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Abstract—Particle imaging velocimetry is a classical method in 2D fluid imaging. While 3D extensions exist, they are limited by
practical restrictions of multi-camera systems. Holographic particle imaging velocimetry has emerged as a solution for a simple and
compact 3D imaging system. However, with dense particle seeding, scattering effects become apparent, and the reconstruction quality
suffers, especially in the axial direction. To address these challenges, we propose a simple in-line HPIV approach with a plane-to-plane
propagation model to account for the scattering effect. Instead of independently reconstructing particle volume and flow velocity, we
present a joint optimization problem for particle and flow reconstruction. This optimization problem combines the a differentiable
formulation of the holographic image formation with physical motion priors (incompressible flow and particle motion consistency) to
improve the reconstruction quality. We solve this joint optimization problem using an extendable automatic differentiation and
alternating optimization framework, and we evaluate the proposed method in synthetic and real experiments. The results demonstrate
improved reconstruction quality for both particle density and flow velocity fields. With the plane-to-plane propagation model and physics
prior, we push HPIV a step further regarding particle density, tank depth, and reconstruction accuracy.

Index Terms—Computational Photography, Fluid Imaging, Particle Imaging Velocimetry, Holography
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1 INTRODUCTION

PPARTICLE imaging velocimetry (PIV) [1], [2] is one of
the most-used methods for fluid imaging [3], [4], [5],

[6], [7], [8], and is widely deployed in diverse fields, such
as fluid dynamics, combustion, biology, computer vision,
and computer graphics. The technique involves introducing
small tracer particles into the flow. The flow velocity field
is reconstructed by tracking the motion of these particles
using a variety of different algorithms. Basic PIV can only
obtain the 2D flow field in a planar slice (2D-2C) [9]. Some
extension into 3D include scanning PIV (3D-2C) [10], [11],
as well as Stereo-PIV [12], [13] and Tomographic PIV [14]
which can reconstruct the full 3D-3C field but requires mul-
tiple cameras. Multi-camera setups are often complicated in
real fluid experiments due to complex tank geometries or
space restrictions.

To enable a single-camera capture setup, holographic
particle imaging velocimetry (HPIV) has been pro-
posed [15], [16], [17], [18], [19], [20]. Most previous HPIV
methods partition the volume into many slices along the
optical path direction and assume that each slice is illumi-
nated by a plane wave and that the perturbed wavefront
is directly propagated to the image sensor. In other words,
these legacy methods do not model light interactions with
other particles either in front of or behind the current plane.
As we show in our experiments, this approach degenerates
strongly for higher particle densities. This is problematic for
fluid imaging since high particle densities are required to
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resolve small vortices and other features.
As particle density increases, it becomes increasingly

important to inter-slice interaction and the effects of scatter-
ing. Recently, a plane-to-plane multi-slice beam propagation
method [21], [22], [23], [24], [25], [26] was proposed for
cell imaging to account for the scattering effect. This model
includes the interaction between slices and accounts for the
scattering effects. In this method, the output light field from
the previous plane is used as the input light field for the
next plane. By using this method, one can account for the
scattering effect in holographic reconstruction.

On top of this plane-to-plane transport model, several
algorithmic improvements are still possible to improve the
reconstruction quality. First, most of the previous methods
formed particle reconstruction and flow velocity field recon-
struction separately. This pipelined reconstruction approach
accumulates errors from one task to another. Second, the
legacy methods suffer from a low axial resolution corre-
sponding to a high uncertainty for the z-coordinates of
particle positions. In this work, we show that the physics
priors can also be used to increase this axial resolution of
the system.

While most previous methods formulate the PIV recon-
struction problem as an optimization problem with manu-
ally derived analytical gradients, this approach makes it dif-
ficult to incorporate more complex image formation models
such as the plane-to-plane transport. Here, we show how
to combine the optimization-based approach that enables the
use of physical motion priors with an automatic differentiation
approach [27] that allows for the use of a complex forward
model. In summary, our contributions are:

• we are the first to account for the scattering effect
in (Holographic) PIV. We utilize the plane-to-plane
multi-slice beam propagation model to simulate the



Fig. 1. The proposed approach. Top: Setup based on simple and compact in-line holography. A camera captures multiple frames of holograms.
Bottom: Plane-to-plane propagation model. The particle volume frame is discretized into thin slices. For every slice, we simulate the plane-to-plane
transport and the complex wave modulation, as depicted on the bottom right. The joint optimization problem, including physical motion priors and
divergence-free projection, is presented in the center.

light scattering effect using an automatic differentia-
tion framework;

• we combine the new forward model with physical
motion priors for the recovered flow field, forming a
joint problem for both particle densities and motion
fields.

In this study, we conducted ablation experiments on
different particle density scenarios, which demonstrate that,
as particle density increases, the scattering phenomenon
becomes more pronounced and cannot be ignored in high-
density particle PIV reconstruction. In the ablation study,
we compare the results of plane-to-plane and one-plane-
to-last, two different models for different particle densities.
We show the effectiveness of the proposed plane-to-plane
propagation model. This model can effectively account for
scattering effects and significantly improve reconstruction
quality for higher-density particle PIV reconstruction.

Furthermore, we conducted additional ablation experi-
ments to assess the efficacy of our proposed motion con-
sistency prior, physical divergence-free prior, and effective-
ness of multiple frame measurement in holographic par-
ticle imaging velocimetry. Our results showed that with
our proposed prior and multiple measurements, we have
successfully surpassed the previous limitations in particle
density, tank depth, and reconstruction accuracy.

2 RELATED WORK

Particle Image Velocimetry Particle Image Velocimetry
(PIV) is the most widely used method for flow imaging [1],

[2]. However, the traditional approach can only measure
the in-plane motion within a slice of the volume (2D-2C).
To overcome this limitation, various approaches have been
proposed. The Stereo-PIV uses two cameras to obtain the
3D velocity component (2D-3C) [12], [13]. 3D Scanning PIV
(SPIV) (3D-2C) [10], [11] uses a fast scanning laser to sweep
the light sheet to cover the full reconstruction volume. How-
ever, it trades the third dimension for temporal resolution,
making it more difficult to image fast flows.

To obtain 3D flows over the full 3D volume (3D-3C),
more sophisticated techniques have been proposed, includ-
ing defocus [28], [29], [30], synthetic aperture PIV [31], tomo-
graphic PIV (tomo-PIV) [14], [32], structured-light PIV [33],
[34], plenoptic (light field) PIV [35], [36]. Most of the above
systems either require multiple cameras or require some
special cameras that trade spatial resolution for angular
resolution. The setup is not that simple for real fluid ex-
periments with complicated tank geometries. Some systems
can achieve the PIV task with a single-camera setup, like
Rainbow PIV [33], [37]. Rainbow PIV encodes the depth
into color to achieve single-camera 3D-3C PIV, albeit with
low-depth resolution.

HPIV [15], [16], [17], [18], [19], [38], [39] has recently
emerged as a promising solution to achieving single-camera
particle image velocimetry. HPIV utilizes holography to
encode depth information, which is represented by the
hologram’s ring pattern. Only one camera is required. Its
setup is remarkably simple and easily implementable. It is
demonstrated that particles can be reconstructed very well



with the help of prior information. Furthermore, the recon-
struction of flow fields enables the investigation of turbu-
lence dynamics. Chen et al. [40] propose a joint optimization
approach for flow and particle reconstruction. Our method
differs from theirs in two main aspects. Firstly, their method
does not account for the scattering effect. They utilize a
single-slice-propagate-to-the-last-camera model, which we
refer to as the ”one2last” model in Section 5.2. In Section 5.2
(Plane2Plane and OnePlane2Last) and supplementary Sec-
tion 4.3.2, the results demonstrate that, particularly for
higher density values, our approach outperforms theirs in
terms of flow average absolute error (AAE) and particle
localization. The second major distinction lies in the absence
of a physical constraint on the flow of their method. In our
research, we enhance their approach by incorporating an
incompressibility physical prior. This additional constraint
contributes to the improved performance of our method, as
discussed in Supplement Section 4.3.1.

Imaging of Scattering Media The scattering problem
would be important in the holographic PIV, especially when
the particle density is high. The particle scattering is some-
thing that can not be ignored. There are several popular
models for scattering medium imaging. The first model is
the Lippmann-Schwinger equation. To solve this nonlinear
equation, either the Born or the Rytov approximation is
used [20], [41], [42], [43], [44]. The primary limitation of this
approach is its high cost in terms of both computational time
and memory consumption, which restrict its applicability to
small-scale problems.

The second method is the multi-slice beam propagation
method (BPM). It is memory efficient and can handle rela-
tively large-scale objects. Eckstein et al. verify the accuracy
of the beam propagation by comparing it with the FDTD
full-wave simulation, showing that the BPM is accurate.
Lei and Waller propose a multi-slice model [26]. Kamilov
et al. [21], [22], [23], [24] have a more rigorous analysis of
this scattering process and derive the propagation formula
from Maxwell equations. The process is accounted for as
diffraction and phase delay, with the latter being determined
by the difference in refractive index between the object
and background medium. The physical explanation for this
scattering is attributed to the refractive index discontinuity
in the medium. However, their method necessitates the mea-
surement of the complex field, increasing the complexity of
the setup. Furthermore, it should be noted that their method
is primarily aimed at cell imaging.

Based on this method, Wang et al. [25] propose a beam
propagation method for particle reconstruction. The authors
then combine this image formation model with a sparsity
prior to form an optimization problem that is solved with
FISTA using manually derived gradients. This approach
eliminates the need for a complex field and requires only the
intensity image. They also verified the accuracy of the BPM
forward simulation result by comparing it with the experi-
mentally captured hologram. Their paper primarily focuses
on single-frame particle reconstruction, while our research
is centered around HPIV. Although both topics involve the
reconstruction of particles, our goals differ significantly.
Their study places more emphasis on particle reconstruc-
tion, whereas our primary focus lies on flow reconstruction.
Regarding the methodology, a key distinction between our

paper and theirs is the incorporation of motion consistency
and divergence-free prior in our approach. Additionally,
we integrate flow reconstruction into a joint optimization
problem, which sets our method apart from theirs. Notably,
their method solely utilizes a single-frame hologram as in-
put, whereas our approach can leverage multiple frames to
improve the depth resolution of the particle reconstruction.

3 SCATTERING HOLOGRAPHIC IMAGING MODEL

The wave equation for the propagation of monochromatic
light in a volume is given as:

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
+ k2(r)u = 0, (1)

k(r) = k0n(r) (2)

where k(r) is the wavenumber of the volume in the tank
and k0 is the wavenumber in the vacuum. n(r) is a scalar
field representing the spatial distribution of the refractive
index in the volume. Observing the equation, we can see
that the final optical field solution is only related to the
refractive index distribution. Assuming that the tank only
has liquid and a number of identical particles, n(r) can be
decomposed into two parts:

n(r) = n0 +∆n(r), (3)

where n0 is the background medium refractive index
and ∆n(r) is the refractive index perturbation caused by
the particle. In our case, the background medium is liquid.
For ∆n(r), we assume that all the particles have the same
refractive index, so it is just the difference between the par-
ticle refractive index and the background liquid refractive
index.

The particles in the liquid form an inhomogeneous
medium that we can divide into N very thin slices. Within
each slice, the medium is assumed to be homogeneous in the
z direction. We assume that the wave with a slow variation
amplitude a(r) propagates in the z direction and has the
form:

u(r) = a(r) exp(jk0n0z) (4)

Within each slice, light propagates and interacts with
particles. We have rigorous derivation in the supplement.
Intuitively, there are two steps: one is light propagation, and
another is the phase delay caused by particle perturbation.
After discretization, the whole process can be expressed by
the following expression [25]:

Uk(n) = diag(pk(nk))H∆dUk−1(n) (5)

Here Uk(n) is the light field after the kth slice, and
n is the volume refractive index. H∆d is the operator for
propagating by a distance ∆d within slice k. In the Fourier
domain, it can be written as H∆d = FHdiag(h)F. The
FH and F are the Fourier transform and inverse Fourier
transform, respectively. ·H is the conjugate transpose. The
diag(h) is a diagonal matrix formed by the vector h. It
implements element-wise operations on every slice. h is the
propagation kernel.



h = exp[j∆d(
√
k20n

2
0 − kx

2 − ky
2 − k0n0)], (6)

where kx and ky are the spatial frequency component in
the x and y direction. A rigorous derivation of this formula
can be found in the supplement. Note that the term inside
the parenthesis is just the angular spectrum kernel minus
k0n0. Phase is a relative term; a constant phase delay does
not change the amplitude distribution. When kx and ky are
zero, which means there is no perturbation in the medium,
and the phase term will not change. This makes sense
because if parallel light propagates in a homogeneous, uni-
form medium, it will not change the amplitude distribution.
diag(pk(nk)) is the phase delay for every pixel. Its kernel
can be expressed in the following form:

pk(nk) = exp(jk0∆dnk) (7)

Here the nk is the refractive index distribution in the kth

slice.
After the last slice, the exit field propagates in free space

by a distance dcam to the camera sensor. The intensity is our
predicted hologram Î. This part may have relatively long
free space propagation. We choose the angular spectrum
propagation kernel [45] for the kernel in H′

dcam
.

Î = |H′
dcam

UN(n)|2 (8)

The above is the forward simulation process. The cor-
responding inverse problem is used for reconstructing the
particle volume from the captured hologram. Due to the
complexity of the model, no closed-form solution is avail-
able for this problem. Instead, we formulate the inverse
problem as a joint optimization problem, where the opti-
mization objective is to minimize the discrepancy between
the captured hologram and the simulated hologram of the
reconstructed particle volume. To this end, we incorporate
physical incompressible prior and motion consistency prior
into the optimization process. These priors enable us to reg-
ularize the optimization process and improve the accuracy
of the reconstructed particle volume. And we solve this
optimization problem with Automatic Differentiation (AD)
and an alternative optimization framework. In the following
section, we provide a detailed description of the proposed
methodology.

3.1 Discussion
We would like to highlight that the refractive index of our
particles is 1.59, while the refractive index of the background
liquid is 1.33. Additionally, our particle diameter is about
40 µm, and the wavelength of the incident light is 0.6 µm,
i.e. the particle size is much larger than the wavelength.
Therefore, the scattering in our experiment is the Mie scat-
tering. In the Mie regime, with the stated refractive index,
most of the energy is forward-scattered at each particle [46],
which justifies the chosen propagation model that is in effect
a single scattering model that discards the reflection of light
backward at each particle.

If significantly smaller particles or longer wavelengths
were to be used, one would have to replace the model with
a significantly more complex bidirectional propagation (see
e.g. [47].

4 PHYSICS-BASED HOLOGRAPHIC PARTICLE
IMAGING VELOCIMETRY

Flow fields and particles are coupled with each other.
Different frame particles are driven by the flow velocity
field. In our work, we consider the flow velocity field and
particle field reconstructions as joint reconstructions so that
we can have more information and more constraints for both
unknowns. Aggregating temporal information coupled with
physical constraints improves the particle positions, which
in turn improves the flow estimates.

This work focuses on the study of incompressible fluids,
a common situation in many turbulent fluid analyses. Our
approach involves starting with the Navier-Stokes equation
and then incorporating the incompressible constraint as a
prior in the optimization problem. In the end, we arrive at
the following optimization model:

(v∗,n∗) = argmin
v,n

T∑
t=1

∥Ît(nt)− It∥22 + κ0

T∑
t=1

∥nt∥1+

κ1

T−1∑
t=1

∥∇tnt +∇snt · vt∥22 + κ2

T−1∑
t=1

∥∇vt∥22

s.t. vt = ΠCDIV
(vt) nt = Π[0,1](nt)

(9)
n = [n1,n2, . . .nT]

t is the refractive index for T frames.
v = [v1,v2 . . .vT−1]

′ is the flow velocity field for T − 1
frames. Ît(·) is the forward process that we described in
Section 3. t is the frame number, κ the loss weight, while∇t

and∇s respectively refer to the temporal and spatial deriva-
tives. ΠCDIV

refers to a divergence-free projection, which
will be described in Section 4.2.1. To solve this problem, we
will split it into two subproblems: one is particle volume
reconstruction and the other is velocity field reconstruction.
We use an alternative optimization framework to solve this
problem. In the following sections, we will describe them in
detail.

4.1 Particle Volume Reconstruction

The first subproblem is to optimize for refractive index n
representing the particle distribution in the volume. There-
fore, we assume the other unknown velocity field v is a
constant during this step. Then the Eq. 9 becomes:

n∗ = argmin
n

T∑
t=1

∥Ît(nt)− It∥22 + κ0

T∑
t=1

∥nt∥1+

κ1

T−1∑
t=1

∥nt+1 −Ωvtnt∥22

s.t. nt = Π[0,1](nt)

(10)

Here, Ωvt refers to a volume warp operation that warps
an existing particle field using the velocity field vt. The
third term in Eq. 10 is the particle motion consistency term,
which is necessary to account for the temporal coherence
and continuity present in real flows. This term ensures
that the particle volume at time t, warped by the velocity
field vt = (ut, vt, kt), aligns with the subsequent frame. By
enforcing temporal coherence, it enhances particle position



estimation once the velocity field is estimated and integrates
the reconstruction of all frames into a single optimization
problem. Π[0,1] refers to the projection of element to the
interval [0, 1], which is a convex operator.

4.1.1 Automatic Differentiation

We solve this optimization problem by using gradient de-
scent with step size τ (L refers to the optimization term
from Eq. 10):

nn+1 = nn − τ∇L(nn) (11)

To efficiently and accurately compute gradients ∇L,
we leverage automatic differentiation in PyTorch, which
uses the chain rule to trace derivative information through
complex calculations. For example, by chain rule, for Eq. 10,
we have:

∂L
∂n

=
∂f1
∂n

+κ0
∂f2
∂n

+κ1
∂f3
∂n

=
∂ÎT

∂n
· ∂f1
∂Î

+κ0
∂f2
∂n

+κ1
∂f3
∂n

,

(12)
where f1 =

∑T
t=1∥Ît(nt)− It∥22, f2 =

∑T
t=1∥nt∥1 and f3 =∑T−1

t=1 ∥nt+1 −Ωvtnt∥22.
For f1, if we want to find the gradient, we need to trace

derivatives back to the light field of every slice, which leads
to expressions Eq. 5 and Eq. 8. Note that Eq. 5 describes
a complex-valued function of complex variables. For such
functions to be differentiable everywhere, they have to be
holomorphic, which is not the case here. However, we can
introduce the Wirtinger derivatives [48] so that even if the
function is not holomorphic, we can still get the gradient
and do gradient descent. The Wirtinger derivatives of a
complex variable and its complex conjugate are defined as

∂

∂Uk
=

1

2
(

∂

∂ℜ[Uk]
− j

∂

∂ℑ[Uk]
)

∂

∂Uk

=
1

2
(

∂

∂ℜ[Uk]
+ j

∂

∂ℑ[Uk]
)

(13)

Using the corresponding chain rule [48] on the optimiza-
tion term L from Eq. 5, we get:

∂L
∂Uk−1

=
∂L
∂Uk

∂Uk

∂Uk−1

+
∂L
∂Uk

∂Uk

∂Uk−1

(14)

We know that ∂L
∂Uk

= ∂L
∂Uk

, while ∂Uk

∂Uk−1
and ∂Uk

∂Uk−1
can

be obtained from combining the Wirtinger derivative Eq. 13
and Eq. 5.

4.2 Velocity Field Reconstruction

In our work, we focused on studying an incompressible
fluid, which is a common scenario in fluid imaging. There-
fore, we add this incompressibility assumption as a physical
prior to the flow reconstruction. It is a very strong prior,
which decreases uncertainty in the flow solution. In this
section, we introduce the incompressible physical prior and
its implementation known as pressure projection.

4.2.1 Incompressibility
A classical result from fluid mechanics is that incompress-
ible flows are divergence free or solenoida, with v = vsol and

∇ · vsol = 0 (15)

This property can be used as a prior in fluid reconstruc-
tion tasks [33], [49]. The Helmholtz decomposition provides
a powerful framework for analyzing general vector fields
and deriving such a prior. Specifically, the Helmholtz de-
composition allows us to decompose an arbitrary vector
field v into its solenoidal (divergence-free) and irrotational
(curl-free) components. Furthermore, any curl-free vector
field can be interpreted as the gradient of a scalar field, in
our case P/ρ where P is the scalar pressure field, and ρ is
the scalar mass density field [33]. Therefore, the Helmholtz
decomposition can be expressed as:

v = vsol +∇P/ρ (16)

From the vector identities, vsol and ∇P/ρ are orthog-
onal subspaces [49], meaning that we obtain the closest
incompressible (solenoidal) flow vsol to an arbitrary input
velocity field v by subtracting the curl-free component. This
curl-free component can in turn be calculated by taking the
divergence of both sides of Eq. 16, yielding

∇ · v =∇ · vsol +∇2P/ρ
=∇2P/ρ

(17)

Eq 17 indicates that the curl-free field P/ρ, also known
as the pressure gradient can be obtained from the original
flow field by solving a Poisson equation. The pressure
gradient is then subtracted from the original flow to yield
the incompressible (solenoidal) flow. It is worth noting that
this projection of v onto vsol is a projection ΠCDIV

onto a
convex set, and can therefore be interpreted as a proximal
operator [49]:

vsol = ΠCDIV
(v) = v −∇P/ρ (18)

4.2.2 Optimization
Incorporating the above derivation as a physics-based prior,
we aim to reconstruct the flow velocity field by incorpo-
rating the incompressible physical prior. This serves as an
alternating optimization step within Equation (9), with the
particle volume n treated as a constant. The optimization
problem can be formulated as follows:

v∗ = F = argmin
v

κ1

T−1∑
t=1

∥∇tnt +∇snt · vt∥22

+ κ2

T−1∑
t=1

∥∇vt∥22

s.t. vt = H = ΠCDIV
(vt)

(19)

Eq. 19 can be considered a variant of the Horn-Schunck
optical flow model [50]. The term ∥∇vt∥22 enforces smooth-
ness and sparsity in the flow field changes. The problem
can be treated as a constraint optimization problem and



Fig. 2. One particle reconstruction result comparison (a) Wang method
reconstruction result (b) Our method of reconstruction results (c) Syn-
thetic particle ground truth

transformed into an augmented Lagrangian function. We
solve it using the ADMM (Alternating Direction Method of
Multipliers) framework.

Algorithm 1 ADMM Framework of Computing Fluid Ve-
locity Vector Fields

1: procedure OPTICALFLOWDIVFREE(F,H)
2: for from 1 to ADMM iterations do
3: vt

n+1 ← proxσ1F (zn − qn) ▷ u optimization
4: zn+1 ← proxτ1H (vn+1 + qn) ▷ z optimization
5: qn+1 ← q+ vn+1

t − zj+1 ▷ scaled dual variables
update

6: end for
7: end procedure

The F proximal operator is just the Horn-Schunck
optical flow problem. For the detailed derivation of this
proximal operator, please refer to the supplement. means
projecting a velocity field into divergence-free space. The
projection is implemented by Eq. (17) and Eq. (18). To
deal with large displacements, we build a coarse-to-fine
pyramid architecture. We first did a Gaussian blur and made
a pyramid of different scales of volumes. Then, we begin
computing the flow with the coarse volume. This result will
be the initial value for the next level optical flow field.

5 EXPERIMENTS

In this section, we present the results of our experiments
using both synthetic and real experimental data. Specifically,
we conducted some ablation studies to examine the impact
of particle density, tank depth, frame number, and a plane-
to-plane model on the reconstruction performance of our
proposed method. Our findings demonstrate the signifi-
cance of employing the plane-to-plane model to account
for the scattering effect and the resultant improvement in
reconstruction performance due to the inclusion of the phys-
ical prior. The metrics we use to evaluate the reconstruction
quality are the average angular error (AAE) [51] and the
average endpoint error (EPE) [52]. Detailed discussion and
expressions for AAE and EPE can be found in the supple-
ment.

5.1 Synthetic Data
5.1.1 Particle Reconstruction Result
In this section, we conducted a simulation using synthetic
data. First, we generated particles with a diameter of ap-
proximately 40 µm. Subsequently, we generated a rotation

flow using the formula described in the supplement Section
4.2. Based on this flow, we calculated the particle position
transformation to obtain the next frame particle volume. It is
important to acknowledge that acquiring a ”ground truth”
scattering light field for multiple particles on a large scale is
a challenging task. The FDTD can get an accurate result, but
for this physical scale, the FDTD is infeasible. As mentioned
in Section 2 and Section 3 the BPM is considered accurate
enough based on the Mie scattering regime in the relatively
sparse volume density of particles. Therefore, we employ
BPM simulation as the ”ground truth” hologram to evaluate
different reconstruction methods.

Figure 2 shows one particle reconstruction result. The
3D volume was projected onto the YZ plane, and the value
was averaged along the x direction. We place a zoom-in
patch beside the reconstructed particle for better observa-
tion. Figure 2a, referred to as the Wang method [25], a long
tail is observed, indicating uncertainty regarding the particle
position. This is associated with single-camera reconstruc-
tion. Single-camera settings result in information being lost
about the particle shape and a missing part in the frequency
domain (the missing cone problem [53]). On the other hand,
our method in Figure 2b incorporates additional physical
priors and utilizes multiple measurements, resulting in a
more accurate and robust particle reconstruction. Notably,
our approach effectively addresses the issue of particle elon-
gation, leading to improved depth accuracy. Finally, Figure
2c shows the synthetic particle ground truth, which is very
close to our reconstruction result. These results demonstrate
the effectiveness of our method in accurately reconstructing
particle shape and position.

The results of the multiple particle reconstruction are
presented in Fig. 3. We generated 50 particles and recon-
structed them using a voxel scale of 1.38 × 1.38 × 30
µm and a reconstruction grid size of 128 × 128 × 100.
Our method is observed to produce sharper reconstruction
results than Wang’s method [25]. “w/o Flow+DIV” refers to
our particle reconstruction method without adding the par-
ticle motion consistency and divergence-free physics prior.
“w Flow+DIV” means our full method with all priors. It can
be observed that the particle motion consistency constraint
and divergence-free physics prior significantly improves the
reconstruction quality and mitigate the elongation problem,
as evidenced by the sharper reconstructed particle shapes
in Fig. 3b-c. Additionally, it is worth noting that better
flow reconstruction can also improve particle reconstruction
results. Our reconstructed particles are observed to be very
close to the ground truth.

5.1.2 Flow Reconstruction Result
To quantitatively evaluate the performance of our algorithm
on real-world flows, we conducted experiments on the Johns
Hopkins Turbulence Database (JHUTDB) [54], which con-
tains high-resolution measurements of turbulence in various
configurations. Specifically, we tested our algorithm on a
flow from the Forced Isotropic Turbulence configuration,
as shown in Fig. 4. The reconstruction volume consisted of
128 × 128 × 100 voxels with a physical scale of 27.6 × 27.6
× 50 µm, and we simulated 500 particles in the flow.

Our reconstruction results for this realistic flow are also
very good, as evidenced by an AAE of 13.83 and EPE of



Fig. 3. Multiple particle reconstruction result comparison. (a) Wang method reconstruction result (b) Our particle reconstruction method without
adding particle motion consistency and incompressible prior (d) Our method reconstruction results with particle motion consistency and incom-
pressible prior (d) Synthetic particle ground truth

0.3648. The detail of the flow can be recovered very well.
More synthetic flow reconstruction results are provided in
the supplementary materials.

5.2 Ablation Study

Particle Density and Tank Depth Impact This section
presents an ablation study to investigate the influence of
different particle densities and tank depths on the PIV re-
construction results. The results are summarized in Table 1,
where the AAE and EPE values are reported. The symbol
’-’ indicates reconstruction failure. ppp means particle per
pixel, i.e. it refers to the 2D density of the particles in the
image plane, which is a common metric to evaluate the par-
ticle density in PIV experiments. As expected, a declining
trend occurs in reconstruction accuracy with an increasing
tank depth and particle density. However, the proposed
method exhibits promising results for a wide range of
particle densities. Additionally, the proposed method has
better performance and can achieve some reconstruction
depth that Wang’s method [25] cannot.

Plane2Plane and OnePlane2Last We conducted an ab-
lation study to investigate the influence of plane-to-plane
propagation on PIV reconstruction for different particle
densities because a denser particle can recover more detail
of the fluid flow. Therefore, particle density is a crucial
factor. However, denser particles also lead to more signif-
icant scattering effects. To address this issue, the plane-to-
plane propagation approach was introduced. This approach
accounts for the interaction of scattering light across differ-
ent planes, enabling it to consider the scattering effect. In
comparison, most HPIV methods use the one-plane-to-last
approach, which does not consider the interaction between
planes. Therefore, we conducted this ablation study to in-
vestigate the influence of the scattering effect on the PIV
reconstruction process and evaluate how our plane-to-plane
model can improve the results. In comparison, most HPIV
methods use the one-plane-to-last approach, which does not
consider the interaction between planes inside the volume.
To evaluate the effectiveness of the plane-to-plane model,
we conducted a comparison study with the one-plane-to-
last method, where the light field of each slice is propagated
directly to the camera plane with the angular spectrum

propagation kernel H′. The hologram is obtained by sum-
ming the propagated field of each slice. Unlike the plane-to-
plane propagation approach, there is no interaction between
different planes inside the volume with this method. In the
experiment, we varied the particle density from 0.006 to 0.04
and used two models for the reconstruction. Two frames
(T = 2) with a voxel number of 256× 256× 100 were used,
and the ground-truth flow was from isotropic 4096 in the
JHTDB. The center of the reconstructed particle was com-
puted and compared with the ground-truth particle center.
The results are shown in Fig. 5, where the first row displays
the plane-to-plane reconstruction result and the second row
displays the one-plane-to-last reconstruction result. As the
particle density increases, the number of wrong reconstruc-
tions (red dots) and missing reconstructions (green dots)
increases for both methods. However, the plane-to-plane
reconstruction has fewer red and green dots compared to
the one-plane-to-last method. Furthermore, we computed
the AAE value for the reconstructed flow velocity field at
different particle densities for both models, as presented in
Fig. 4 in the supplement. The plane-to-plane model achieved
better AAE values for almost all particle densities, demon-
strating its effectiveness in accounting for the scattering
effect. In conclusion, this ablation study demonstrates that
the scattering phenomenon cannot be overlooked in high-
density particle PIV reconstruction. The proposed plane-to-
plane model provides a better result for higher-density PIV
reconstruction by accounting for the scattering effect.

Number of frames We conducted an ablation study to
investigate the influence of the number of frames on the PIV
reconstruction results. Longer sequences can provide more
temporal information that can be aggregated to improve
both the velocities and the particle densities. To demonstrate
this effect, we conducted an experiment using 2 measure-
ment frames (T = 2) and 5 measurement frames (T = 5) for
velocity field reconstruction. We generated different particle
densities varying from 0.02 to 0.3. The reconstruction voxel
number is 128×128×100. The ground-truth flow is isotropic
1024fine from JHTDB. We did reconstruction by using 2
frames and 5 frames at different particle densities.

We computed the AAE for two frames and five frames
of velocity field reconstruction under different particle den-
sities. The AAE results is provided in Fig. 6.

From Fig. 6, the five frames reconstruction has a bet-
ter AAE value than the two frames reconstruction results.



Fig. 4. The turbulent flow reconstruction result (a) Synthetic particle hologram frames (b) Our reconstructed flow result (c) Ground truth flow

TABLE 1
The Quantitative evaluation (AAE in degree / EPE in voxel) of different particle densities at different tank depth.

Tank depth(mm)
Particle Density(ppp) 1 2 3 4 5

Wang(AAE/EPE) 15.42/0.3788 19.37/0.6211 22.66/0.9113 - -0.002 Our(AAE/EPE) 9.68/0.2537 10.32/0.2648 9.82/0.2583 13.24/0.3318 14.63/0.3592
Wang(AAE/EPE) 16.58/0.3974 19.21/0.5922 23.46/0.8972 21.84/0.9827 -0.004 Our(AAE/EPE) 9.23/0.2439 10.67/0.2685 9.97/0.2677 12.98/0.3197 13.26/0.3418
Wang(AAE/EPE) 16.75/0.4176 19.48/0.6812 22.13/0.9615 - -0.006 Our(AAE/EPE) 10.33/0.2862 11.47/0.2981 10.59/0.3022 12.69/0.3135 14.18/0.3413
Wang(AAE/EPE) 16.82/0.3886 19.24/0.5463 23.03/1.1614 - -0.008 Our(AAE/EPE) 11.83/0.3071 11.23/0.2877 11.42/0.2861 13.46/0.3382 15.13/0.3674

Fig. 5. Plane-to-plane model vs. the one-plane-to-last model. The center of the reconstructed particle is computed and compared with the ground-
truth particle center. All the images are in the YZ projection plane.



Fig. 6. Reconstruction AAE as a function of particle density (particles
per pixel). We show reconstructions from two frames and five frames.
Reconstruction quality degrades with increasing density, and the degra-
dation is substantially slower for five-frame sequences because these
can aggregate more temporal information with the physical motion pri-
ors.

Moreover, employing more frames enables us to achieve a
density of 0.3 particles per pixel with good accuracy.

To further analyze the reconstruction accuracy, we com-
puted the reconstructed flow velocity field error by subtract-
ing the reconstructed velocity field from the ground-truth
velocity field. The error magnitude results are presented in
Fig. 7, where red indicates higher errors and blue indicates
smaller errors. As expected, the five-frame reconstruction
has a lower error than the two-frames reconstruction, indi-
cating that more frames provide more information for the re-
construction, yielding more accurate results. In conclusion,

Fig. 7. Error magnitude for two frames and five frames flow velocity
reconstruction. Five-frame reconstruction presents the velocity field be-
tween the first and the second frames.

the experiment demonstrates that increasing the number of
measurement frames improves the accuracy of PIV recon-
struction. The results reveal that using more frames can lead
to a higher particle density and a more accurate velocity
field reconstruction, which is beneficial for applications that
require high-fidelity flow information.

5.3 Real Experiments
5.3.1 Experiment with Ground Truth
We evaluated the performance on the captured hologram
of real flows. For a quantitative assessment of the flow, we

filled a tank with a high-viscosity liquid, so that the particle
positions are frozen in place. The particle size is about 40
µm. We placed the tank in the translation stage (Thorlabs
XYT1/M), which moves in a direction (the x direction) that
is perpendicular to the optical axis. The setup description
and figure are in the supplement Section 3, 4.4 and Fig. 5.
Two holograms are obtained at a distance of 49.993 µm.
Thus, we created a shifting flow with a known distance,
which is the ground truth. The reconstruction results are
presented in Fig. 8. The reconstructed flow reveals that the
reconstructed flow is a shifting flow in the x direction.

In addition, we can perform a quantitative analysis of the
reconstructed results by comparing them to ground-truth
movements. This allows us to evaluate the accuracy of the
reconstruction. The ground-truth movement is 49.993 µm by
controlling the translation stage. The reconstruction result
shows that the mean of the movement is 42.18653 µm, with
a standard derivation of 9.61 µm. The experimental results
demonstrate a high degree of agreement with the theoretical
values, indicating that the reconstruction is very accurate.

Fig. 8. The reconstructed velocity vector fields from the hologram frames
induced by moving the particle volume with a translation stage

5.3.2 Experiment Without Ground Truth

Fig. 9. The particle reconstruction comparison between our method and
Wang’s method for real experiment.

We also tested the proposed method for real turbulent
flow in the experimental setup described in the supple-
mentary material Section 3. The shutter speed is 0.036 ms
and the frame rate is about 10 fps. We downsampled the
holograms with a factor of 16, from 2048×2048 to 128×128.



Fig. 10. Jet flow reconstruction: (a) vertical injection flow reconstruction streamline (b) defected injection flow reconstruction streamline

The reconstruction grid resolution is 128 × 128 × 100 with
voxel sizes 55.2 × 55.2 ×50 µm. To create a jet flow, we
used a syringe to inject fluid in a specific direction, which
we then varied. The particle reconstruction result is shown
in Fig. 9. The left is our reconstruction result. The right
is Wang’s method [25]. In this 5mm tank depth and ppp
0.01 density, Wang’s method will fail. Our method can still
reconstruct the particles and flow. Our flow reconstruction
results are presented in Fig. 10. In Fig. 10(a), we present
a streamlined visualization of the vertical injection flow
reconstruction result. This figure clearly shows the presence
of converging flows from both the left and right sides that
merge into a single downward stream. Fig. 10 (b) displays
the reconstruction result of a deflected injection flow. We can
see the mainstream is deflected compared to Fig. 10(a). By
conducting this experiment, we demonstrated the capability
of the proposed method to effectively reconstruct real turbu-
lent flows in experimental setups and help the application
of turbulence analysis.

6 DISCUSSION AND CONCLUSION

We introduced a novel HPIV reconstruction method. This
method enables the reconstruction of particles and the flow
velocity field with a single camera and a very simple
setup. To account for the effect of light scattering in our
study, we developed a plane-to-plane beam propagation
method model. This approach allowed us to accurately
model the propagation of light through a scattering medium
by dividing the medium into thin slices and simulating
the interaction of light between each slice. Except for this
plane-to-plane propagation, we combined the particle and
flow reconstruction into a joint optimization problem, which
improves both the particle reconstruction and flow estima-
tion. Moreover, to improve the reconstruction result, we also
incorporated the motion consistency prior and underlying
physical incompressible prior into the optimization. Again,
this improves both the flow estimation and the particle
reconstruction. We introduced an AD and alternative op-
timization framework to solve this joint optimization prob-
lem.

We verified the proposed method in the synthetic flow
and real jet flow. Both have good performance and are better
than the preview method. We conducted ablation studies
to demonstrate the necessity of a plane-to-plane model

for high-density HPIV reconstruction. And also, conducted
ablation studies show that with our physical priors and
multiple frame measurements, we can improve the recon-
struction accuracy and push particle density and tank depth
to higher levels.

However, the potential limitation of the proposed ap-
proach is that the reconstruction will take a very long time.
This can be attributed to the utilization of a first-order op-
timization method. We think that a good initialization may
help with speeding up the convergence, like the spectral
initialization mentioned in the paper [55]. The other reason
is the H&S optical flow optimization problem. It may take
a long time, especially for high-resolution reconstruction.
This limits the large-scale reconstruction application. One
possible way is to solve the 3D optical flow using some
of the most advanced deep learning methods. This may
improve the result and save a lot of time.

Despite these limitations, our proposed approach
demonstrates a way to take the light scattering effect into
consideration when developing the holographic particle
imaging velocity system. Our system setup is simple, and
reconstruction accuracy is good. It can be used to investigate
some real turbulence flow in fluid dynamics. Besides, our
framework can also be transferred to some other space-time
scattering theory model, like the Mie scattering model or the
optical diffraction tomography model [43].
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