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Abstract Seismic reservoir characterization refers to a set of techniques aimed at estimating static and/or
dynamic physical properties of subsurface geological formations from seismic data, with applications ranging
from exploration and development of energy resources, geothermal production, carbon capture and storage, and
the assessment of geological hazards. Extracting quantitative information from seismic recordings, such as an
acoustic impedance model, is however a highly ill‐posed inverse problem due to the band‐limited and noisy
nature of the seismic data. As such, seismic inversion techniques strongly rely on additional prior information
that penalizes (or promotes) some features in the recovered model. This paper introduces IntraSeismic, a novel
hybrid seismic inversion method that combines implicit neural representations as an effective way to
parameterize a subsurface model with the physics of the seismic modeling operator. We demonstrate its
effectiveness in both pre‐stack and 3D/4D post‐stack seismic inversion using synthetic and field data sets. Key
features of IntraSeismic are (a) unparalleled performance in 2D and 3D pre‐stack/post‐stack dynamic and static
seismic inversion, (b) rapid convergence rates, (c) ability to seamlessly include hard constraints (i.e., well data)
and perform uncertainty quantification, and (d) potential data compression and fast randomized access to
specific portions of the inverted model.

Plain Language Summary Geoscientists use sound waves to detect underground structures with the
objective of finding energy resources or storing carbon dioxide. However, extracting quantitative information
from this data can be challenging. Our research introduces IntraSeismic, a new method that uses novel
techniques in artificial intelligence to create a more accurate picture of such underground formations.
IntraSeismic is faster and more accurate than existing methods at extracting rock properties from sound wave
data. This allows scientists to make better decisions about resources hidden beneath the Earth's surface.

1. Introduction
A variety of seismic imaging techniques have been developed over the years and found applications in several
industrial sectors to aid oil and gas prospecting (Sheriff & Geldart, 1995; Telford et al., 1990; Yilmaz, 2001)
geotechnical assessment in civil engineering (Oz & Miller, 2015), construction projects (Steeples &
Miller, 1988), and more recently, geothermal production and carbon capture and storage monitoring (Lum-
ley, 2010). Seismic inversion represents the foremost method for deriving quantitative information from seismic
data (Tarantola, 1984). A seismic inverse problem endeavors to approximate the elastic parameters of the sub-
surface, such as wave propagation velocities and density, from either raw or processed seismic data
(Doyen, 2007). These elastic parameters are crucial for comprehensive reservoir characterization, where petro-
physical properties such as porosity and saturation can be further estimated (Grana et al., 2021, 2022). This
usually requires a rock physics model, which establishes a theoretical link between elastic and petrophysical
parameters (Avseth et al., 2005; Bosch et al., 2010). Thus, seismic inversion combined with rock physics models
provides a powerful tool for enhancing our understanding of subsurface properties and improving the accuracy of
reservoir predictions.

When seismic inversion is carried out post‐migration (i.e., after the raw data set has been imaged), the associated
inverse problem, called pre‐stack or post‐stack seismic inversion, is highly ill‐posed due to the limited range of
frequencies excited in a seismic experiment and the inevitable presence of noise in the data. Historically, this
problem has been tackled through three distinct families of methods: (a) variational methods, (b) deep learning‐
based approaches, and (c) hybrid methods. Variational methods aim to minimize a data‐misfit term accompanied
by one or more regularization terms that guide the solution to a physically plausible outcome. A standard reg-
ularization choice is Tikhonov regularization (Tikhonov & Arsenin, 1977), which favors the retrieval of a smooth
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subsurface model. More recently, total variation (TV) regularization (Rudin et al., 1992) has been used to enforce
a layered structure of the subsurface, which is a more realistic representation of the acoustic impedance (Gho-
lami, 2015; Ravasi & Birnie, 2022; Wang et al., 2019). Deep learning‐based approaches, on the other hand,
leverage the prowess of neural networks to learn a direct mapping between the seismic data and acoustic
impedance model, providing that a suitable training data set is available. Various architectures have been used so
far in the literature, including XGBoost (Zhao et al., 2021), convolutional neural networks (Biswas et al., 2019;
Das et al., 2019; Xu et al., 2022), temporal convolutional networks (R. Smith et al., 2022), and attention‐based
networks (Wu et al., 2022). However, seismic applications deal with a shortage of labeled data sets because the
ground truth is inaccessible except for specific locations along drilled wells. Consequently, the application of
supervised learning approaches is limited in this domain and is feasible only when a dense well coverage is
available (Ravasi, Luiken, et al., 2023). Hybrid seismic inversion methodologies harness the strengths of both
paradigms by amalgamating the foundational geological knowledge and physics‐based modeling with the pattern
recognition capabilities of deep learning techniques. An example of hybrid methods is the Deep Image Prior
(DIP) (Ulyanov et al., 2020), which uses a neural network as a nonlinear preconditioner in the solution of an
inverse problem and has been successfully applied to the post‐stack seismic inversion problem (Lipari
et al., 2021). Similarly, the Plug‐and‐Play (PnP) framework (Venkatakrishnan et al., 2013) has recently been
proposed to solve inverse problems using a denoiser to act as a regularizer; this concept has led to the seamless
inclusion of pre‐trained deep denoisers (Zhang et al., 2022) in the solution of inverse problems of any kind:
Romero, Corrales, et al. (2022) showed that this is also beneficial to 2D post‐stack seismic inversion, achieving
state‐of‐the‐art results. For an extensive comparison of some of the previously described methods, we refer the
reader to (Ravasi, Luiken, et al., 2023; Ravasi, Romero, et al., 2023).

These hybrid methods represent a forward‐thinking direction for seismic inversion applications. Model‐driven
components ensure inversion results to be grounded in well‐understood geophysical principles, providing
interpretable and physically plausible solutions. Simultaneously, deep‐learning‐based components can capture
complex, nonlinear relationships in the data and/or model that might be overlooked or overly simplified in purely
model‐driven techniques. In this spirit, we introduce IntraSeismic, a hybrid method that is able to:

• Leverage the power of INRs to solve ill‐posed seismic inverse problems whilst retaining the physics of the
seismic modeling operator through a modular framework.

• Seamless integrate hard constraints in the seismic inversion process.
• Perform Uncertainty quantification (UQ) via Monte Carlo Dropout (MCD).
• Provide a compact representation of subsurface models, serving as an efficient data compression mechanism.

This paper starts with an overview of pre‐stack and post‐stack seismic inversion, 4D seismic inversion, INRs, and
their application to inverse problems. Following this introduction, we first provide a suite of numerical examples
to demonstrate that IntraSeismic can outperform standard variational methods and other hybrid approaches in the
inversion of post‐stack seismic data with varying noise levels, both in terms of reconstruction quality and
convergence rate. Then, we validate the effectiveness of our proposed method for pre‐stack seismic inversion and
4D post‐stack seismic inversion for synthetic and field data. We conclude by highlighting IntraSeismic's capa-
bilities in incorporating hard constraints, performing UQ, serving as an efficient data compressor, and com-
menting on promising future research directions.

2. Theoretical Background
2.1. Pre‐Stack Seismic Inversion

Post‐migration angle‐dependent seismic data dθ(t) can be mathematically represented via the so‐called con-
volutional model (Goupillaud, 1961). This entails the convolution of a source function or wavelet w(t) with the
earth P‐wave reflectivity series rpp(t):

dθ(t) = w(t) ∗ rpp(t) (1)

The Aki‐Richards approximation (Aki & Richards, 2002), which builds on the foundational Zoeppritz equation
(Zoeppritz, 1919), expresses rpp as follows:
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rpp(t,θ) =∑
3

i=1
ci(t,θ)

d
dt

log(mi(t)), (2)

where the mixing coefficients ci are given by

c1(t,θ) =
1
2
(1 + tan2(θ))

c2(t,θ) = − 4(
V̄s(t)
V̄p(t)

)

2

sin2(θ)

c3(t,θ) =
1
2
− 2(

V̄s(t)
V̄p(t)

)

2

sin2(θ)

(3)

and

m(t) = (Vp(t),Vs(t),ρ(t)), (4)

where θ represents the incidence angle of the seismic raypath, Vp(t) is the P‐wave velocity, Vs(t) the S‐wave
velocity, and ρ(t) is the density of the medium of interest. For convenience, let us define the dimensions: Nθ
represents the number of incidence angles considered, and Ny, Nx, and Nt are the spatial dimensions. A reduced
matrix‐vector form of the pre‐stack data equation, previously introduced as Equation 1, is represented as:

dθ =WθCDm, (5)

where dθ ∈RNθNyNxNt is the data vector for different angles andm = [Vp,Vs,ρ]T ∈R3NyNxNt is the model parameter
vector. The operatorWθ ∈RNθNyNxNt×NθNyNxNt is a block diagonal matrix with convolution operators for every angle
θ. The mixing operator C∈RNθNyNxNt×3NyNxNt contains the coefficients that linearly combine the effects of Vp, Vs

and ρ on the seismic response, as detailed in Equation 3. The operator D∈R3NyNxNt×3NyNxNt is a block diagonal
matrix comprising the first derivative matrices. The pre‐stack seismic inverse problem is therefore represented as:

m∗ = argmin
m

1
2
‖WθCDm − dθ‖

2
2 + αR(m), (6)

whereR(m) is the regularization term and α is the regularization parameter, controlling the level of regularization
applied.

2.2. Post‐Stack Seismic Inversion

When only zero offset data is considered, that is, θ = 0, Equation 2 becomes:

rPP =
1
2
d
dt

log(m(t)), (7)

where rPP is referred in this case as post‐stack reflectivity and m(t) is the P‐wave or acoustic impedance. Post‐
stack seismic data is hence modeled as:

d(t) =
1
2
w(t) ∗

d
dt

log(m(t)) (8)

In compact matrix‐vector notation:

d =WDm, (9)
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where W∈RNyNxNt×NyNxNt is a single block‐Toeplitz convolution matrix, which encapsulates the seismic wavelet,
while D∈RNyNxNt×NyNxNt is a single first‐order derivative operator. Post‐stack seismic inversion transforms
seismic images d∈RNyNxNt into quantitative estimates of the subsurface's acoustic impedance m∈RNyNxNt
(Oldebnbur et al., 1983; Russell & Hampson, 1991), and it is expressed as:

m∗ = argmin
m

1
2
‖WDm − d‖2

2 + αR(m), (10)

The objective of Equations 6 and 10 is to minimize the discrepancy between the modeled and observed seismic
data, adjusted by a regularization term R(m). Typically, the pre‐stack (WθCD) and post‐stack (WD) seismic
modeling operators are collectively represented by an operator G, to simplify their notation.

2.3. Simultaneous 4D Seismic Inversion

In the context of 4D post‐stack seismic inversion, there exist at least two data sets, d1 and d2, which have been
acquired at different times over the same geographical area. The associated inverse problem involves estimating
the underlying acoustic impedance models, m1 and m2, through an augmented form of Equation 10:

argmin
m1,m2

1
2

⃦
⃦
⃦
⃦
⃦
[
G1 0

0 G2
][

m1

m2
] − [

d1
d2
]

⃦
⃦
⃦
⃦
⃦

2

2

+ αR(m1,m2) , (11)

where G1 and G2 are the post‐stack seismic modeling operators for both data sets respectively. Note that the two
operators might have different wavelets w1(t) and w2(t). R(m1,m2) is the regularization that assures the coupling
between both models m1 and m2, and α is the regularization parameter or weight.

2.4. Implicit Neural Representations for Inverse Problems

Implicit neural representations or coordinate‐based learning, wherein neural networks directly utilize spatial
coordinates as input, has emerged as a focal point in recent deep learning advancements (Sitzmann et al., 2020;
Tancik et al., 2020; Xie et al., 2021). This approach has achieved state‐of‐the‐art results in various domains,
including image and shape representation (Chen & Zhang, 2019; Park et al., 2019) and volume density, and view
synthesis (Mildenhall et al., 2020), to name a few. Neural Radiance Fields (Mildenhall et al., 2020) is an example
of pioneering work in this domain, which has showcased the potent application of spatial coordinates in rendering
photo‐realistic 3D scenes. The main idea behind INRs is to learn a mapping fθ(x) : Rd → Rm where fθ consists of
an encoding process—either trainable or non‐trainable—followed by a multi‐layer perceptron (MLP) to generate
the output value (e.g., color intensity in an image). The input coordinate x may vary in dimensionality: it can be a
2D array for images, 3D for volumes and videos, and 5D in the case of Neural Radiance Fields.

A recent notable contribution to the inverse problems field is the IntraTomo framework (Zang et al., 2021).
IntraTomo synergizes a coordinate‐based MLP to estimate a density field with a subsequent geometry refinement
module that solves an optimization problem to refine the details in such a density field. The data‐ and model‐
driven combination of IntraTomo has achieved state‐of‐the‐art results in computer tomography. In the domain
of seismic inversion, a parallel methodology has been suggested, involving the inversion of full‐waveform
seismic data using spatial coordinates as inputs to an MLP with variable activation functions (J. Sun et al., 2023).

In the present study, we draw inspiration from IntraTomo and further develop this concept to produce a new
technique called “IntraSeismic.” In IntraSeimic, we take further advantage of the recently introduced multi‐
resolution hash encoding mechanism with trainable feature vectors as a way to enrich the expressiveness of
the network's input (Müller et al., 2022). As such, we are able to employ a very small, streamlined MLP ar-
chitecture with two layers of 64 neurons each. Finally, we assimilate the “geometry refinement module” of
IntraTomo, by directly embedding model‐based regularization terms in the neural network's loss function.
Consequently, IntraSeismic emerges as a compact and computationally efficient framework that is tailor‐made for
solving highly ill‐posed inverse problems in geophysics.
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3. Methodology
The IntraSeismic framework (Figure 1) integrates INRs with a seismic modeling operator to invert seismic data
for subsurface models of physical properties. The proposed framework primarily uses coordinates as input, which
first undergo a multi‐resolution hash encoding process (Müller et al., 2022). Next, the encoded coordinates are
passed through an MLP, whose output is added to a user‐provided background model and subsequently fed to the
seismic modeling operator to allow evaluation of the loss function. The fundamental framework described here
serves as the foundation for both single‐parameter and multi‐parameter seismic inversion, which will be elab-
orated in the following.

3.1. Single‐Parameter Seismic Inversion

For the case of post‐stack seismic inversion, the IntraSeismic loss function is formulated as:

argmin
Θ

1
2
‖GmΘ − d‖2

2 + αR(mΘ)

mΘ = FΘ(x) +mback,
(12)

where mΘ denotes the subsurface acoustic impedance volume obtained from the inversion process, FΘ(x) is the
non‐linear mapping module with Θ representing the learnable parameters from both the hash table and the MLP,
and x∈RNyNxNt×3 corresponds to the spatial coordinates of the volume of interest. These coordinates can be
processed in IntraSeismic either as a single batch or in mini‐batches. The term mback refers to the background
model. The regularization term, R(mΘ) , employs anisotropic TV regularization on the model
(R(mΘ) = ‖mΘ‖TV) to achieve a high‐resolution layered representation of the subsurface. Our experiments
demonstrate improved performance when incorporating additional regularization on the MLP output, such as
sparsity‐promoting regularization R(FΘ(x)) = ‖FΘ(x)‖1, or dynamically scheduled L2 regularization
R(FΘ(x)) = βk ‖FΘ(x)‖2

2, where the regularization weight β diminishes across iterations k (for further details
refer to the supplementary material).

3.2. Multiparameter Seismic Inversion

The IntraSeismic framework can be naturally extended to invert seismic data for multiple acoustic parameters
(e.g., in 4D seismic inversion) or elastic properties (e.g., in pre‐stack seismic inversion). This adaptation can be
achieved in two alternative ways: using a single shared non‐linear mapping module or using independent non‐
linear mapping modules for each inverted property. We compare both IntraSeismic implementations for pre‐
stack seismic inversion in Section 4.2.

Figure 1. Schematic representation of the IntraSeismic framework: the input to IntraSeismic consists of spatial coordinates that are processed through a nonlinear
mapping module. Initially, this module maps the input coordinates into a higher‐dimensional space of trainable feature vectors using multiresolution hash encoding.
Subsequently, these vectors are fed to a multi‐layer perceptron (MLP) that outputs the impedance model. In the subsequent physics modeling module, the output from
the MLP is added to the background model. A modeling operator then computes the predicted data from the impedance model, which is then incorporated into the loss
function.
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3.2.1. Shared Mapping Module

The first approach leverages a single IntraSeismic non‐linear mapping module FΘ, to produce two or more
subsurface properties. In this case, the base framework of IntraSeismic is preserved as in Figure 1, and regula-
rization is applied to each property individually. For instance, in the context of pre‐stack seismic inversion
(referenced in 2.1), the objective is to simultaneously invert pre‐stack seismic data for three key properties:
m = [Vp,Vs,ρ]T . This is achieved using a single non‐linear mapping module that produces three distinct outputs:
F1Θ, F2Θ, and F3Θ. Consequently, Equation 12 is modified to accommodate for this multi‐output strategy as
follows:

argmin
Θ

1
2

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

G

⎡

⎢
⎢
⎢
⎢
⎣

VpΘ

VsΘ

ρΘ

⎤

⎥
⎥
⎥
⎥
⎦
− d

⃦
⃦
⃦
⃦
⃦
⃦
⃦
⃦

2

2

+ αR(VpΘ,VsΘ,ρΘ) (13)

where VpΘ= F1Θ+Vpback, VsΘ= F2Θ+ Vsback, ρΘ= F3Θ+ ρback, Θ are the IntraSeismic learnable parameters,
and Vpback, Vpback, ρback are the given P‐wave, S‐wave velocity and density background models.

3.2.2. Independent Mapping Modules

The second approach utilizes separate non‐linear mapping modules for each property to be inverted; these
modules are however still optimized in parallel. For instance, for the simultaneous 4D post‐stack seismic
inversion case with 2 data sets (baseline and monitor data sets), IntraSeismic is augmented with 2 parallel non‐
linear mapping modules. The first module aims to update a user‐provided baseline background impedance
model, whereas the second module is dedicated to predicting the 4D, or time‐lapse, difference between the
baseline and monitor impedance volumes. We call this new framework 4D‐IntraSeismic 2 and the loss function is
given by:

argmin
Θ,Φ

1
2

⃦
⃦
⃦
⃦
⃦
[
G1 0

0 G2
][

mΘ

mΘ + FΦ
] − [

d1
d2
]

⃦
⃦
⃦
⃦
⃦

2

2

+ αR(mΘ,FΦ) (14)

where mΘ = FΘ(x) + mback and R(mΘ,FΦ) = ‖mΘ‖TV + ‖mΘ + FΦ‖TV + ‖FΘ‖1 + ‖FΦ‖1. In this case, mΘ is
the baseline acoustic impedance model, FΦ is the 4D acoustic impedance difference, and Θ and Φ are the
learnable parameters. We refer to this specific configuration of IntraSeismic for handling 4D data as 4D‐
IntraSeismic. Figure 2 shows a schematic representation of 4D‐IntraSeismic. The TV regularization terms in
R promote piecewise continuous representations for the baseline and monitor acoustic impedance models,
enhancing the resolution across layers. The term ‖FΘ‖1 promotes large variations in the inverted model, thus
encouraging the retrieval of high‐contrast impedance values, while ‖FΦ‖1 ensures sparsity in the time‐lapse
difference. Note that extending 4D‐IntraSeismic to multiple monitor surveys is trivial.

3.3. IntraSeismic Components

Input coordinates: A seismic data set is a 3D volume of spatial size Ny, Nx, Nt that can be represented via
voxel discretization. Each voxel pi within the volume is uniquely defined by its spatial coordinates xi = (y, x,
t). As shown in Equation 12, the collection of all coordinates of the volume of interest represents the input
of the IntraSeismic framework. Note the third dimension Nt is time samples, as seismic data is usually
inverted in time; however, this could be equivalently depth if we want to invert a depth domain seismic
volume.

Background Model: A background or initial prior model plays a pivotal role in seismic inverse problems. This
model must contain the low‐frequency components of the subsurface impedance model, which are not captured in
the data. In variational methods, the purpose of the background model is to steer the inverse process toward
geologically consistent solutions. In this work, when considering synthetic data, the background model is ob-
tained from a smoothed version of the ground truth. In contrast, for field data, the background model is derived
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from an interpolated, smoothed version of the impedance well‐log data and/or a calibrated interval velocity
volume from in‐depth processing of the corresponding seismic data.

Multiresolution hash encoding: Encoding input coordinates into a higher‐dimensional representation via pre‐
defined Fourier feature embeddings (or Gaussian‐based alternatives) has been shown to significantly increase
the ability of INRs to capture high‐frequency information in the sought‐after solution. Results are reported across
a variety of computer vision tasks (Tancik et al., 2020; Mildenhall et al., 2020; Zheng et al., 2021; Y. Sun
et al., 2021). Notably, Müller et al. (2022) introduced multiresolution hash encoding, a sparse grid‐based para-
metric embedding that outperformed state‐of‐the‐art non‐parametric frequency‐based encodings. This method
utilizes a multi‐resolution hash table with trainable feature vectors that are optimized through backpropagation,
alongside the subsequent neural network parameters. This is accomplished by leveraging spatial hashing, where
coordinates serve as the keys for a hash function, facilitating the retrieval of hash table indices. The hash function
h for a coordinate point x is defined as:

h(x) = ( ⊕
3

i=1
xiπi)mod T,

where ⊕ denotes the binary XOR operation, and πi represents a large prime number chosen by the user. This
function computes the indices for a hash table of size T that contains feature vectors of dimension F at every entry.
Given its multi‐resolution nature, this operation is performed at multiple predefined resolutions. Each input
coordinate is scaled to a specific resolution, and through floor and ceiling operations, the surrounding points'
corners at a given resolution are ascertained—yielding four corner points for a 2D problem and eight for a 3D
problem. These corners are fed into the hash function, with the resultant feature vectors being interpolated to
obtain the corresponding feature vector at the input point.

We leverage the multiresolution hash encoding hyperparameter settings suggested in Müller et al. (2022) for
IntraSeismic. The encoding employs L = 4 levels of resolution, ranging from the coarsest (Nmin) to the finest
(Nmax). The choice of Nmin and Nmax is guided by the size of the subsurface volume and the desired target res-
olution, such as the thickness of the finest geological layer to be retrieved. The hash table size (T ) is set to 216

entries, and each entry contains a feature vector of dimension F = 2.

Neural Network Architecture: The neural network component of IntraSeismic is a two‐layer MLP with ReLU
activation function. Each layer contains 64 neurons.

Figure 2. Schematic representation of the 4D‐IntraSeismic framework: spatial coordinates are fed into a nonlinear mapping module, comprising two distinct sets of
multiresolution hash encoding and multi‐layer perceptron. The output from one set is summed to the background model to produce the baseline impedance model, whilst
the output of the other set corresponds to the 4D impedance difference. These two outputs are then passed to the 4D seismic modeling module, which computes the
predicted data.
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Modeling Operator: In the applications presented in subsequent sections, we utilize the pre‐stack (5), post‐stack
(9), and 4D post‐stack seismic modeling operators. Note that we refer as 4D post‐stack seismic modeling operator
to the block diagonal matrix that contains two post‐stack modeling operators as shown in Equation 11.

Optimizer: For all applications, we utilize the Adam optimizer (Kingma & Ba, 2014) with a learning rate of 10− 3.
We employ a single batch approach, processing all input coordinates simultaneously, to solve for the IntraSeismic
parameters derived from the MLP and hash encoding tables.

Implementation details: The IntraSeismic framework is fully implemented in PyTorch 2.0.1, and all experiments
are conducted on an AMD EPYC 7713 64‐Core Processor equipped with a single NVIDIA TESLA A100. The
modeling operator is implemented and wrapped into PyTorch using the PyLops library (Ravasi &
Vasconcelos, 2020).

4. Experiments
This section evaluates IntraSeismic's effectiveness and performance across various scenarios. For each data set,
we train a specific IntraSeismic framework. We present results for post‐stack seismic inversion on 2D and 3D
synthetic data with varying noise levels, followed by a field 3D example. We then showcase IntraSeismic's
versatility for joint inversion of multiple elastic properties using a synthetic pre‐stack seismic data set. Finally, we
demonstrate IntraSeismic's application to 4D seismic data through the inversion of 4D synthetic and field seismic
data sets. In each case, we compare IntraSeismic's outcomes against state‐of‐the‐art methods reported in the
literature.

4.1. Post‐Stack Seismic Inversion

We apply IntraSeismic to both 2D and 3D synthetic post‐stack seismic data sets, incorporating band‐passed
Gaussian noise at varying standard deviations: noise‐free (σ = 0), σ = 0.1, and σ = 0.2. It is worth noting that
the seismic data set is scaled from − 1 to 1. In Table 1, we report the Signal‐to‐Noise Ratio (SNR) of the obtained
solution, the number of iterations needed to achieve such a result, and the total processing time for IntraSeismic
and benchmark methods. In the subsequent subsections, we illustrate the results when using a moderate noise
level (σ= 0.1), which is reflective of the usual noise levels encountered in field data. Figures 3a and 5a display the
corresponding data for the Marmousi and SEAM models. In both cases, the seismic data is modeled using a
Ricker wavelet (Ricker, 1943) with a peak frequency of 15 Hz, and the background models are smoothed versions
of the original acoustic impedance models (Figures 3b and 5b).

The IntraSeismic result on synthetic data is benchmarked with two variational approaches, Tikhonov regulari-
zation (the standard method used in industry) and TV regularization using the Primal‐Dual solver (Ravasi &
Birnie, 2022) (referred to from here onwards as PD‐TV). Additionally, we compare IntraSeismic with the state‐
of‐the‐art hybrid methods proposed in the literature for post‐stack seismic inversion, namely the DIP (Lipari
et al., 2021), as well as Plug‐and‐Play priors with deep denoisers (Romero, Corrales, et al., 2022). For the PnP
results, we utilized the code published in (Romero, Corrales, et al., 2022), which employs the DRUNet denoiser

Table 1
Inversion Results for IntraSeismic and Benchmark Methods for the Marmousi and SEAM Data Sets and Different Noise Levels

Method

Marmousi SEAM

σ = 0 σ = 0.1 σ = 0.2 σ = 0 σ = 0.1 σ = 0.2

Tikhonov [1] 21.50/31 (0.1s) 21.17/34 (0.1s) 20.35/39 (0.1s) 34.11/241 (11s) 33.32/251 (11s) 31.53/266 (11s)

PD‐TV [1] 24.74/4k (21s) 23.92/3.8k (20s) 22.37/3.5k (19s) 37.75/6k (204s) 36.04/3k (102s) 34.50/2k (68s)

DIP [2] 22.81/1.2k (44s) 20.21/112 (4s) 19.43/45 (2s) 36.1/7k (1.3 hr) 33.4/7k (1.3 hr) 28.00/7k (1.3 hr)

DIP enhanced 25.50/1.4k (54s) 24.00/402 (15s) 23.71/349 (13s) 38.44/4k (0.8 hr) 34.6/4.6k (0.9 hr) 32.66/2.6k (0.5 hr)

PnP [1] 25.57/1.7k (14s) 24.54/1.2k (9.6s) 23.48/1.5k (12s) N/A N/A N/A

IntraSeismic 26.34/1.5k (7s) 24.71/457 (2s) 23.25/286 (1s) 40.8/600 (28s) 36.57/262 (13s) 34.59/307 (15s)

Note. SNR/Iterations (total time in seconds or hours) are shown in each entry, and bold is used to indicate the best‐performing algorithm for any combination of model
and noise. Benchmark methods' results are based on the code from [1] Romero, Corrales, et al. (2022) and [2] Ravasi, Romero, et al. (2023).
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(Zhang et al., 2022) within a Primal‐Dual solver. This approach has been shown to achieve state‐of‐the‐art
outcomes in 2D post‐stack seismic inversion. As of the publication date of our paper, we are not aware of any
published implementation of PnP for 3D data. Consequently, we do not include a comparison with PnP in our 3D
synthetic and field data experiments. In the case of DIP (Ravasi, Luiken, et al., 2023), showed that the originally
proposed method becomes sub‐optimal in the presence of noise in post‐stack seismic inversion. This limitation
may stem from the absence of prior information that guides the inversion toward geologically consistent solu-
tions. In our study, we further modify DIP by incorporating the same regularization terms as those used in
IntraSeismic (see Equation 12), and we refer to it as DIP enhanced. We believe that this facilitates a more
equitable comparison between the DIP and IntraSeismic methods, where their main difference lies in the
parameterization of the acoustic impedance model (i.e., a CNN that warps a noise vector into the sought‐after
solution in DIP, and an MLP that transforms coordinates into values of the solution in IntraSeismic). Finally,
we decided not to provide any comparison with state‐of‐the‐art supervised learning approaches as that would
introduce additional factors (e.g., size of the training data set) that greatly affect the quality of the final solution.

4.1.1. Marmousi Model

The Marmousi model (Brougois et al., 1990) is a synthetically created, realistic 2D subsurface velocity model that
emulates complex geological structures with sharp velocity contrasts (see Figure 3i). The Marmousi model is one
the most widely used models in geophysics, thereby serving as a benchmark for various seismic imaging and
inversion algorithms. Figure 3c–3f) illustrate the inversion results for the Marmousi data set at a noise level of
σ = 0.1, comparing standard variational methods, hybrid algorithms, and IntraSeismic. IntraSeismic retrieves a
high‐resolution acoustic impedance image of the Marmousi model, where discontinuities and layer contrasts are
clearly defined. Like PD‐TV, IntraSeismic struggles to capture the layer with the highest impedance, a detail that
the PnP method captures more effectively, as shown in Figure 3g). This difficulty in reproducing precise contrasts
is a recognized limitation of TV regularization. See a detailed profile view of the different results in Figure E1 in
Supporting Information S1.

Figure 4 (left) illustrates the evolution of the loss function over iterations. The curve exhibits a sharp decrease in
the first 50 iterations, followed by a near‐constant behavior, indicating that the network is rapidly learning the
dominant features of the Marmousi model. When looking at the SNR evolution through iterations (Figure 4
(right)), we observe a similar trend: a rapid increase within the first 200 iterations, followed by a plateau,

Figure 3. Inversion of the synthetic 2D Marmousi data set with a noise level of σ = 0.1: (a) seismic data, (b) background model, (c) Tikhonov regularization, (d) TV‐
regularization using the Primal‐Dual solver, (e) Deep Image Prior (DIP), (f) DIP with additional priors, (g) PnP, (h) IntraSeismic, and (i) ground truth.
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demonstrating the fastest convergence rate compared to benchmark methods. Table 1 highlights that IntraSeismic
achieves the highest SNR for the Marmousi model under both noise‐free conditions and noisy data with a standard
deviation of 0.1. However, for the highest noise level (standard deviation of 0.2), the DIP‐enhanced method
achieves a slightly better SNR.

4.1.2. SEAM Model

For our 3D example, we consider a volume of size 180 × 180 × 180, extracted from the SEAM Phase I velocity
model created by the SEG Advanced Modeling Consortium (Fehler & Keliher, 2011). The SEAM model
showcases realistic geological heterogeneities and discontinuities across all three spatial dimensions and exhibits
high contrasts between some of its layers (Figure 5h). Evidently, the IntraSeismic method (Figure 5g) produces
the solution with the highest SNR, leading to a more precise 3D reconstruction of the SEAM model. Similar to the
Marmousi example, IntraSeismic struggled to accurately capture the impedance values of the model's highest
impedance layer, a feature that shares with PD‐TV. See a detailed profile view of the results in Figure E2 in
Supporting Information S1.

Figure 4. Loss (left) and SNR (right) evolution through iterations for IntraSeismic in the inversion of the Marmousi data. The
SNR plot also includes the SNR corresponding to each of the benchmark methods.

Figure 5. Inversion of the synthetic 3D SEAM data set: (a) seismic data, (b) background model, (c) Tikhonov regularization, (d) TV‐regularization using the Primal‐Dual
solver, (e) Deep Image Prior (DIP), (f) DIP with additional priors, (g) IntraSeismic, and (h) ground truth.
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As demonstrated in Table 1, IntraSeismic achieves the highest SNR for all noise levels for the SEAM data set.
Additionally, IntraSeismic consistently required fewer than 400 iterations to converge across all evaluated noise
scenarios, significantly outpacing the benchmark methods, which required more than 2,000 iterations to achieve
their own best results. This is also illustrated in Figure 6 (right), where the SNR evolution over iterations is shown
for IntraSeismic and the benchmark methods in the case of SEAM noisy data (σ = 0.1) inversion. Similar to the
Marmousi example, a steep decrease of the IntraSeismic loss is observed in the first 100 iterations followed by a
plateau –Figure 6 (left).

4.1.3. Field Data: Sleipner Data Set (Static)

The Sleipner data set, a publicly accessible 4D seismic data set, comprises one baseline seismic survey acquired in
1994 and six subsequent monitor surveys acquired in 1999, 2001, 2004, 2006, 2008, and 2010. These surveys are
being used to monitor the continuous injection of CO2 into the saline aquifer of the Middle Miocene/Early
Pliocene Utsira Formation (Chadwick et al., 2010). In the current example, we use only the 2001 full‐stack
seismic data set as we are performing static post‐stack seismic inversion. We use a subvolume of size
300 × 300 × 250 (Figure 7a), which exhibits a predominantly horizontal geology disrupted by strong contrast
values in the CO2 reservoir. In order to be able to invert this data set, we extract a statistical wavelet directly from
the full‐stack data and create a background model (Figure 7b) with the help of well logs acquired in a vertical well.
For more details, we refer the reader to (Romero et al., 2023). Figure 7 shows the inversion results for the
benchmark methods and IntraSeismic. In this case, IntraSeismic and PD‐TV produce results of superior quality
compared to the other methods. IntraSeismic shows smoother transitions in the horizontal direction (a sought‐
after characteristic in geology) and heightened resolution in the vertical direction that accentuates the layer
contrasts. See the detailed profile view of the results in Figure E3 in Supporting Information S1. Figure 8 (left)
illustrates the loss function for IntraSeismic in the inversion of the Sleipner data set, and (right) the relative SNR
computed using the inversion at 500 iterations as a reference. Notably, after 400 iterations, the SNR of the model
output reaches relative stability, oscillating around an SNR of 37. This lack of significant increase is interpreted as
the convergence point.

4.2. Pre‐Stack Seismic Inversion

As mentioned in 3.2, IntraSeismic can be seamlessly extended to directly invert pre‐stack seismic data, simul-
taneously retrieving elastic properties such as P and S‐waves velocity, and density. To showcase the applicability
of IntraSeismic to pre‐stack seismic inversion, we use a portion of the synthetic elastic Marmousi model (Martin
et al., 2006), shown in Figures 9c–9c. Figures 9d–9f illustrate the background models used as starting guesses for
the inversion, which are obtained by smoothing the corresponding ground truth models. Figures 9g–9i present
three of the 21 computed common‐angle gathers (i.e., pre‐stack data at a fixed angle).

Figure 6. Loss (left) and SNR (right) evolution through iterations for IntraSeismic in the inversion of the SEAM data. The
SNR plot also includes the SNR corresponding to the benchmark methods.
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Figure 10 presents the results of pre‐stack inversion using a single IntraSeismic non‐linear mapping module (as
explained in 3.2.1) to produce P‐wave velocity, S‐wave velocity, and density. This approach shows a reasonable
reconstruction of P and S‐wave velocity models, although the latter displays a lower SNR. The estimation of the
density model, on the other hand, appears notably noisier than the other two; note, however, that the density
estimate achieves a higher SNR, which is attributed to the limited value range (2,000–2,500 kg/m3), resulting in a

Figure 7. Inversion of Sleipner data set using IntraSeismic and benchmark methods: (a) seismic data, (b) background model, (c) Tikhonov regularization, (d) TV‐
regularization using the Primal‐Dual solver, (e) Deep Image Prior (DIP), (f) DIP with additional priors, and (g) IntraSeismic.

Figure 8. Loss (left) and relative SNR (right) evolution through iterations for IntraSeismic in the inversion of the Sleipner
data. The reference used for the relative SNR calculation corresponds to the inverted volume at iteration 500 (SNR at the
500th iteration is not shown in the plot).
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naturally lower TV term compared to other inverted properties. Conversely, Figure 11 depicts the results of pre‐
stack inversion using three distinct non‐linear mapping modules frameworks that are simultaneously optimized to
produce P‐wave velocity, S‐wave velocity, and density (as explained in 3.2.2). In this case, the use of three in-
dependent mappings yields a more effective reconstruction of the P and S‐wave velocity models. This is evident
from their visual alignment with the ground truth models (Figures 9a–9c) and improved SNRs compared to those
of the first approach. However, similar to the first method, the density estimate is less accurate compared to P and
S‐wave velocities, resembling a lower‐resolution version of the ground truth model. This issue is well‐known in
pre‐stack seismic inversion and is not specific to IntraSeismic, owing to the limited sensitivity of pre‐stack
seismic data to density variations (Downton, 2005). Consequently, modifying the regularization weights for
each parameter inevitably improves one model at the cost of the others.

Figure 9. Elastic Marmousi model: (a–c) ground truth parameters P‐wave velocity Vp, S‐wave velocity Vs and density ρ, and (d–f) background models. (g–i) modeled
pre‐stack seismic data for angles θ = 0, θ = 20, and θ = 40.
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Figure 13 illustrates the SNR evolution over iterations for each model in both IntraSeismic implementations with
shared and independent non‐linear mapping modules for pre‐stack inversion. Both methods demonstrate swift
convergence for the three models, with the SNR peaks occurring nearly simultaneously and exhibiting stable
behavior after convergence. Additionally, Figure 12 shows the benchmark pre‐stack inversion approach that uses
isotropic TV regularization for each inverted property using the PD‐TV algorithm (Ravasi, Romero, et al., 2023).
Compared to this benchmark, IntraSeismic pre‐stack implementations are superior in terms of inverted models
quality.

4.3. 4D Post‐Stack Seismic Inversion

4.3.1. Synthetic 4D VTI Hess Data Set

We first consider a time‐lapse version of the VTI Hess model (Romero, Luiken, & Ravasi, 2022). The baseline
model alongside the modeled 4D difference are displayed in Figures 14a and 14b. For the post‐stack seismic
modeling operator, we employ a Ricker wavelet with a peak frequency of 15 Hz, accompanied by filtered
Gaussian noise with σ = 0.1 (Figures 14c and 14d). The inversion products from a state‐of‐the‐art variational‐
based 4D simultaneous post‐stack inversion algorithm, as described in (Romero, Luiken, & Ravasi, 2022), are
illustrated in Figures 14e and 14f. This method incorporates TV regularization in both the baseline and monitor
models, as well as in their differences and solves the associated objective function via the PD‐TV algorithm.
Notably, the inversion results obtained by 4D‐IntraSeismic reveal a higher resolution baseline impedance model
(Figure 14g), with an improved SNR in comparison to that of PD‐TV approach (Figure 14e). Furthermore, the
time‐lapse changes estimated by 4D‐IntraSeismic (Figure 14h) present minimal noise associated with the non‐
repeatable nature of the added noise, significantly enhancing our ability (and, possibly, also that of subsequent
automated detection procedures) to identify true time‐lapse changes in the subsurface. In both cases, it is however

Figure 10. Pre‐stack inversion results of a portion of the elastic Marmousi model a single IntraSeismic non‐linear mapping module: (a) P‐wave velocity Vp, (b) S‐wave
velocity Vs, and (c) density ρ.

Figure 11. Pre‐stack inversion results of a portion of the elastic Marmousi model using IntraSeismic with three independent
non‐linear mapping modules: (a) P‐wave velocity Vp, (b) S‐wave velocity Vs, and (c) density ρ.
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worth mentioning that the value of the time‐lapse changes is slightly underestimated. This underestimation can be
attributed to the inherent loss of contrast in TV‐based regularization. Figure 15 displays the SNR evolution for the
inverted baseline model over iterations using both 4D‐IntraSeismic and PD‐TV. 4D‐IntraSeismic demonstrates
faster convergence, reaching an SNR of 35.10 dB in approximately 2,000 iterations. In contrast, PD‐TV requires
over 5,000 iterations to achieve a comparable SNR of 34.94 dB.

4.3.2. Field Data: Sleipner Data Set (Dynamic)

For our dynamic study (4D post‐stack seismic inversion), we select one representative section from the 1994 and
2001 Sleipner full‐stack seismic volumes passing through the most notable 4D effect (Figures 16a and 16b) and
evaluate the effectiveness of 4D‐IntraSeismic when dealing with field data. The results of the benchmark PD‐TV
inversion algorithm are displayed in Figures 16c and 16d), while those from 4D‐IntraSeismic are presented in
Figures 16e and 16f. As far as the baseline model is concerned, the acoustic impedance model obtained from 4D‐
IntraSeismic features enhanced vertical resolution and improved horizontal continuity for most of the layers
compared to the PD‐TV counterpart. Similarly, the 4D difference obtained by 4D‐IntraSeismic more distinctly
delineates the real time‐lapse changes, notably highlighting the host layers of the injected CO2.

5. Additional Features and Discussion
Building upon the core framework of IntraSeismic described thus far, we identify several promising areas of
research that could benefit from the utilization of INRs within IntraSeismic. Here, we provide a preliminary
evaluation of their potential.

5.1. Uncertainty Quantification

Uncertainty quantification is pivotal in any seismic inversion process given
the non‐uniqueness of the seismic inverse problem, the inherent complexity
and variability of the Earth's subsurface, and the previously discussed limi-
tations of the observed data. As such, UQ offers insight into the range of
possible subsurface models that can equally fit the observed data. This
knowledge is instrumental for informed decision‐making in scenarios with
significant financial and environmental implications (R. C. Smith, 2013).
Furthermore, understanding the uncertainties associated with a seismic
inversion product can guide subsequent data acquisition campaigns to refine
results and provide a clearer picture of result reliability and associated risks.
When a neural network is involved directly (via supervised learning) or
indirectly (as a regularizer or preconditioner) in the solution of the seismic
inverse problem, additional uncertainty is introduced in the process. Among
other techniques to quantify such an uncertainty component, Monte Carlo
Dropout (MCD) has been shown to be an effective and easy‐to‐implement
method to quantify the so‐called epistemic uncertainty associated with

Figure 12. Pre‐stack inversion results of a portion of the elastic Marmousi model using PD‐TV: (a) P‐wave velocity Vp, (b) S‐wave velocity Vs, and (c) density ρ.

Figure 13. SNR evolution through iterations for each elastic parameter Vp,
Vs, and ρ using single shared IntraSeismic non‐linear mapping module (1
net), and three independent IntraSeismic non‐linear mapping modules
(3 net).
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network (Gal & Ghahramani, 2016). By retaining the dropout layers during the inference phase, rather than just
during training, and performing multiple evaluations of the network with different neurons “dropped out” each
time, one can obtain samples of an approximate posterior distribution (Kendall & Gal, 2017). We propose to add
dropout layers to IntraSeismic's MLP and to perform MCD sampling once the optimization process is completed.
The proposed technique is applied to the Marmousi model. More specifically, in this case, we apply dropout to
both of the layers of the MLP (Figure 1) with a dropout probability of 0.2, and we compute a total of 100 re-
alizations, which are used to evaluate sample statistics (e.g., sample mean and standard deviation). Figure 17
corresponds to the obtained standard deviation divided by the mean of the Marmousi model parameters that shows

the IntraSeismic's confidence levels and highlights areas in the model with
potential ambiguity in the solution. The layers with higher contrast of
impedance with the surroundings exhibit the highest uncertainty, possibly due
to TV regularization, which might lead to a diminished contrast. Despite the
promising results demonstrated by MCD and its robustness compared to other
UQ techniques (Vasconcelos et al., 2023), UQ within the realm of INRs re-
mains a vibrant area of research within the computer vision community (Goli
et al., 2023; Shen et al., 2022; Vasconcelos et al., 2023). The integration and
adaptation of these UQ methodologies into the IntraSeismic framework is
subject of ongoing research.

5.2. Adding Hard‐Constraints

Well‐log data provide the closest approximation to the ground truth subsur-
face parameters that we aim to estimate via seismic inversion. As such, they
can serve as critical anchor points, ensuring that the seismic inversion results
are consistent with real‐world measurements at specific locations. One way to
incorporate well‐log data in the seismic inversion process is by integrating it
directly into the original optimization framework. This can be achieved by
introducing a soft constraint to the optimization problem as formulated in

Figure 14. Inversion results of 4D‐IntraSeismic applied to the Hess VTI Data set: (a) Reference baseline acoustic impedance model; (b) reference 4D impedance
difference; (c) Modeled post‐stack seismic based on the reference model in (a); (d) 4D seismic difference; (e–f) Baseline impedance model and 4D impedance difference
inversion using the PD‐TV algorithm; (g–h) baseline impedance model and 4D impedance difference inversion using 4D‐IntraSeismic.

Figure 15. SNR evolution for the Hess VTI baseline impedance model using
4D‐IntraSeismic and PD‐TV.
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Figure 16. Inversion results of 4D‐IntraSeismic applied to the Sleipner field data set: (a) Baseline post‐stack migrated seismic data; (b) 4D seismic difference, (c–d)
Baseline impedance model and 4D impedance difference inversion using the PD‐TV algorithm; (e–f) baseline impedance model and 4D impedance difference inversion
using 4D‐IntraSeismic.

Figure 17. Monte Carlo Dropout uncertainty quantification result for Marmousi model: (a) std/mean, the red line indicates
the extracted column shown in (b).
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Equation 10. Specifically, the term γ‖mi − mwell‖
2
2 can be added, where γ is a weighting factor that balances the

influence of the well‐log data, mi represents the model parameters at the well position, and mwell denotes the
measurements from the well‐log. This addition ensures that the inversion solution aligns more closely with the
well‐log observations. An alternative for incorporating well‐log data into the seismic inversion process involves
the application of a hard constraint, which enforces an exact match between the impedance model and the well‐log
data (mi=mwell). This approach is particularly advantageous in instances of highly noisy data where the integrity
of well data is prioritized or in scenarios with numerous wells within a development field, where the objective is to
construct a robust model that accurately reflects all available well data. In IntraSeismic, the integration of well
data can be naturally achieved by redefining the MLP output as follows (Schiassi et al., 2020):

m = (x − xwell)ΔmΘ +mwell (15)

where x represents the coordinate vector, while xwell and mwell denote the coordinates and values of the well‐log
data, respectively. The term ΔmΘ corresponds to the output of the IntraSeismic MLP. Within this framework, the
MLP output ensures compliance with the hard constraint and acts as an update to the well data away from its
position. In case there is more than one well available, Equation 15 can be further modified to include a weighted
interpolation to compute the distance of a given point to the wells.

We implemented the IntraSeismic framework with well‐log as a hard constraint in a single slice of the Sleipner
data set passing through a vertical well. As such, the solution is naturally forced to match the available acoustic
impedance well‐log at the well location. Figures 18a and 18b display the IntraSeismic MLP output mΘ and the
final inverted Sleipner impedance model incorporating well‐log data as a hard constraint, respectively.
Figure 18c) compares the well‐log with the corresponding inverted trace obtained using IntraSeismic without well
information (unconstrained), with well‐log data as a soft constraint, and as a hard constraint. As anticipated,
results with a hard constraint perfectly match the well‐log, whereas the unconstrained inversion deviates
significantly from the well‐log's high‐frequency details. The soft‐constrained inversion lies between the un-
constrained and hard‐constrained solutions.

5.3. Irregular Data Access and Data Compression

Geoscientists are constantly tasked to analyze vast amounts of seismic data, a process usually referred to as
seismic interpretation (Herron, 2011). As such, the property models produced by different seismic inversion
algorithms are commonly visualized along different axes (i.e., inline, crossline, time/depth) or along irregular
surfaces corresponding to key geological horizons. Conventional seismic interpretation software packages
perform such extraction procedures operating directly with data stored on fast‐access file storage systems or on
local memory when the data size allows it.

However, a user must select upfront the layout of the data, placing the most commonly accessed direction over the
fast axis and the least commonly accessed direction over the slow one or replicating the same information over
multiple files with different layouts. In order to reduce the amount of I/O, the seismic industry has recently placed
tremendous focus on compression algorithms, with the popular ZFP data format (Lindstrom, 2014) being widely
adopted in both proprietary and open‐source data formats (e.g., MDIO (Sansal et al., 2023)). A second by‐product
of the IntraSeismic framework is represented by the coordinate‐based parameterization of the sought‐after
acoustic impedance model. As such, the cost of accessing the model values at N (possibly random) co-
ordinates is independent of the location and order of such points. We believe that this unique feature of Intra-
Seismic could revolutionize how seismic interpretation software packages store and access seismic volumes.

Moreover, given that the complete knowledge of the acoustic impedance model is encapsulated within the learned
hash tables and the parameters of the MLP, the IntraSeismic framework can be considered an effective data
compression tool. In this scenario, INRs convert the challenge of data compression into one of parameter or model
compression, a subject that is currently a focal point of research within the image compression domain in the
computer vision community (Dupont et al., 2021). The SEAM model, illustrated in Figure 5, comprises of 5.83
million data points, yet the IntraSeismic framework can represent it with only 1.16 million parameters. This yields
a compression ratio of approximately 5. In contrast, the ZFP compression algorithm achieves a compression ratio
of approximately 15 for the SEAM model, with an error margin of 0.1%. A significant factor in the high
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compression efficiency of ZFP can be attributed to its quantization step performed prior to storing the compressed
data. The compression ratio of IntraSeismic could potentially be enhanced through the quantization of the hash
table and MLP (Dupont et al., 2021; Strümpler et al., 2022), more specifically, by optimizing the hash‐table
parameters through a methodology that incorporates discrete latent and a decoder, as suggested by Girish
et al. (2023).

5.4. Learned Regularizations

The visual similarity of the IntraSeismic results to those obtained using the PD‐TV method (Figures 3, 5, and 7)
stems mainly from the shared use of the TV regularization strategy. Both IntraSeismic and PD‐TV exhibit
challenges in recovering high impedance layers—a feat where the PnP method showed superiority in the Mar-
mousi example. Such limitations might arise from selecting the regularization term itself, which can inadvertently
constrain the framework's modeling capacity, leading to inherent trade‐offs like the loss of contrast commonly
associated with TV regularization. Therefore, future research should aim to explore learned regularization
strategies, including PnP or Regularization by denoising (RED) (Romano et al., 2017), within IntraSeismic‐type
frameworks.

Figure 18. IntraSeismic hard‐constrained inversion of Sleipner data set: (a) multi‐layer perceptron output ΔmΘ, and (b) final estimated acoustic impedance model.
(c) shows the comparison at the well location of the unconstrained, soft‐constrained, and hard‐constrained IntraSeismic inversions.
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5.5. Other Applications

The versatility of the IntraSeismic framework (Figure 1) is underscored by its independence from any specific
form of (seismic) modeling operator, making it a compelling alternative for a variety of seismic‐related inverse
problems. While this study has demonstrated its applicability in the context of static and dynamic elastic
parameter estimation from post‐ and pre‐stack seismic data, the framework can be easily extended to other
reservoir characterization, where for example, one is interested to recover petrophysical parameters (Grana
et al., 2021). Traditionally, this involves a sequential approach where elastic and petrophysical parameters are
inverted separately or a joint approach where seismic data are inverted directly for petrophysical properties
(Bosch et al., 2010; Grana et al., 2021, 2022). More recently, a direct petrophysical inversion method based on
optimal basis functions derived from well log data and rock physics models has been proposed in Corrales
et al. (2024). Both the sequential and direct inversion methods can be seamlessly integrated within the Intra-
Seismic framework, using two cascaded IntraSeismic inversion processes that use modeling operators embedding
the physics of the seismic and rock physics processes, respectively. Moreover, as demonstrated in the pre‐stack
seismic inversion case (Section 3.2), utilizing dedicated non‐linear mapping modules for each inverted property
of interest can lead to improved results. Alternatively, in the case of joint petrophysical inversion, the two
modeling operators could be directly concatenated, enabling a direct mapping from petrophysical properties to
seismic data.

Expanding the range of seismic applications, IntraSeismic is also applicable to seismic imaging problems such as
least squares migration and Full‐Waveform Inversion (FWI). In such cases, the modeling component would be
able to capture the physics of wave propagation in a linear or non‐linear fashion, respectively. Specifically in the
case of FWI, the use of INR has already shown promising results as shown by J. Sun et al. (2023).

6. Conclusions
In this study, we have introduced the IntraSeimic framework, a hybrid deep learning‐based and model‐driven
strategy to solve seismic inverse problems. We presented and critically evaluated the IntraSeismic framework
by applying it to both realistic synthetic and field pre‐stack/post‐stack static and dynamic seismic data sets, and
benchmarked it against prevalent variational approaches and unsupervised deep‐learning‐based methods in the
seismic inversion domain. Our findings underscore IntraSeismic's superior capability in producing high‐
resolution impedance models and faster convergence. Additionally, the IntraSeismic framework's inherent
coordinate‐based parametrization offers revolutionary prospects for the seismic interpretation domain, especially
in terms of data access and compression. Finally, the use of MCD within IntraSeismic's MLP component further
empowers it to quantify uncertainties, a critical aspect in seismic inversion.

Data Availability Statement
All data sets utilized in this study are publicly available. For the synthetic data, please refer to the SEG Wiki page
on Open Data at https://wiki.seg.org/wiki/Open_data. Similarly, for the Sleipner data set, information can be
found at https://co2datashare.org/dataset/sleipner‐2019‐benchmark‐model. To reproduce the results, the code is
publicly available on GitHub at https://github.com/DeepWave‐KAUST/IntraSeismic (Romero et al., 2024).
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