge with ob-
served data to provide an updated belief about the parameters of
interest. A closed-form solution for the posterior distribution exists
when the prior and likelihood are from conjugate families, for ex-
ample, Gaussian distributions. In other cases, finding an analytical
expression for the posterior becomes impossible as the marginal
likelihood often involves intractable integrals. In the specific case
of post-stack seismic inversion, when we incorporate the Gaussian
priors in eqs (9) and (10), the negative log-posterior becomes:

J = —logp(d|m) — logp;(m) — logp>(m)
1 oA , 5
=Elld—GmII2+Ellm—mollﬁfllellz (13)

Minimizing this objective function is equivalent to finding the
least-squares solution of the following system of equations:

G d
Vil im = | V/Aim, (14)
VD 0

Because in the case of Gaussian priors and Gaussian likelihood, the
posterior is also Gaussian, this also corresponds to the mean of the
posterior distribution, which can be written as:

My = (G'G + AT+ 2,D'D)"(G"d + A, my) (15)

Moreover, an analytical expression exists also for the posterior co-
variance matrix:

Cov(myos) = (G'G + 11+ 1,D'D)~, (16)

which can be computed efficiently for small problems using standard
matrix inversion techniques.

2.3.2 Approximate inference: RTO

The ’randomize-then-optimize’ (RTO) method is a novel technique
for sampling from posterior distributions in Bayesian inference, par-
ticularly effective when the data errors and priors are modelled as

Gaussian distributions (Bardsley et al. 2014). RTO converts a de-
terministic optimization problem into a stochastic one, facilitating
the efficient sampling of high probability models within the poste-
rior distribution. This transformation requires two key adjustments
(Blatter et al. 2022). First, the data is perturbed to incorporate
uncertainty directly into the inversion process, ensuring that data
variability is reflected in the solutions. Secondly, the regularization
target is also adjusted to a randomly generated model that satis-
fies the regularization constraints. This randomly generated model
does not necessarily minimize the data misfit but aligns with the
regularization criteria, thereby capturing the uncertainty inherent
in the prior model covariance during the inversion. For the post-
stack seismic inversion problem described in eq. (13), the RTO
method introduces a modified objective function with perturbed
terms:

1 ~2 )Ll ~ 2 )\2 ~ 12

= |[Gm —d|] + = Im — i[5 + = [D(m — xi)3, (17)
2 2 2

where

N 1
d ~Nd,Cy), mg~N (mo, )TI> ,
|

N 1 _
xm~N<0, —(D'D) 1). (18)
Ay

In this formulation, d is drawn from a Gaussian distribution centred
at the observed data d with a data covariance matrix C, (in our
case C; = I), introducing noise into the data. m, is sampled from
a Gaussian distribution centred at the background model m,, with
covariance %I, allowing for uncertainty around the prior model.
Finally, m is a zero-mean Gaussian distribution with covariance
i(DTD)’l, reflecting the uncertainty in the smoothing regulariza-
tion constraint. One convenient way to draw a realization of m is to
solve the linear system

1

Substituting this definition of m into eq. (17) yields an equivalent
form of the RTO objective function:

D =y,

1 < A A
5 [Gm =]+ 5 im — g + T [Dm — |} 20)

Solving this objective for many random draws of (d, fiag, 5) pro-
duces an ensemble of RTO solutions that sample the posterior. The
main limitation of RTO is that the repeated optimization for each
randomized instance may be time-consuming as the dimensional-
ity of the problem increases. This makes RTO less practical for
extremely large-scale models or when computational resources are
limited.

2.3.3 Approximate inference: VI

VI provides a principled framework for approximating intractable
probability distributions, particularly in our case, the posterior dis-
tribution of the latent variables representing subsurface properties
in a domain of interest. Let d denote the observed seismic data and
m represent the latent subsurface properties. Our goal is to approx-
imate the intractable posterior distribution p(m|d) with a tractable
proposal distribution g (m), where ® represents the optimized free
parameters that characterize the proposal distribution. VI achieves
this by minimizing the so-called Kullback—Leibler (KL) divergence,
a measure of the dissimilarity between two distributions, here the
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proposal or variational distribution and the true posterior distribu-
tion:

KL(go(m)|| p(m|d)) = Ep~y, [log go(m) ]

p(m|d)
= Em~go [logge(m)] — Em~g, [log p(m|d)]

d
= ]Em’“tl(—) [10g qe (m)] - Emwm |:10g M]

p(d)
= Em~g, [log go(m)] — Em~y, [log p(dm)]
—Em~go[10g p(m)] + Em-g, [log p(d)]. (21)

where Ey,, denotes the expectation with respect to the variational
distribution g, p(d|/m) corresponds to the likelihood distribution
of the data given the model and p(m) is the prior distribution. Since
computing the KL divergence as in eq. (21) is often intractable,
VI uses a lower bound on the log-evidence, known as the evidence
lower bound (ELBO):

Em~ge[l0g p(dm)] — KL(ge(m)[ p(m)). (22)

As maximizing the ELBO is equivalent to minimizing the KL diver-
gence, VI ultimately entails minimizing the negative of the ELBO:

argglin KL(ge(m)]| p(m)) — En-4q [log p(d[m)]. (23)

By optimizing the ELBO with respect to the variational parameters
0, we effectively find the variational distribution that best approxi-
mates the true posterior while maintaining tractability.

Key factors to the success of VI are: (i) the proposal and prior are
chosen such that their KL divergence can be computed efficiently
(or, ideally, a closed-form solution expression exists), (ii) the ex-
pectation in the second term can be approximated by the sample
mean, obtained by sampling multiple models from the proposal
distributions and evaluating this term as:

1 - )d—Gmy?
Em~qe [log p(djm)] ~ T Z T

Ti=1

: 24

where n, represents the number of samples drawn from the proposal
and used to estimate the expectation of the likelihood distribution.
Note that when VI is used in the context of machine learning (e.g.
training of neural networks), this term can be computed from a
batch of training samples: in other words, one leverages stochastic
optimization techniques, ensuring computational efficiency even for
large-scale problems. Unlike MCMC methods that require numer-
ous iterations to converge and often struggle with high-dimensional
spaces (Curtis & Lomax 2001), VI’s optimization-based approach
enables efficient parameter updates through mini-batch process-
ing and automatic differentiation. Furthermore, VI’s deterministic
nature ensures reproducible results across multiple runs, while its
optimization objective (ELBO) serves as a reliable metric for model
comparison and convergence monitoring.

The success of VI critically depends on the choice of the vari-
ational family—the class of distributions used to approximate the
true posterior. This choice represents a fundamental trade-off be-
tween approximation accuracy and computational tractability. The
mean-field approximation is a variational family were the proposal
distribution ¢ge(m) is factorized as:

Ny x Ny x Ny

[T getm) (25)

i=1

qo(m) =

This approach estimates the diagonal of the covariance matrix,
providing high computational efficiency and a general assessment
of uncertainty for each inverted parameter. While appealing from
a computational perspective, it assumes parameter independence,
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which can lead to underestimated uncertainties and fails to capture
key features of the true posterior, such as multimodality or pa-
rameter correlations. To address these limitations, we present two
approaches, building on the IntraSeismic framework (Romero et al.
2024):

(i) B-IntraSeismic (BIS): we first explore the use of a standard
mean-field approximation with a Gaussian proposal distribution,
where the parameters (mean and standard deviation) are learned
through the nonlinear mapping module of IntraSeismic;

(i1) B-IntraSeismic with CNF (BIS-Flow): we enhance the mean-
field approximation by implementing a 1-D CNF, allowing for the
learning of a non-parametric proposal distribution that captures
complexities such as asymmetry and multimodality in the inverted
parameters.

A detailed methodology and implementation of each variant are
presented in the following section.

2.4 BIS

Inspired by the implementation in NeRF by Shen ef al. (2021), we
first parametrize our Gaussian proposal distribution with parame-
ters ®, which are the weights of an INR (Fig. 1). This INR takes
coordinates of the subsurface model x; = [x;, y;, z;] as input and
utilizes a nonlinear mapping module to predict the mean pg and
standard deviation og of a Gaussian distribution, which aims to
approximate the model’s posterior distribution:

m; ~ N(pe(X;), oé(x,»)) = qo(m;), (26)

where x has been added to both the mean and standard deviation
to remark the fact that different values are predicted from different
input coordinates:

(1o (X)), 05(x)] = Fo(x), @7

where Fg represents our network. For the prior distributions, we
first implement two Gaussian priors as detailed in eqs (9) and (10),
which ensure proximity to the background model and smoothness,
respectively. As we assume these priors to be independent from
each other, the overall prior equals to the product of each individual
prior:

p(m) = pi(m)p;(m), (28)

where p;(m) and p,(m) are the two selected priors. This combina-
tion allows for direct comparison with the analytical solution, as it
uses the same priors. Subsequently, we employ the blockiness prior
in combination with the proximity prior to showcase the flexibil-
ity of the proposed methods. In both cases, when the prior term is
inserted in eq. (23), p; is used alongside the proposal to compute
the KL divergence (which in the case of a Gaussian prior and a
Gaussian proposal has a closed-form solution). On the other hand,
p2 is taken out of the KL divergence and computed in a similar
manner to the likelihood term. For the Gaussian case:
iy

1 A
Em~qo[log po(m)] ~ —— 37 = [ D | (29)

"=l
and for the Laplace term:

| &
En~go[log pa(m)] ~ ——= ;xznm I (30)

To conclude, the BIS workflow consists of the following steps:
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Multiresolution
Hash encoding

m; ~ N (u;,0;)

Observed data

¥

>@ +> (ELBOLOSS ) <-=

> qg(m) = ﬂ%(mi)

Mean-field approximation

Standard deviation (o)

Figure 1. Schematic representation of the BIS framework. Input coordinates are processed through a nonlinear mapping module to produce the mean and
standard deviation of a point-wise Gaussian distribution. Multiple acoustic-impedance models are sampled from this Gaussian proposal; those samples are

then used to compute the likelihood term and one of the priors in the ELBO loss.

(i) Parameter prediction: The nonlinear mapping module pro-
cesses input coordinates to predict the mean and standard deviation
of the posterior distribution at each coordinate point (mean-field
approximation). This module employs a trainable multigrid-hash
encoding scheme followed by a two-layer Multi-Layer Perceptron
(MLP) with 64 neurons and ReLU activation functions.

(i1) Posterior sampling: Using the predicted mean and standard
deviation for all the input points x;, we draw N samples from
the proposal distribution, where each sample represents a possible
realization of the subsurface model parameters.

(iii) Forward modelling: Each of the n, sampled models is fed
to the seismic modelling operator, generating », predicted seismic
data sets corresponding to each model realization.

(iv) Loss computation: The predicted seismic data are incorpo-
rated into the Gaussian-likelihood term of the loss function, and
the predicted Gaussian distribution is used to compute the KL di-
vergence with one of the priors. Additionally, the n, realizations
are used to compute the sample log probability for the other prior
distribution.

(v) Optimization: Through backpropagation, the parameters of
the nonlinear mapping module are optimized to maximize the
ELBO.

2.5 BIS-Flow

Normalizing flows (NF) is a class of generative models that trans-
form a simple base distribution through a series of learnable, invert-
ible mappings, enabling the representation of multimodal, skewed
and otherwise complex distributions (Kobyzev et al. 2021; Papa-
makarios et al. 2021). The key idea behind NFs is to apply a se-
quence of bijective transformations to a simple base distribution,
making it possible to compute both the probability density and gen-
erate samples efficiently. The flow can be defined as:

x = f(2) = fu(/u-1(.. /1(2))), (3D
where
z~ N0, 1) = p.(2) (32)

and x is a sample from an unknown complex distribution p,(xX).
Each transformation f; must be both invertible, so the original data
can be recovered from the transformed data, and differentiable, to
be able to compute the probability density function of the output
variable. The transformation from a simple distribution p.(z) to a

more complex distribution p,(x) is computed using the change of
variables formula:

@
0z

px(x) = p:(z) |det p=(z) |det , (33)

8f’l(X)’ _
ox -

. . 1
where z = f~!(x) is the latent variable, and the term ‘det w

is the determinant of the Jacobian of the transformation, which
accounts for how the transformation changes volume. This flex-
ibility proves especially valuable in scenarios with intricate pos-
terior landscapes, where standard VI might miss critical features.
The iterative nature of flow-based transformations allows for the
progressive refinement of the approximation, potentially capturing
finer details of the true posterior while maintaining computational
tractability. By proper mixing of variables by the transform used,
the NF automatically discover relevant correlation structures in the
posterior, eliminating the need for manual specification of varia-
tional families. Several recent studies have demonstrated the use
of normalizing flows (NF) for Bayesian inference in seismic ap-
plications. Siahkoohi ez al. (2020) propose a two-step Bayesian
framework in which a conditional normalizing flow (CNF) is first
trained on paired data to approximate the posterior distribution and
subsequently reused as a prior or warm start for inference under
new observation distributions. Zhao et al. (2022) apply NF to fully
nonlinear seismic tomography, showing that it can produce accurate
posterior approximations with lower computational cost compared
to Monte Carlo methods. In a follow-up work, Siahkoohi et al.
(2023) employ conditional NFs for amortized variational inference
in seismic imaging, introducing a latent space correction where the
standard Gaussian prior is replaced by a learnable Gaussian distri-
bution with optimized mean and diagonal covariance to better match
the physics-based posterior. Finally, Rizzuti & Vasconcelos (2024)
present a multiscale variational inference framework for seismic
uncertainty quantification, based on a wavelet-structured NF archi-
tecture that generates posterior samples hierarchically, from coarse
to fine scales.

In this work, we leverage NF to create a more expressive proposal
distribution whilst still remaining within the mean-field approxi-
mation regime (Fig. 2). For each input coordinate, this approach
involves passing a single scalar drawn from a Gaussian distribution
into a CNE, where the condition is composed of a feature vector
generated by the nonlinear mapping module of IntraSeismic. The
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Figure 3. Marmousi acoustic impedance model used as the reference solution, background model used as the mean for the proximity prior and post-stack
seismic data with added Gaussian noise. The vertical dashed line in the reference model corresponds to the location of the profile shown in Fig. 6.

input is then transformed by the flow into a sample of the non-
parametric proposal distribution (Fig. 2). The log probability of the
proposal is then computed for each sample using the change of
variables formula in eq. (33). In this study, we employ Gaussianiza-
tion flows (Meng et al. 2020), a powerful method for distribution
modelling that maps non-Gaussian data to a Gaussian distribution.
The fundamental concept involves applying monotonic, invertible
transformations to the input data, producing outputs that resemble
samples from a standard normal distribution. The transformation is
defined as:

K
fx) =" (11( > d(exp(an)x + b») , (34)

where @ is the cumulative distribution function (CDF) of the stan-
dard normal distribution N (0, 1), ®~! is the inverse CDF mapping
probabilities to corresponding standard normal values, a; (scale)
and b; (shift) are transformation parameters, and K is the number
of components in the transformation. In our implementation, a and
b are parametrized by a MLP Ng as:

[a, b] = No(c), (35)

where © represents the learnable parameters and ¢ is the context
vector. Here, the context vector is a 64-dimensional feature output
from the IntraSeismic MLP module. For the prior distributions,
in this case, we use the proximity and blockiness promoting prior

(egs 9 and 11). The BIS-Flow workflow consists of the following
steps:

(i) Context vector: The nonlinear mapping module processes the
input coordinates, mapping each point to a 64-dimensional feature
vector that serves as the context vector for the CNE, following the
approach in Shen et al. (2022).

(i1) Base distribution sampling: The base distribution of the NF
is sampled 7, times for each input point.

(iii) Flow transformation: The n, sampled points, along with
the context vector, are passed through the CNF Gaussianization
flow, producing outputs that represent values from a complex, non-
parametric distribution.

(iv) Forward modelling: Each of the n, sampled model param-
eter realizations is fed to the seismic modelling operator, generating
n, predicted seismic data sets corresponding to each realization.

(v) Loss computation: The predicted seismic data are used in
the Gaussian-likelihood term of the loss function, while the n,
realizations contribute to the computation of the proposal and prior
terms. Note that here we do not rely on a closed-form solution
for the KL divergence, instead the negative log-probability of the
proposal is computed using eq. (33) and those from the prior terms
are computed using eqs (29) and (30).

(vi) Optimization: The parameters of the nonlinear mapping
module and the CNF are optimized using backpropagation to max-
imize the ELBO.
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Figure 4. Comparison of the analytical, RTO, BIS and BIS-Flow for the Bayesian inversion of the post-stack modelled Marmousi data.
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Figure 6. 1-D comparison of the analytical, RTO, BIS and BIS-Flow methods for the Bayesian inversion of the post-stack modeled Marmousi data. The

extracted profile corresponds to the dashed vertical line in Fig. 3.

This workflow enables the model to approximate more flexible
posterior distributions, capturing complexities such as asymmetry
and multimodality.

2.6 Implementation details

For the experiments presented in the next section, we use 7, = 100
samples during training to evaluate the negative log-likelihood and
the negative log-prior distributions. For all the experiments of BIS

and BIS-Flow (synthetic and field data), we use Adam optimizer
with a learning rate of 1072, The entire framework is implemented
in PyTorch 2.0.1. All our experiments are conducted on a single ma-
chine equipped with an AMD EPYC 7713 64 Core Processor and
a single NVIDIA TESLA A100 GPU. The post-stack seismic mod-
elling operator is implemented using the PyLops library (Ravasi &
Vasconcelos 2020) and integrated into the PyTorch framework to
enable seamless automatic differentiation across multiple indepen-
dent computational frameworks.
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Figure 10. Bayesian inversion results for the Volve data set. (a)—(b) display the posterior mean and standard deviation estimated with BIS, whereas (c)—(d)

show the corresponding statistics obtained with BIS-Flow.
3 RESULTS

3.1 Synthetic example: Marmousi model

The Marmousi model (Brougois et al. 1990) is a synthetic 2-D
subsurface velocity model that mimics complex geological struc-
tures characterized by sharp velocity contrasts (Fig. 3a). We utilize
a smooth version of the Marmousi model as the initial background
model for the inversion process (Fig. 3b). To generate synthetic
post-stack seismic data, we apply the linear post-stack modelling
operator to the logarithm of the acoustic impedance model (com-
puted by scaling the provided velocity model by a constant density
value) using a 15 Hz peak-frequency Ricker wavelet. The data and
wavelet are then scaled and the former is contaminated with Gaus-
sian noise having a standard deviation of 1.0 (Fig. 3c¢).

3.1.1 Analytical solution

First, we calculate the analytical mean and covariance matrix of the
acoustic impedance model from the post-stack data, following eqs
(15) and (16). This calculation utilizes two Gaussian priors: one that
enforces proximity to a background model and another that ensures
smoothness in the solution (see Section 2.2.1). Figs 4(a) and (b)
display the analytical mean and standard deviation (computed as
the square root of the covariance matrix diagonal). The recovered
mean effectively reconstructs the structural features and impedance

values of the ground truth model, albeit with a lower signal-to-noise
ratio (SNR) compared to the deterministic solution using advanced
regularization terms (Romero et al. 2024). The standard deviation
exhibits strong structural conformance, with maximum variance
corresponding to regions of high impedance contrast.

Fig. 5 presents the precision and covariance matrices for the least-
squares post-stack seismic inversion problem. The precision matrix
(i.e. the inverse of the covariance matrix) provides insights into the
conditional dependencies between variables, given the influence of
the modelling operator and the priors. In this case, the precision
matrix has dominant diagonal elements that correspond to the mod-
elling operator and off-diagonal bands representing the smoothing
prior (eq. 10). The covariance matrix in Fig. 5(b) presents a blocky
structure, where each block displays the correlation between two
traces. Parameters within the same block (or trace) are more strongly
correlated, with diagonal dominance highlighting that uncertainty
(variance) is highest for individual parameters and decreases with
distance from the diagonal. This suggests that nearby parameters
influence each other to some extent.

The sensitivity kernel in Fig. 4(c) (one row of the covariance ma-
trix) provides an alternative visualization of parameter uncertainty
and spatial correlation of the inverted parameters. For a selected
point in the model (black dot), the kernel reveals high sensitivity
in the surrounding region, indicating that parameter changes in this
area significantly impact the predicted data at the selected point,
while changes in the blue areas have minimal effect. The vertical
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Figure 11. Profile view along a well trajectory for the Bayesian inversion results for the Volve data set using BIS and BIS-Flow, compared to acoustic

impedance well log.

elongation is primarily due to the modelling operator, characterized
by a Toeplitz convolutional matrix with a filter size of 60 samples.
The overall shape of the sensitivity kernel reflects the Laplacian
regularization, which promotes smoother models.

A more detailed comparison of the results is presented in Fig. 6,
which illustrates the marginal posterior distributions of the acoustic
impedance model along a single vertical profile (indicated by a red
dashed line in Fig. 3) for the various inference methods shown in
Fig. 4.

3.1.2 RTO solutions ensemble

Figs 4(d)—(f) display the mean, standard deviation and sensitivity
kernel of the RTO solutions obtained for the post-stack seismic
inversion of the Marmousi synthetic data. In this analysis, 1000
perturbations of the data and priors were performed, and each of
the 1000 inverse problems is solved using a conjugate gradient
solver with 200 iterations. The posterior mean and standard devia-
tion closely match the analytical solution, successfully reproducing
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Figure 12. Selected subvolume from the full stack 2001 Sleipner data set.

the key features of the Marmousi model. The RTO sensitivity kernel
(Fig. 4f) likewise demonstrates the strong agreement between the
RTO-estimated covariance and the analytical covariance, with the
former only slightly noisier owing to the finite number of realiza-
tions and the limited iterations of the linear solver.

3.1.3 Gaussian posterior and Gaussian priors

Next, we utilize BIS to estimate the parameters of our Gaussian
proposal distribution. For this estimation, we have also used a com-
bination of two Gaussian priors as applied in the analytical case
(egs 9 and 10). The predicted mean and standard deviation are illus-
trated in Figs 4(g)—(h) and are shown to closely resemble those from
the analytical posterior distribution. However, since each point is
parametrized independently in BIS, the resulting covariance matrix
is diagonal, and therefore, it does not make sense to display the
resulting sensitivity kernel.

3.1.4 Flexible posterior and non-Gaussian priors

We finally employ BIS-Flow to estimate a non-parametric version
of the proposal distribution for the Marmousi model; in this case,
we use a blockiness-promoting prior (as shown in 11). This prior

encourages higher resolution realizations of the posterior distribu-
tion while maintaining the same computational cost as when using
purely Gaussian priors. Figs 4(i)—(j) present the predicted mean and
standard deviation for the inversion of the Marmousi post-stack
seismic data. Fig. 7 illustrates the loss and SNR evolution over it-
erations for both BIS and BIS-Flow corresponding to the results in
Figs 4(i)—(j). The loss in both cases exhibits a steep decline during
the first 100 iterations, with SNR converging at different points:
BIS reaches a plateau after 400 iterations, whereas BIS-Flow con-
verges more quickly, matching the SNR of BIS at 200 iterations and
showing a marginal increase until 800 iterations.

Fig. 8 compares the proposal distributions predicted by BIS and
BIS-Flow at the locations marked in Figs 4(g) and 4(i). Whereas
BIS uses a Gaussian proposal distributed and therefore explicitly
produces a Gaussian approximation of the posterior distribution,
BIS-Flow is allowed to produce more flexible distributions—for
example, distributions with slight skewness and sharper modes, a
direct consequence of the blockiness-promoting prior. This addi-
tional flexibility enables BIS-Flow to approximate the true poste-
rior more faithfully, free from the restrictive Gaussian assumption.
By accommodating local asymmetries and pronounced peaks, BIS-
Flow provides a more realistic description of the uncertainty and
variability in the inverted parameters, which is essential for mod-
elling the complex behaviour of subsurface properties in seismic
inversion.
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Figure 13. Mean acoustic impedance model obtained by BIS from the full stack 2001 Sleipner data set.

3.2 Field data example 1: Volve data set

Next, we evaluate the performance of BIS and BIS-Flow on a field
data set. We use a 2-D composite section extracted along a well
of the Volve data set (refer to Ravasi & Birnie 2021 for details
about the Volve data set processing). Fig. 9 shows the post-stack
seismic data along the well fence and the background acoustic
impedance model constructed from well logs, which serves as the
mean for the proximity prior. Fig. 10 presents the predicted mean
and standard deviation for both BIS and BIS-Flow. Although the
two models are similar, we note that BIS-Flow produces a mean
model with better horizontal continuity and improved vertical res-
olution compared to the mean model predicted by BIS. The stan-
dard deviation maps for BIS and BIS-Flow exhibit similar value
ranges; however, the BIS-Flow standard deviation map displays
higher resolution, with more detailed layering and defined zones
of uncertainty. These standard deviation values are consistent with
state-of-the-art Bayesian inversion results on the Volve data set
obtained using multiscale wavelet flows (Rizzuti & Vasconcelos
2024).

Finally, Fig. 11 presents the predicted mean and standard devia-
tion along the well impedance log (NO/15-9 19 BT2). Both BIS and
BIS-Flow face challenges in accurately predicting the mean, with
the well impedance log falling outside the 95 per cent confidence

interval in certain regions. These discrepancies likely arise from two
main factors: the presence of significant non-Gaussian noise in the
Volve seismic data, which is not fully captured by BIS and BIS-Flow,
and misalignment in depth between the well log and seismic data.

3.3 Field data example 2: 3-D Sleipner data set

We further evaluate the performance of BIS and BIS-Flow on
a second field data set—that is, a subvolume of dimensions of
200 x 200 x 200 extracted from the 2001 full-stack seismic data of
the Sleipner field (Fig. 12). This data is composed of predominantly
horizontal geological structures intersected by strong reflection re-
sponses due to CO, injection within the main reservoir. Details
regarding the creation of the background model, statistical wavelet
extraction and other pre-processing steps can be found in Romero
et al. (2023b). In this case, we use 50 samples to compute the log
likelihood and the sample log probability for the priors. In the case
of the BIS-Flow, allocating all of the samples at the same time
on a GPU requires substantial memory; this can be managed by
processing in batches of points in 3-D domain, utilizing multiple
GPUs or reducing the model complexity. In this case, we follow
the first approach, dividing the domain into two subvolumes of
200 x 200 x 100 voxels and processing them sequentially.
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Figure 14. Standard deviation of the BIS solution from the full stack 2001 Sleipner data set.

The predicted mean and standard deviation of the acoustic
impedance model obtained using BIS for the Sleipner data are
shown in Figs 13 and 14. Both the mean and standard deviation ap-
pear noisy, lacking the clear horizontal layering observed in the de-
terministic inversion results reported by Romero et al. (2024). This
suggests that BIS struggles to produce a reliable, high-resolution
acoustic impedance model for this data set. The primary reason for
this limitation is attributed to the presence of anomalous ampli-
tude values in the upper layers of the data, likely associated with
gas chimneys. Since BIS employs a smoothing prior, these anoma-
lies may be preventing the inversion from converging effectively
across the entire volume, leading to reduced model accuracy and
resolution.

On the other hand, the predicted mean of BIS-Flow (Fig. 15)
exhibits a robust representation of the model parameters, producing
a result visually similar to the model originally obtained with the
deterministic IntraSeismic inversion method (Romero et al. 2024).
This suggests that BIS-Flow effectively captures the key features of
the subsurface structure. The BIS-Flow standard deviation (Fig. 16)
highlights that zones with the highest uncertainty primarily cor-
respond to layers with high impedance values, such as the thick
layer at the top and some thin layers within the CO, reservoir
(potentially due to wavelet distortions). Comparing the predicted
acoustic impedance mean and standard deviation for Sleipner with

the impedance well log (Fig. 17) shows that the well log generally
falls within the 5-95 per cent confidence interval. This suggests
that BIS-Flow provides robust and reliable uncertainty estimates
also in this 3-D field data example. Fig. 18 presents the BIS-Flow
posterior distributions at the six positions marked in Fig. 17. In this
case, some distributions are nearly Gaussian, whereas others exhibit
a much sharper peak, highlighting the influence of the blockiness-
promoting prior.

4 DISCUSSION

This work presents the adaptation of IntraSeismic, an INR-based
framework for deterministic seismic inversion, to the realm of
Bayesian inversion using VI with different parametrizations for
the proposal distribution. More specifically, we explored a proposal
based on the mean-field approximation with point-wise Gaussian
distributions (BIS) and a mean-field approximation with a non-
parametric distributions (BIS-Flow). Both approaches offer com-
putationally efficient alternatives to state-of-the-art methods for as-
sessing the uncertainty of the post-stack seismic inversion problem.
BIS-Flow, in particular, demonstrated the ability to capture com-
plexities such as multimodality and asymmetry in the posterior dis-
tribution, providing a valuable option for obtaining high-resolution
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Figure 15. Mean acoustic impedance model obtained by BIS-Flow from the full stack 2001 Sleipner data set.

estimates of the uncertainty of each inverted parameter whilst pro-
ducing a high-resolution mean model. The primary limitation of
both methods is their assumption of parameter independence, which
restricts their usefulness for generating realistic posterior samples
where interparameter correlations are important.

Fig. 4 compares the mean, standard deviation and a row of the co-
variance matrix for a single point using three approximate inference
algorithms (RTO, BIS, BIS-Flow) against the exact analytical solu-
tion for the posterior distribution of the inverted acoustic impedance
from post-stack Marmousi seismic data. The different approximate
inference methods predicted mean models that visually capture the
key features of the Marmousi model, such as fault locations and
layer boundaries, resulting in models with SNR close to the an-
alytical one (23.3 dB) and comparable to the deterministic case
(24.73 dB) (Romero et al. 2024). BIS produced the lowest SNR
for the mean, while BIS-Flow achieved the highest SNR due to
its blockiness-promoting prior and additional flexibility in the pro-
posal distribution that allowed for higher resolution estimates. The
standard deviation maps in Fig. 4 approximate the analytical re-
sults reasonably well, showing higher values in regions with greater
impedance contrasts. Fig. 6 provides a 1-D view of the mean and
the 5th and 95th percentile confidence intervals, illustrating that for
all methods, the true Marmousi model mostly lies within this range,
with higher impedance contrast layers located near the interval
edges. Note that the sensitivity kernel is not shown for the BIS and
BIS-Flow methods, as the mean-field approximation assumes pa-
rameter independence.

For the Bayesian inversion of field data, we present two exam-
ples: the 2-D inversion of the Volve data set and the 3-D inversion
of the Sleipner data set. In the Volve data set example, both BIS
and BIS-Flow demonstrated strong performance, producing high-
resolution estimates of the mean and standard deviation. While
there is no ground truth for direct comparison, the standard devia-
tion map aligns well with state-of-the-art results, such as those pro-
duced by multiscale wavelet flows (Rizzuti & Vasconcelos 2024).
The Sleipner data set highlights a significant advantage of the pro-
posed BIS and BIS-Flow methods: scalability. Using INR that con-
verges more quickly than traditional variational and deep learning-
assisted inversion methods (Romero et al. 2024), combined with
VI, we achieved reliable uncertainty estimation while maintaining
low computational costs.

Estimating the covariance matrix for Gaussian priors or the scale
matrix for Laplace priors is a crucial step in Bayesian seismic
inversion. Although some studies model these parameters as ad-
ditional latent random variables, this approach typically increases
the computational cost significantly due to the added dimensional-
ity of the problem. For the field data used in this work, we chose to
set these parameters based on available well-log data, enabling us
to incorporate prior information without increasing the complexity
of the inversion. For the proximity prior, we selected the standard
deviation by calculating the maximum deviation of the background
model from the impedance values in the well log. This provides
a reasonable bound on variability based on the well data. For the
Laplace prior, we computed the gradient of the impedance from
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Figure 16. Standard deviation of the BIS-Flow solution from the full stack 2001 Sleipner data set.

the well log and selected an interval for the scale parameter of the
Laplace distribution that best reflects this gradient information.

4.1 Computational cost

In this section, we compare the four methods used to perform un-
certainty quantification in post-stack seismic inversion from a com-
putational standpoint.

4.1.1 Analytical

To estimate the covariance matrix of the posterior distribution, the
precision matrix must be inverted. Moreover, to compute the mean,
two additional matrix—vector multiplications must be performed.
Since the direct inversion of a dense matrix of size Nparams X
Nparams has a complexity of O(N;arams), this represents the most
computationally expensive step of this approach, and it becomes
prohibitively expensive as the size of the problem grows. As an
example, for a problem of size 220 by 600 (Marmousi model used
in this study), the inversion process took approximately 2.3 hr in
the machine specified in 2.6.

4.1.2 RTO

The RTO method requires solving an inverse problem for each
perturbation (sample); this is typically carried out using an iterative
solver like the Conjugate Gradient (CG) method. The computational
cost of solving a system of equations of size Nparams X Nparams 1S
approximately equal to O(Ny; - szarams), where Nj., is the number
of CG iterations required to reach convergence. Since this process
is repeated for Ngmples number of samples, the overall cost is given
by: O(Nsamples : Niter : Nz )

params

4.1.3 BIS and BIS-Flow

The computational cost of each iteration of the BIS method is com-
posed of three main parts. First, the forward and backward passes
through the MLP network, which is proportional to the size of
the model and that of each matrix of the MLP layers. Given a
two-layer MLP with 64 neurons and Npgrams parameters, this is equal
0 O(2- (264 NJums) + 64 - N )) where the first 2 is based
on the assumption the forward and backward passes have the same
cost. Secondly, there is the multiresolution hash-encoding process,
where each hash lookup has a cost of O(1), and the bilinear interpo-
lation conducted at each resolution level L hasacostof O(L - 4 - 2),
with 4 representing the neighbouring points and 2 representing the
encoding dimensionality. For all the points in multiresolution hash
encoding has a rough estimate of O(Nparams - (L - 8 + 1)). Thirdly,
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Figure 17. Profile view along a well trajectory for the Bayesian inversion results for the Sleipner data set using BIS-Flow and comparing it to acoustic
impedance well log. The red dots show the vertical location of the histograms shown in Fig. 18.

the cost of computing the modelling operator, which is equal to
Oo(n, - N}fmms). Note that although 7, < Ngmples, BIS takes a larger
number of iterations to converge than each single RTO inversion.
Overall, the cost of BIS grows with N2, compared to Ny,
for the other two methods, making it more suitable to large-scale
applications. The computational cost of BIS-Flow is similar to that
of BIS, with the additional overhead of the CNFE, which for a 1-D
flow is O(Nparams)- The total computational time for both BIS and
BIS-Flow in the Marmousi data inversion was approximately 2 min
on the hardware specified in Section 2.6.

The main limitation of the BIS and BIS-Flow methods compared
to RTO is their memory footprint; these method require in fact one
to approximate the expectations in the loss function via a sample
mean over a number of realizations. When the optimization process
is carried out on GPUs, this requires that all realizations are be stored

in GPU memory at the same time (in the simplest implementation

of the algorithm). This constraint becomes particularly challenging
for high-dimensional problems, such as the 3-D Sleipner example
presented earlier. To address this issue, several strategies can be em-
ployed: (1) Batch Processing: performing the inversion in smaller
batches rather than processing all input points simultaneously, al-
lowing results to accumulate over multiple iterations and reducing
peak memory usage; (2) Leveraging Multiple GPUs: distributing
the different realizations across multiple GPUs to increase available
memory and improve processing efficiency, and reducing over their
gradients before updating the parameters of the MLP network and
hash-encoding table and (3) Reducing Model Complexity: simpli-
fying the parametrization of the INR block used in the inversion to
decrease the overall memory footprint. These strategies offer viable
solutions for managing memory requirements without compromis-
ing inversion quality. A summary of the computational efficiency
for the methods studied in this work is presented in Table 1.
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Figure 18. Kernel density estimation of BIS-Flow predicted proposal distribution samples at six locations along the well-trajectory in the Sleipner volume,

shown by red dots in Fig. 17.

Table 1. Computational efficiency of the four Bayesian—inference schemes. Runtimes correspond to inversion of the 2-D 220x 600 Marmousi synthetic data

(Fig. 4), run on an AMD EPYC 7713 (64 cores) and a single NVIDIA A100.

Runtime *
Method Peak memory Scalability Accuracy considerations (min)
Analytical High (dense n xn matrix) Poor Exact mean / covariance; prohibitive for 134
large n
RTO Moderate (storage of realisations in Poor Asymptotically exact; for each sample, 25.5
CPU/ GPU) an inverse problem is solved
BIS Moderate (realizations and network Good Mean-field Gaussian; no spatial 2.2
weights on GPU) covariance between parameters
BIS-Flow Moderate (realizations and network Good Mean-field, non-Gaussian marginals via 2.5
weights on GPU) 1-D normalizing flows; no spatial
covariance

“Wall-clock times for: Analytical; RTO-1000 posterior samples; BIS and BIS-Flow—full training run (500 epochs, 100 samples / epoch). All timings include

forward-model evaluations but exclude I/0.

4.2 Beyond mean-field approximation

Accurately modelling interparameter correlations across the sub-
surface while maintaining computational feasibility is essential for
comprehensive posterior exploration and remains a significant chal-
lenge in uncertainty quantification for seismic inversion. Subsurface
parameters are neither independent nor isolated; rather, they exhibit
spatial dependencies due to geological structures and stratigraphic
continuity. In a fully Gaussian Bayesian setting, the posterior co-
variance matrix can capture these spatial correlations, providing
insight into how changes in one area of the subsurface might influ-
ence or be influenced by adjacent regions. When dealing with more
complex prior distributions or nonlinear modelling operators and/or
model parametrization, however, no analytical expression exists for
the mean and covariance of the posterior distribution. It is therefore
essential for approximate inference methods to predict posteriors
distributions that can be sampled leading to realistic, spatially co-
herent models that reflect the natural variability and connectivity

of subsurface properties. Access to geologically plausible samples
from the posterior distribution is crucial for risk assessment and
decision-making in applications like resource exploration and CO,
storage monitoring. Realistic samples that respect spatial correla-
tions provide a more accurate representation of possible subsurface
configurations, allowing geoscientists to evaluate a broader range
of scenarios and anticipate potential geological risks.

This paper introduces an innovative approach using INR com-
bined with 1-D CNF to model point-wise probability distributions
effectively. Future work should focus on extending this framework
to capture spatial correlations between input points more compre-
hensively. Preliminary experiments by the authors indicate that by
smartly sharing the input noise samples from CNF base distribution
across various spatial location we may be able to model dependen-
cies between selected points while maintaining low computational
costs. These findings are preliminary and will be detailed in a future
publication.
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5 CONCLUSIONS

In this paper, we introduce two innovative methods to perform un-
certainty quantification in seismic inversion: B-IntraSeismic (BIS),
which employs a mean-field Gaussian proposal for efficient yet
simplified uncertainty quantification, and B-IntraSeismic with Con-
ditional Normalizing Flows (BIS-Flow), which utilizes a non-
parametric proposal distribution to capture complex posterior char-
acteristics. Our results on synthetic and field data sets demonstrate
that both BIS and BIS-Flow can produce high-resolution mean mod-
els and accurate standard deviation maps, with BIS-Flow excelling
at capturing more complex posterior distributions. The enhanced
capability of BIS-Flow to model complex uncertainties while main-
taining computational feasibility underscores its potential for more
comprehensive subsurface analysis. Additionally, we demonstrate
the scalability of both BIS and BIS-Flow to large-scale applica-
tions. By using a 3-D field example, we show that these methods
can provide reliable 3-D uncertainty estimates at a reasonable com-
putational cost. The implications of this work are significant for
post-stack seismic inversion, as they offer a scalable approach for
obtaining reliable uncertainty estimates and more informative poste-
rior representations. Future research should build on this foundation
by developing methods that explore shared base sampling strategies
to capture parameter correlations in larger and higher dimensional
settings. These advancements will contribute to a more nuanced
understanding of subsurface properties, supporting more accurate
decision-making in exploration and risk management.
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