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Summary 
 
We present B-IntraSeismic, a Bayesian framework that quantifies uncertainty in seismic inversion by 

combining variational inference with implicit neural representations. Our approach offers two 

implementations: BIS, which employs mean-field Gaussian approximation, and BIS-Flow, which 

captures complex posterior distributions using conditional normalizing flows. Testing on a synthetic 

dataset demonstrates that both methods generate high-resolution mean models and uncertainty estimates 

(in the form of standard deviation maps), with BIS-Flow particularly excelling at characterizing 

multimodal and skewed distributions in complex geological settings. This framework bridges the gap 

between traditional deterministic inversions and probabilistic approaches, offering a practical solution 

for large-scale Bayesian seismic inversion. 
 



B-IntraSeismic: Uncertainty quantification in seismic inversion via implicit neural representations

Introduction
Seismic inversion is a critical process in geophysical exploration, enabling the estimation of subsurface
properties such as acoustic impedance from post-stack seismic data. However, this process is inher-
ently ill-posed, meaning that multiple solutions can fit the observed data equally well. Consequently,
accurately quantifying uncertainty is essential to assess the reliability of the inversion results (Tarantola
and Valette, 1981; Ulrych et al., 2001) and to provide geoscientists with a comprehensive understanding
of different plausible subsurface configurations. Bayesian seismic inversion addresses this challenge by
treating subsurface parameters as random variables with probability distributions and seeking to estimate
their posterior distribution conditioned on seismic data. While traditional approaches such as Markov
Chain Monte Carlo (MCMC) and Laplace approximations have been widely used, they face significant
challenges with scalability and computational cost, especially in large-scale, high-dimensional problems
(Mosegaard and Tarantola, 1995; Sen and Stoffa, 1996; Sambridge and Mosegaard, 2002). Variational
inference (VI – Jordan et al., 1998; Blei et al., 2017), combined with deep learning techniques, has
recently emerged as a promising alternative, offering a balance between computational efficiency and
the ability to approximate complex posterior distributions. However, selecting an appropriate proposal
distribution remains a critical challenge, as it directly affects the quality of the inferred posterior.

In this study, we extend IntraSeismic, an implicit neural representation (INR)-based framework for
seismic inversion (Romero et al., 2024) to the Bayesian setting. More specifically, we introduce B-
IntraSeismic, a VI-powered approach for seismic inversion, and propose two variants: B-IntraSeismic
(BIS), which employs a mean-field Gaussian approximation for efficient and scalable uncertainty quan-
tification, and B-IntraSeismic with Conditional Normalizing Flows (BIS-Flow), which enhances the
flexibility of the mean-field approximation by capturing complex, non-Gaussian posterior distributions.
These methods are evaluated on a synthetic dataset demonstrating their ability to produce high-resolution
mean models and standard deviation maps while maintaining computational efficiency.

Theory and Methods
The core idea of B-IntraSesimic, as an extension of its deterministic counterpart IntraSeismic, is to
approximate the posterior distribution of subsurface acoustic impedance, m, conditioned on post-stack
seismic data, d. In the Bayesian setting, the posterior is defined by Bayes’ theorem as

p(m|d) ∝ p(d|m)p(m), (1)

where p(d|m) and p(m) are the likelihood and prior distributions, respectively. The inversion problem
is framed as an optimization task that minimizes the negative of the evidence lower bound (ELBO),
defined as:

L =−Eq(m)[log p(d|m)]+KL(q(m)||p(m)), (2)

where q(m) is the variational approximation to the true posterior, and KL denotes the Kullback-Leibler
divergence. In the specific case of post-stack seismic inversion, when we incorporate Gaussian priors
and assume Gaussian noise, we have:

log p(d|m) =
1
2
||d−Gm||22, log p(m) = log p1(m)+ log p2(m) =

λ1

2
||m+m0||22 +

λ2

2
||Dm||22, (3)

Where G is the seismic modeling operator that computes the seismic data from the logarithm of the
acoustic impedance model m, which is then compared with the observed data d. The log of the prior
distribution p(m) consists of the sum of two log-priors: the first, log p1(m), encourages the solution
to stay close to a known low-frequency background model m0, and the second, log p2(m), enforces
smoothness in the solution, where D represents the Laplacian operator. The hyperparameters λ1 and
λ2 control the relative influence of these priors during the inversion process. Note that when a prior
covariance matrix is available, it can be incorporated by replacing the isotropic penalty terms with
quadratic forms involving the covariance matrix. For example, the term ||m+m0||22 can be replaced
with (m+m0)

T Σ−1(m+m0), where Σ is the covariance matrix. This inclusion allows for anisotropic
or spatially varying constraints to be directly embedded in the prior.
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Two approaches are introduced to parameterize the proposal distribution q(m) in Equation 2: (1) B-
IntraSeismic (BIS), which uses a mean-field Gaussian proposal, and (2) BIS-Flow, which employs
conditional normalizing flows (CNFs) to capture non-Gaussian characteristics of the posterior, while
still being a mean-field approximation. BIS represents the subsurface acoustic impedance as a Gaussian
distribution where the parameters (mean and standard deviation) are learned through the non-linear map-
ping module of IntraSeismic. BIS-Flow extends BIS by incorporating conditional normalizing flows to
model non-Gaussian, multimodal, or skewed posterior distributions. The CNF employed in BIS-Flow
transforms a base Gaussian distribution into a complex target distribution using invertible mappings con-
ditioned on the INR’s output feature vectors. For a transformation f , the flow computes the transformed
distribution using the change-of-variables formula:

q(m) = q0(z)
∣∣∣∣det

∂ f
∂z

∣∣∣∣−1

, (4)

where z is sampled from a base Gaussian distribution q0(z). In this study, we employ Gaussianiza-
tion flows (Meng et al., 2020), a powerful architecture for mapping non-Gaussian data into a Gaussian
distribution.

Results
The Marmousi model (Brougois et al., 1990) served as a synthetic example to evaluate the performance
of the proposed Bayesian methods, B-IntraSeismic (BIS) and BIS-Flow, in comparison to analytical and
Randomize-Then-Optimize (RTO – Bardsley et al., 2014) solutions. We utilize a smooth version of the
Marmousi model as the initial background model for the inversion process (Figure 1b). To generate
synthetic post-stack seismic data, we apply the linear post-stack modeling operator to the logarithm of
the acoustic impedance model (computed by scaling the provided velocity model by a constant density
value) using a 15 Hz peak-frequency Ricker wavelet. The data and wavelet, originally ranging from -1
to 1, are scaled by a factor of 50, and the data is subsequently contaminated with Gaussian noise with a
standard deviation of 1.0 (Figure 1c).

Figure 1 Marmousi acoustic impedance model used as the reference solution, background model used
as the mean for the proximity prior, and post-stack seismic data with added Gaussian noise..

We use the analytical and RTO solutions as benchmarks for the Bayesian inversion of the synthetic
Marmousi seismic data (Figure 2a-d). In both cases, we used the two prior distributions described in
Equation 3. The recovered analytical and RTO mean models effectively reconstruct the structural fea-
tures and impedance values of the ground truth model with a similar signal-to-noise ratio (SNR). The
standard deviation for the analytical case exhibits strong structural conformance, with maximum vari-
ance corresponding to regions of high impedance contrast. For the RTO method, the standard deviation
appears under-determined, likely due to the limited number of realizations (1000 perturbations).

The results obtained with BIS (Figure 2e-f), using the same priors as the analytical case, demonstrate
that the predicted mean and standard deviation closely resemble those of the analytical posterior distri-
bution. The mean, despite having a lower SNR, successfully captures the main features of the inverted
model, while the standard deviation map exhibits similar conformance and a comparable range of values
to those obtained analytically (Figure 2b). For BIS-Flow (Figure 2g-h), we employed a blockiness-
promoting prior (similar to TV regularization), which encourages higher-resolution realizations of the
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Figure 2 Comparison of the analytical, RTO, BIS, and BIS-Flow for the Bayesian inversion of the post-
stack modeled Marmousi data.

Figure 3 Kernel density estimation of BIS-Flow predicted proposal distribution samples at 5 random
locations.

posterior distribution. This approach enabled BIS-Flow to achieve the highest SNR for the predicted
mean across the methods and a slightly higher resolution in the standard deviation map compared to
BIS. While both BIS and BIS-Flow parameterize each point independently, without accounting for joint
correlations between different locations in the model, BIS-Flow predicts an unparameterized posterior
distribution, making it more robust in capturing complex subsurface features. Figure 3 illustrates the pre-
dicted distributions for randomly selected points in the model, revealing that the posterior distributions
are notably non-Gaussian.

Figure 4 illustrates the loss and SNR evolution over iterations for both BIS and BIS-Flow corresponding
to the results in Figures 2i-j. The loss in both cases exhibits a steep decline during the first 100 iterations,
with SNR converging at different points: BIS reaches a plateau after 400 iterations, whereas BIS-Flow
converges more quickly, matching the SNR of BIS at 200 iterations and showing a marginal increase
until 800 iterations. All experiments are conducted on an AMD EPYC 7713 64-Core Processor equipped
with a single NVIDIA TESLA A100.

Conclusions
In this study, we introduced B-IntraSeismic, a Bayesian extension of the IntraSeismic framework for
uncertainty quantification in seismic inversion. By leveraging variational inference and implicit neural
representations, the proposed methods—BIS and BIS-Flow—produced high-resolution mean models
and standard deviation maps at a reasonable computational cost. BIS-Flow, in particular, demonstrated
enhanced flexibility by capturing complex, non-Gaussian posterior distributions, making it well-suited
for addressing the inherent uncertainties in seismic data. Results on the Marmousi data underscore
the scalability and accuracy of these methods. However, the reliance on the mean-field approximation,
while computationally appealing, assumes parameter independence, which can result in underestimated
uncertainties and the inability to capture important features of the true posterior, such as parameter
correlations. Addressing these limitations will be a key focus of future work.
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Figure 4 Loss and SNR of the mean through iterations of BIS and BIS-Flow for the Bayesian inversion
Marmousi data.
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