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1 FOURIER BEAM PROPAGATION METHOD

In this section, we provide a comprehensive derivation
to support the use of the multi-slice beam propagation
method. We assume that
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Substitute Eq. 2 to the main paper Eq. 1 and divide

the exp(jk0n0z) on both sides. We can get the following
equation:

∂2a(r)

∂z2
+ 2jk0n0

∂a(r)

∂z
+∇2

⊥a(r) + (k20n
2 − k20n

2
0)a(r) = 0

(3)
We separate the wave amplitude into propagation direction
and lateral directions:

a(r) = a(x, y) exp(γz) (4)

substitute the wave amplitude in Eq. 4 into Eq. 3, and divide
both sides by a(r) we have:
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Since the wave is propagate in the +z directin, we take
the plus sign in Eq. 6. Now, we expand the term inside the
exponential function of the Eq. 6:
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∇2
⊥ represents the Laplacian operator squared in the per-

pendicular (lateral) directions. The wave number in the lat-
eral directions is significantly smaller than the wave number
in the propagation direction. Hence, we have ∇2

⊥ ≪ k20n
2
0.

Additionally, by approximating (n2 − n2
0) = (n + n0)(n −

n0) ≈ 2n0(n− n0) [1], [2], [3]. We can simplify the Eq. 7 to:

(k20n
2
0 +∇2

⊥)
1/2 +

1

2
k20(n

2 − n2
0)(k0n

2
0 +∇2

⊥)
−1/2

= (k20n
2
0 +∇2

⊥)
1/2 + k20

n0

k0n0
(n− n0)

= (k20n
2
0 +∇2

⊥)
1/2 + k0(n− n0)

(8)

substituting this into Eq. 6 and into Eq. 4:

a(x, y, z +∆z) = exp((N +D)∆z)a(x, y, z) (9)

where
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√
k20n

2
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⊥ − k0n0} N = jk0∆n(r)

∆n(r) = n(r)− n0(r)
(10)

We separate the Eq.9 into two parts. One D is a shift-
invariant which is not related with ∆n(r). The other N is
related with ∆n(r). However D and N operator are not
commnute operator, therefore, there will be some error if
we do expansion and write it as:

a(x, y, z +∆z) = exp(N∆z) exp(D∆z)a(x, y, z) (11)

The error can be estimate by the Baker-Campbell-Hausdorff
formula [4], it is related with the slice depth ∆z. By change
to Fourier domain, we can find that the ∇2

⊥ correspond to
the spectrum frequency −k2x−k2y in lateral direction [1]. For
D operator we can explain is as a free propagation from z to
z +∆z:
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= F−1{F [a(x, y, z)]× exp(j∆z
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2
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For N operator we can explain it as phase delay:

a(x, y, z +∆z) = exp(jk0(∆n(r))∆z)a(x, y, z) (13)

Eq. 12 and Eq. 13 are the formulas used in the main paper
Section. 3.
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2 HORN-SCHUNCK OPITCAL FLOW

In order to solve the Eq.(19) in main paper, we change it to
the continuous model and take it as a calculus of variant
problem. For every consecutive two frames, we think that
n(x, y, z, t) as a function of spatial and temporal coordinate
x, y, z, t. Define the u, v, k as the velocity field component in
x, y, z direction. We define a energy function as below:

E(u, v, k) =

∫∫∫
κ1(nxu+ nyv + nzk + nt)

2+

κ2(∥∇u∥2 + ∥∇v∥2 + ∥∇k∥2) dx dy dz
(14)

The nx, ny, nz mean the derivative with respect to x, y, z
coordinate. st mean the temporal derivative.

We want to find the minimum value of this energy
function and its optimal point. Therefore, we use the Euler-
Lagrange equation:
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Then we get:

κ1nx(nxu+ nyv + nzk + nt)− κ2∆u = 0

κ1ny(nxu+ nyv + nzk + nt)− κ2∆v = 0

κ1nz(nxu+ nyv + nzk + nt)− κ2∆k = 0

(16)

The ∆ is the Laplace operator. By solving this linear
equations (16), we can get the optimal point and get the
value of vt for every two consecutive frames.

For the optical flow Eq. (16) we use a matrix free conju-
gate gradient descent algorithm to solve it.

3 IMPLEMENTATION DETAIL

For hardware setup, we use the Thorlab CPS532 laser. The
wave length is 532 nm. We use the COP5-A collimation
adaptor lens to enlarge the laser light. Then the light go
through a ND filter to reduce the brightness. Then it will
go through a collimator which is made of two singlet
lenses like Fig. 1. We build a customized water tank. We
3D print the frame and place two microscope glasses in
the front and back. The camera we use is the FLIR Point
Grey monochrome camera(GS3-U3-50S5M). The pitch size
is 3.45µm We 3D print a camera cap to block the reflection
light of the camera thread and camera base and install it in
the camera mount. We run our algorithm on a workstation
with CPU is Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz
and GPU NVIDIA V100. For the automatic differentiation
optimizer, we use the ADAM optimizer. The learning rate is
0.0001. The weight for the average gradient β is 0.99 without
using the AMSGrad. For the 128× 128× 100 volume recon-
struction, the weight for volume sparsity κ1 is 0.0001 κ2 is
0.01 . For the 1024× 1024× 100 reconstruction κ1 is 0.00001
κ2 is 0.01. We have three image scale for the pyramid optical
flow reconstruction. In implementation, because our tank
and volume is anisotropic in different direction. Therefore,
we have different weight for sparsity for x, y direction and z

direction. For x, y the sparsity weight is 0.0001, for z sparsity
weight is 0.000001.

Our method is not that sensitive to the hyperparameters.
For resolution 128 × 128 × 100, the parameters κ0 varying
from 0.001 to 0.0001, κ1 from 0.01 to 0.001, κ2 from 0.001 to
0.00001 result in AAE varying from 9.13 to 16.76.

4 EXPERIMENT

4.1 AAE and EPE Discussion
The AAE and EPE are defined as:

AAE(vg,ve) = arccos

(
vg·ve+1√

(∥vg∥2
2+1)(∥ve∥2

2+1)

)
(17)

EPE(vg,ve) = ∥vg − ve∥2 (18)

where vg and ve are the ground-truth and estimated ve-
locity. The average angular error (AAE) is a scale-invariant
measure that accommodates both large and small velocities
without amplification of the error signal. However, the AAE
does not account for potential differences in the relevance of
errors in regions of smooth non-zero motion versus errors
in regions of zero motion. Furthermore, the AAE involves
an arbitrary scaling constant of 1.0 to convert the units from
pixels to degrees.

Therefore, in the mean time, we also compute the end-
point error (EPE), which quantifies the Euclidean distance
between the ground-truth and estimated velocities. The EPE
does not suffer from the limitations of the AAE and provides
a more straightforward measure of the accuracy of velocity
estimates [5] .

In order to have a better comparison visualization. We
plot the line profile of the reconstruct particle along the
x, y, z, axis. The result is shown in Fig. 1. For Fig. 1a, we
choose the line profile y = 512 in the YZ projection plane.
w/o Flow mean our particle reconstruction method without
adding the particle motion consistency in Section 4.1 in main
paper. w Flow+DIV mean our method with particle motion
consistency constraint and divergence free physics prior.
Note that the better flow reconstruction can help also help
with the particle reconstruction. From Fig.1a, we can see that
the particle motion consistency constraint and divergence
free prior can help with the particle reconstruction and
mitigate the elongation problem. Our result is very close to
the ground truth. For Fig. 1(b)(c), we choose the x = 512
and y = 512 and plot the line profile along the y axis
and x axis. From Fig. 1, we can see that this method have
better reconstruction in x,y direction than z direction. That’s
because our setup is line in the z direction. The system have
better lateral resolution than the depth resolution.

4.2 Synthetic Flow
We synthesis a rotation flow with formula v(x, y, z) =
−y/

√
x2 + y2 + z2i + x/

√
x2 + y2 + z2j + 0k. The i, j,k

mean the v component in x, y, z direction. Then doing the
same forward simulation like in main paper section 5.1.1.
Then we generate t1 frame synthetic hologram. Then we
warp the particle by this rotation flow. And do the same
forward simulation. We get the t2 frame synthetic hologram.
To closely replicate real-world scattering results, we divided
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Fig. 1. The Particle Reconstruction Result Comparison. (a) is the line profile of reconstructed particle among the z axis. (b) is the line profile of
reconstructed particle among the y axis.(c) is the line profile of reconstructed particle among the x axis.

Fig. 2. The rotation flow reconstruction result. (a)Our reconstructed flow result (b) Ground truth flow (c) Flow reconstructed by Wang method

the entire volume into 1024 × 1024 × 10000 voxels for
the forward simulation of the hologram. The reconstruction
voxel number is 1024× 1024× 100.

Then we take these holograms as our captured im-
ages and run our reconstruction algorithm. The recon-
struction voxel number is 128 × 128 × 100 with scale of
1.38µm× 1.38µm× 30µm for every voxel. The wavelength
is 632nm. Fig. 2a is our reconstruction result. Fig. 2c is the re-
construction result by using the the Wang’s method [6]. For
using this method reconstruction, we do reconstruction for
every hologram independently. Then compute the optical
flow based on the reconstructed volume. The flow ground
truth is in Fig. 2 b. We can see that our reconstruction result
is very close to the ground truth and have better peformance
than Wang’s method. The AAE is about 12.67 and EPE is
about 0.2749. While for the Wang’s method, AAE is 23.68
and EPE is 1.0355.

4.3 Ablation Study
4.3.1 Different Prior Improvment Ablation Study
In order to see how our each prior affect the flow recon-
struction performance, we also did a ablation study. The
result is shown in Fig.3. The w/o Flow & DIV mean our
particle reconstruction without adding the particle motion
consistency and flow reconstruction without adding di-
vergence free term. The w/o DIV mean that our particle
reconstruction method with particle motion consistency but
flow reconstruction without divergence free term. w Flow
+ DIV mean that our particle reconstruction method with
particle motion consistency and our flow reconstruction

with divergence free term. We can see the particle motion
consistency help the most. This because if we have better
particle reconstruction, the flow can be reconstructed more
accurate. The divergence also help to improve the recon-
struction result by constrain it to be divergence free and
decrease more uncertainty.

4.3.2 Plane2Plane and OnePlane2Last Model
We also compute the AAE for the two models. It is shown
in Fig. 4. We can see that because plane-to-plane model
have better value for AAE for different particle density. As
the particle density increasing, the AAE will getting worse
and worse. We can see that there is a little decrease for
the Plane2Plane model. That’s because as particle density
increasing, the more flow detail can be recovered.

4.4 Real Experiment
The real experiment setup with ground is like Fig. 5 up
figure. The optical axis and the translation stage axis are
perpendicular to each other. To enable quantitative assess-
ment of the flow, a tank filled with a high-viscosity liquid
was constructed. So that the particle is fixed in the tank. The
high viscosity liquid is made by PDMS(sylgard 184). PDMS
is a low-viscosity liquid at room temperature and can be
easily molded into different shapes and patterns. To create
the testing liquid, particles were mixed into the PDMS.
Subsequently, the mixture was placed in a vacuum chamber
for degassing to ensure the absence of bubbles within the
liquid. The curing agent was then added to the PDMS in a
ratio of 10:1. Following a curing period of 4 days, the PDMS
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Fig. 3. The flow reconstruction result for AAE and EEP vs epoch

Fig. 4. The plane-to-plane model and one-plane-to-last model for differ-
ent particle density.

transformed into a solid state, effectively immobilizing the
particles within the material. The bottom is the translation
stage figure. The right box is the motion controller. We can
set the moving distance in the control software.
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Fig. 5. Real experiment with ground truth setup. The up figure is the real
experiment setup with ground truth. The bottom is the translation stage
with high-viscosity ground truth tank.


