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Abstract

Recent years have seen an increased interest in motion capture systems. Current systems, however, are limited
to only a few degrees of freedom, so that effectively only the motion of linked rigid bodies can be acquired. We
present a system for the capture of deformable surfaces, most notably moving cloth, including both geometry and
parameterisation. We recover geometry using stereo correspondence, and use the Scale Invariant Feature Trans-
form (SIFT) to identify an arbitrary pattern printed on the cloth, even in the presence of fast motion. We describe
a novel seed-and-grow approach to adapt the SIFT algorithm to deformable geometry. Finally, we interpolate
feature points to parameterise the complete geometry.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based modeling
I.4.8 [Image Processing and Computer Vision]: Scene analysis

1. Introduction

In the last several years, the interest in computer simulated
cloth algorithms has greatly increased. Due to the develop-
ment of fast cloth simulation algorithms such as those pro-
posed by Baraff & Witkin1 and more recent methods intro-
duced by Choi & Ko4 and Bridson et al.3, it is now possi-
ble to simulate complex and realistic looking cloth. Unfortu-
nately, these realistic approaches are still much too demand-
ing for realtime applications. In addition, it is quite hard to
adjust the parameters so that the simulations match a given
specific real world cloth material.

One way of getting around these difficulties would be a
data-driven approach in which the motion of real-world cloth
is acquired. Such methods have been hugely successful re-
cently in the context of motion capture for human move-
ments. These systems use optical or magnetic tracking of
individual points. Unfortunately, they are usually limited to
only a few degrees of freedom, and can therefore not be used
to track deformable surfaces with many degrees of freedom.

In this paper, we consider a relatively new problem: the
acquisition of both the geometry and parameterisation of
a moving sheet of cloth. We choose to use multi-baseline
stereo13 for geometry acquisition. Our current system only

has three fixed cameras and can therefore only capture one
side of the cloth geometry, limiting it to applications such as
moving curtains, flags or draped cloth. Using a larger num-
ber of calibrated cameras (traditional motion capture sys-
tems often use 8 or more, sometimes as many as 50), our
method could be extended to applications such as clothing.

In addition to obtaining partial geometry from the stereo
algorithm, we also identify feature points in an arbitrary pat-
tern printed on the cloth. To this end, we extend Lowe’s scale
invariant feature transform (SIFT)11 to deal with deformable
objects. We find that with this approach we are able to recog-
nise even quickly moving features that are only depicted in
a blurred fashion. The partial geometric information is then
merged with parametric information from the feature points
to create a comprehensive parametric model of the cloth sur-
face for each frame. An overview of the system is shown in
Figure 1.

The remainder of this paper is organised as follows: in
Section 2 we briefly review the related work on motion cap-
ture, cloth simulation, and feature tracking. We then dis-
cuss our system, beginning with the generation of the dis-
parity information (Section 3), followed by feature detection
(Section 4.1), matching (Section 4.2), and verification (Sec-
tion 4.3). We then describe how to generate the final geo-
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Figure 1: System overview.

metric model in Section 5, present results in Section 6, and
make concluding remarks in Section 7.

2. Related Work

Jojic et al.10 were the first to address the problem of cloth
capture. They used range data to estimate parameters for
a cloth model. Their system was intended to work with
draped cloth, and is not very suitable for moving cloth. Their
method relied heavily upon a spring-based model of internal
cloth forces, while our approach makes very few assump-
tions about the forces acting on the cloth.

Haddon et al.8 recovered information about folds from
still images of cloth, but made no effort to examine the three-
dimensional shape of the cloth or its parameterisation.

The work of Guskov6, 7 is closest in spirit to our own.
He tracked a checkered pattern printed on cloth, recovering
sparse parametric information. He suggested integration of
his system with a stereo correspondence system to generate
dense 3D data, but did not attempt it. Our approach allows a
much wider range of patterns to be printed on the cloth, and
we demonstrate the recovery of dense 3D data with para-
metric information, suitable for rendering in a 3D graphics
system. Furthermore, Guskov solved the tracking problem
using temporal prediction to calculate the parameterisation.
We tackle the harder and more general problem of recogni-
tion, with the aim of finding a more robust solution even in
the presence of fast motion.

Lowe11 described a Scale Invariant Feature Transform
(SIFT) for greyscale images. Features detected using SIFT
are largely invariant to changes in scale, illumination, and
local affine distortions. Each feature has an associated scale,
orientation and position, measured to subpixel accuracy.
Features are found at edges using the scale-space image gra-
dient. Each feature has a high-dimensional “feature vector,”
which consists of a coarse sampling of the local image gradi-
ent. The Euclidean distance between two feature vectors pro-
vides an estimate of the features’ similarity. Lowe used SIFT
features for the object recognition task, and considered only

rigid objects. We make heavy use of SIFT features, but adapt
the matching to the parameterisation of cloth, a deformable
surface.

Baraff & Witkin1, House & Breen9, and Choi & Ko4 cre-
ated cloth simulation systems. In all cases, they relied upon
the assumption that woven cloth does not stretch signifi-
cantly along the warp or weft directions under normal loads.
Depending upon the tightness of the weave, cloth may al-
low some shear, which can also be seen as stretch along the
diagonal. In our system, we also rely upon the assumption
that the cloth will not stretch significantly, and use this to
constrain the parameterisation process.

3. Disparity Map

The input data to our algorithm consists of three images of
equal size: a rectified greyscale camera image of the cloth
and backdrop; a mask to distinguish the cloth from the back-
drop; and a disparity map, from which the depth at every
pixel can be inferred. The greyscale image and disparity map
can be generated with a standard stereo vision system, and
the mask can be easily defined using background subtrac-
tion.

Most stereo systems provide incomplete disparity maps,
with numerous holes present in the map. Holes occur for
a variety of reasons, including insufficient texture, image
noise and depth discontinuities. As a preprocessing step, we
smoothly fill all holes using image-processing operations.

For each hole, we construct a vector x whose entries cor-
respond to the disparities of the samples inside the hole. We
then find x that minimises

∑∇2(xi)
2
, (1)

where ∇2 is the spatial Laplacian operator, which will in-
clude special terms to ensure a smooth connection with the
hole boundary. We formulate this as a linear least-squares
problem and solve. A multiscale approach is used to improve
performance in large holes.

A typical disparity map contains an integer disparity at

© The Eurographics Association and Blackwell Publishers 2003.



Pritchard and Heidrich / Cloth Motion Capture

every known pixel. This disparity can be inverted to obtain
a depth at every pixel. Many stereo systems using calibrated
cameras can convert from a (row,column,disparity) triple to
a position in 3D space. However, by using integer dispari-
ties, the depth values are visibly quantised, giving a jagged
surface.

In order to eliminate these artefacts, we also calculate a
smoothly varying fractional part for each disparity sample,
without making any modification to the integer part. We use
a similar scheme to that used for hole filling, defining a vec-
tor ∆x subject to the bounds −0.5 ≤ ∆xi ≤ 0.5. We then find
∆x that minimises

∑∇2(xi +∆xi)
2
. (2)

Samples at the boundary of the surface are special cases,
with outside disparities excluded from the Laplacian. The
bounds on ∆xi serve to limit changes to the fractional part of
the disparity sample, and can be relaxed if further smooth-
ing is desired. We solve this in a multiscale fashion as a con-
strained linear least-squares problem and achieve excellent
results (see Figure 2), albeit somewhat slowly.

Figure 2: Left: original disparity map of a draped table-
cloth. Right: hole-filled, smoothed disparity map.

4. Parameterisation

The parameterisation of the cloth surface follows several
stages, similar in principle to stages in many computer vision
systems. First, features are detected in the intensity image.
Each feature is then matched with features in a flat reference
image of the cloth. The global structure of the parameteri-
sation is analysed, and invalid features are rejected. Finally,
parameter values are interpolated for every pixel in the input
image.

4.1. Feature Detection

For feature detection, we use the Scale-Invariant Feature
Transform (SIFT) described by Lowe11. We detect features
in two images. A scan of the flattened cloth is used to ob-
tain the reference image, a flat and undistorted view of the
cloth. We use the 2D image coordinates of points in the ref-
erence image directly as parameters for the cloth. This 2D
parametric reference space is denoted R.

The second image is the input intensity image, which we
call the captured image here. We refer to this 2D image space
as capture space, and denote it C.

We also work in world space W , the three-dimensional
space imaged by the stereo system. Capture space is a per-
spective projection of world space, and the disparity map
provides us with a discretised mapping from capture space
to world space. We map disparity values at discrete loca-
tions back to world space and use linear interpolation to ob-
tain a continuous mapping. Finally, we also work in the fea-
ture space F . This is a 128-dimensional space containing the
SIFT feature vectors for both the reference and the captured
features.

Capture space World space

u

v

Reference space

C
W

R

Figure 3: Capture space is an image of 3D world space.
Reference space is a flattened view of the cloth.

After applying SIFT to the reference and captured images,
we obtain two sets of features,

Fr = {r |p(r) ∈R, f(r) ∈ F}

Fc = {c |p(c) ∈ C, f(c) ∈ F}

where p(x) is the position of feature x within the image, and
f(x) is the feature vector associated with x. Each feature also
has an associated scale s(x)∈R. An example of these feature
sets is shown in Figure 4.

Figure 4: Left: reference feature set Fr. Right: captured fea-
ture set Fc.

If we can establish a one-to-one mapping between ref-
erence features and captured features, then we know both
the world space position and the reference space position
of every captured feature, allowing parameterisation. In the
matching stage of the algorithm described in Section 4.2, we
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construct this one-to-one mapping, which we label Φ : C →
R. It should be noted that a one-to-one mapping is only fea-
sible if the pattern in the reference image has no repetitions.

Cloth strongly resists stretching, but permits substantial
bending. Consequently, folds and wrinkles are a distinctive
characteristic of cloth. This behaviour means that sections
of the cloth are often seen at oblique angles, leading to large
affine distortions of features in certain regions of the cloth.
Unfortunately, SIFT features are not invariant to large affine
distortions.

To compensate for this, we use an expanded set of refer-
ence features. We generate a new reference image by using
a 2×2 transformation matrix T to scale the reference image
by half horizontally. We repeat three more times, scaling ver-
tically and along axes at ±45° , as shown in Figure 5. This
simulates different oblique views of the reference image. For
each of these scaled oblique views, we collect a set of SIFT
features. Finally, these new SIFT features are merged into
the reference feature set. When performing this merge, we
must adjust feature positions, scales and orientations by us-
ing T−1.

Figure 5: Top row: a reference image, horizontally scaled
oblique view. Bottom row: other oblique views.

4.2. Matching

The Euclidean distance in F given by ‖f(r)− f(c)‖ is the
simplest metric for finding a match between a reference fea-
ture r ∈ Fr and a given captured feature c ∈ Fc. Unfortu-
nately, in our tests with cloth this metric is not sufficient for
good matching, and tends to produce a sizable number of
incorrect matches.

We would like to enforce an additional constraint while
performing feature matching. The spatial relationship be-
tween features can help to eliminate bad matches: any pair of
features that are close in reference space must have matches
which are close in capture space. The converse is not always
true, since two nearby captured features may lie on opposite
sides of a fold. If we could enforce this capture/reference

distance constraint during the matching process, we could
obtain better results.

We can extend this notion by thinking about distances be-
tween features in world space. Suppose that we have com-
plete knowledge of the cloth surface in world space (includ-
ing occluded areas), and can calculate the geodesic distance
in W between two captured features cs,cn ∈ Fc:

∆dc = g(cs,cn) . (3)

Now, consider two reference features rs,rn ∈ Fr, which
are hypothetical matches for cs and cn. We know the distance
in R between rs and rn, but we do not know the distance in
W between them. By performing a simple calibration step,
we can establish a scalar multiple relating distances in these
two spaces. We will multiply by αr to map a distance from
R to W , and multiply by α−1

r for the opposite mapping.

Using αr, the world space distance between the reference
features can be calculated.

∆dr = αr · ‖p(rs)−p(rn)‖ (4)

We will use these two distances to define the compression
constraint and the stretch constraint:

∆dr(1− ks) < ∆dc < ∆dr(1+ ks) (5)

where ks is a constant defining the maximum allowable
stretch.

We refer to the lower bound on ∆dc as the compression
constraint, and the upper bound is called the stretch con-
straint. If ∆dc > ∆dr(1 + ks), then this choice of match im-
plies that the captured cloth is very stretched; similarly, if the
compression constraint is violated, then this choice of match
implies that the captured cloth is very compressed. Provided
that a reasonable choice is made for ks, we can safely reject
matches that violate the stretch constraint or the compression
constraint. Figure 6 illustrates these constraints.

R

rs

∆d(1− ks)
−1

∆d(1+ ks)
−1

∆d = α−1
r · g̃(cs,cn)

Figure 6: If we fix two captured features cs and cn and one
reference feature rs, the stretch and compression constraints
require the remaining reference feature to lie in a ring cen-
tred on rs. The ring’s inner and outer radii are derived from
Equations 4 and 5.
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In our real-world setting, finding the geodesic distance be-
tween captured features is more difficult. In situations where
the entire cloth surface between cs and cn is visible, we de-
fine a straight line between cs and cn in C, project this line
onto the surface in W , and integrate along the line. This will
not find the geodesic distance, but will closely approximate
it.

∆dc = g̃(cs,cn) (6)

While this tends to overestimate g(cs,cn), it is still prefer-
able to computing the actual geodesic distance, which is pro-
hibitively expensive.

In some situations, sections of the cloth surface on the
geodesic line between cs and cn will be occluded. We can de-
tect such situations using the same line integration method as
before, scanning for discontinuities in depth along the line.
When occlusion occurs, there is no way of estimating the
actual geodesic distance g(cs,cn). However, we can still use
g̃(cs,cn), which in this case is likely to be an underestimate
of g(cs,cn). The stretch constraint can be applied to these
features, but we cannot use the compression constraint, since
the amount of fabric hidden in the fold is unknown at this
point.

In contrast to the distance metric in feature space, the
stretch and compression constraints are applied to pairs of
matched features. To accommodate this, we adopt a seed-
and-grow approach. First, a small number of seeds are se-
lected, and these seeds are then matched using only the fea-
ture space distance metric. For each seed, we “grow” out-
wards in capture space, finding nearby features and matching
them. As we find features, we can use a nearby pre-matched
feature to enforce the stretch constraint.

4.2.1. Seeding

The seeding process is straightforward. We select a small
subset of captured features, F′

c ⊂ Fc, and find matches for
them in a brute force manner. For each c ∈ F′

c, we compare
against the entire reference feature set Fr, and we use the
feature-space distance between c and r ∈ Fr to define the
quality of a match. To improve the speed of the brute force
matching, we use Beis & Lowe’s best bin first algorithm,2

which is essentially an approximate search in a k-d tree. We
then sort F′

c by the feature-space distance, and apply the
growth process on each seed in order, from best-matched to
worst. The growth process classifies captured features into
three sets: matched, rejected and unknown. If a seed fails to
grow, the seed itself is classified as rejected. After all seeds
have been grown or rejected, we construct a new F′

c from the
remaining unknown captured features.

To help the process, we prefer captured features with a
large SIFT scale s(c) when selecting F′

c. In the first itera-
tion, F′

c consists of the largest features, followed by a smaller
group, and so on until a minimum scale is reached. Large

features are only found in relatively flat, undistorted, and un-
occluded regions of the cloth. In these regions, the growth
process will be able to proceed rapidly without encountering
folds or occlusions, rapidly reducing the number of unknown
features. This rapid growth reduces the number of features
which must be considered as seed candidates. The use of
the seeding process should be reduced as much as possible,
since it cannot make use of the stretch and compression con-
straints, and hence must resort to relatively inefficient and
unreliable brute force matching.

4.2.2. Growing

The growth process is controlled with a priority queue. Each
entry in the priority queue is a matched source feature cs ∈
Fc on the edge of the growth region. The queue is sorted by
capture space distance from the seed, ensuring an outward
growth from the seed. The queue is initialised with the seed
point alone. The source features are extracted from the queue
one at a time.

Let us consider one such source feature, consisting of cs

and rs = Φ(cs). To grow outwards, we iterate over all fea-
tures cn in the neighbourhood N(cs) of cs in capture space.
N(cs) is a circle of radius rc centred on cs. For a given cn,
the match candidates are the reference space features which
pass the stretch and compression constraints. These candi-
date features lie in a ring around rs, as shown in Figure 6.

To select the best match among the match candidates, we
use the feature space distance ‖f(cn)− f(rn)‖ for each can-
didate rn. The closest match is accepted, provided that the
distance in F is below a threshold.

The growth process requires knowledge of neighbouring
features in capture space, and neighbours within a ring in
reference space. We efficiently retrieve these neighbours by
performing binning in a preprocessing stage.

4.3. Verification

The growth algorithm enforces constraints during the match-
ing process, but it only works with two features at a time. A
feature matched by the seed-and-grow process may be ac-
ceptable when compared with one of its neighbours, but it
may be clearly incorrect when all neighbours are examined.
During the growth process, however, it is difficult to perform
any global verification, since information about the cloth is
sparse and incomplete. After the seed-and-grow algorithm
has completed, we can verify the accuracy of matches. At
this stage, we will only reject bad matches, and will not at-
tempt to make any changes to Φ(c).

We attempt to correct two types of errors in the match-
ing process. In the following, we will refer to the features
matched during growth from a single seed as a seed group.
A feature error occurs within a seed group, when a few iso-
lated features in the group are badly matched but the bulk of
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the group is valid. A seed error occurs when a bad seed is
accepted, in which case the entire seed group is invalid. We
propose a three-stage solution to deal with these errors.

The stages are very similar, so we describe the general op-
eration first. We operate on the Delaunay triangulation of the
captured features, and we use a voting scheme to determine
the validity of features or seed groups. One vote is assigned
to each outwards edge. For a feature, every incident edge is
used; for a seed group, every edge connecting a seed group
feature to a different seed group is used. The vote is decided
by evaluating the stretch and compression constraints on the
edge. Finally, we calculate a mean vote for each feature or
seed group, and reject the features or seed groups with the
poorest mean vote. We repeat the process until all features
or seed groups pass a threshold mean vote.

In the first stage of verification, we operate on each seed
group in turn, and consider only feature errors within that
seed group. Subsequently, we consider only seed errors be-
tween the seed groups. Finally, we do a repeat search for
feature errors, this time operating on the entire set of remain-
ing features. Typically, this final stage helps to eliminate bad
features at the edge of the seed groups.

5. Geometry Parameterisation

After verification, we are left with a set of reliable features,
and a dense, regularly sampled disparity map. We would like
to construct a mesh that contains both 3D and parametric
data. We choose to interpolate the parametric information
given by the features to construct dense, regularly sampled
parametric map corresponding directly to the disparity map.

An interpolation in capture space is not sufficient, as
demonstrated in Figures 7 and 8. As can be seen, linear in-
terpolation in capture space leads to unacceptable distortions
on the surface in world space. Instead, what is needed is lin-
ear interpolation along the surface (the arc in Figure 7). This
must be extended from our one-dimensional example to a
surface.

0 10.50.4

0
0.4

0.5 1

C

W

Figure 7: Example where linear interpolation of parame-
ter values in C results in distortion of parameters when pro-
jected into W .

This problem is similar in principle to the non-distorted
texture mapping problem described by Lévy & Mallet12 and
others. Their technique enforces two primary constraints,

Figure 8: Left: capture space interpolation. Right: our in-
terpolation method.

perpendicularity and constant spacing of the isoparamet-
ric curves traced on the surface. These goals are unfortu-
nately not the same as our own: we desire constant spac-
ing of isoparametric curves, but we would like to allow non-
perpendicularity. In the language of the cloth literature, little
or no stretch is permitted, while shearing may take place.
Our problem is therefore subtly distinct from many of the
standard problems in non-distorted texture mapping or mesh
parameterisation.

First and foremost, we aim to perform a pure interpola-
tion, retaining the parameterisation at all feature points. We
choose to operate on individual triangles within the capture
space Delaunay triangulation of the feature points. Within
each such triangle we aim, like Lévy & Mallet, to have con-
stant spacing of isoparametric curves. We make no guaran-
tees of C1 or C2 continuity across triangles.

Our interpolation scheme is recursive, and operates on a
triangle mesh in capture space, typically a Delaunay trian-
gulation of the input features. Parameters are known at every
vertex of the mesh. Each triangle represents a curved surface
patch, with the shape of the patch defined by the underlying
disparity map.

We recursively subdivide each triangle into four smaller
triangles using the standard 4-to-1 split, but with one slight
difference. Rather than inserting new vertices at the capture
space midpoint of each edge, we insert at the geodesic mid-
point. In other words, if the endpoints of an edge are given by
c1 and c2, the new vertex v ∈ C satisfies g̃(c1,v) = g̃(v,c2)
(where g̃ is the approximate geodesic distance from Equa-
tion 6), but it does not in general satisfy ‖p(c1) − v‖ =
‖v−p(c2)‖. Since this point lies midway between the end-
points, its parametric position is the average of the end-
points’ parameters. We form four new triangles using the
three original vertices and the three new midpoint vertices,
and proceed recursively on the smaller triangles.

The recursion stops when a triangle encloses exactly one
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disparity sample. At this point, the triangle can be treated as
flat, To find the parameters at the disparity sample location,
we associate barycentric co-ordinates with the sample loca-
tion and linearly interpolate the parameters of the triangle’s
vertices.

6. Results and Discussion

We selected a 63×67 cm cloth with line art images printed
on it in a distinct, non-repeating pattern. The SIFT system
detects features using edges, and line art provides a natural
way of obtaining a high density of edges. We tested our sys-
tem with several cloth motions. Our principal test consisted
of drawing one corner of the cloth along a string, over the
course of 20 frames. The numbers cited here refer to this
dataset.

In our experiments, input data was acquired using a Point
Grey Digiclops camera. Images were captured at a resolu-
tion of 1024× 768 and a rate of 10 Hz. The Triclops SDK
was used to create a disparity map, with conservative set-
tings yielding a sparse but reliable disparity map. The stereo
mask was kept to a small 7× 7 window to avoid excessive
“foreground fattening,” a standard problem with stereo cor-
respondence algorithms.14 A mask image of the cloth was
constructed by thresholding and combining the intensity and
disparity images. Our reference image was acquired using
a flatbed scanner and image stitching tools, and was scaled
down to a resolution of 992×1024.

The feature detector found 21 000 features in the refer-
ence image, and an additional 43 000 features in the oblique
views of the reference image. The captured images yielded
4 200–6 400 features, with the number of features typically
directly proportional to the visible cloth area. We used fea-
ture vectors of 128 dimensions, but smaller sizes would also
likely be suitable.

The seed-and-grow algorithm accepted matches for 50–
60% of the captured features. We allowed stretch and com-
pression of up to 10%. This margin allowed for error in our
approximation of geodesic distance, g̃(cs,cn), and permitted
some diagonal stretch (i.e., shear) in the cloth, but was still
sufficient to perform quality matching.

In our main dataset, we found that the first ten seeds were
typically sufficient to classify over 50% of Fc, and the first
80% of Fc was usually classified using the first thirty seeds.
This process was fairly quick and efficient, and yielded a
good dense map of features in the flat regions of the cloth.

Classification of the final 20% of Fc, however, was much
slower. These features are typically near folds or poorly illu-
minated regions of the cloth, and little growth was possible.
Consequently, many of these features had to be matched with
a slow brute force algorithm, and many were later rejected by
the verification algorithm. Nevertheless, a few good matches
were made, justifying the continued search.

We found that the oblique reference views for the SIFT
algorithm were definitely valuable for the matching process.
Of the matched captured features, over half were matched
with reference features from oblique views. We also at-
tempted some extremely oblique views, scaling the refer-
ence image by a factor of four. These views gave very small
improvements, usually amounting to less than 5% of all
matches, and we chose not to use them.

The verification algorithm was fairly conservative in its
acceptance of features, rejecting 30–40% of the matched
features. Table 1 shows the number of accepted features
after feature detection, matching, and verification. As can
be seen, we typically only accept 37% of the detected fea-
tures. Despite using a conservative verification, we are still
able to track roughly an order of magnitude more features
than would be feasible with traditional motion capture or the
method by Guskov.6, 7

Frame Visible Initial Matched Verified
area features features features

1 271k 6464 3910 2532
6 271k 6458 3891 2575
11 241k 5710 3263 2068
16 207k 4731 2733 1824
20 190k 4249 2306 1516
Average 236k 5567 3240 2103

Table 1: Number of features found, matched, and verified for
selected frames.

The performance of our system is shown in Table 2.
Matching is clearly a bottleneck in our system, and the seed-
ing process is the slowest part of matching. The speed of
matching on each frame is highly dependent on the initial
success of the growth algorithm.

Frame Hole filling, Feature Matching Verification &
smoothing detection parameterisation

1 3:15 0:14 2:45 0:28
6 2:53 0:15 2:43 0:39
11 2:34 0:14 2:27 0:30
16 2:47 0:14 2:12 0:19
20 2:17 0:16 1:52 0:21
Average 2:46 0:15 2:25 0:26

Table 2: Performance of our system in selected frames, mea-
sured in seconds on a Pentium IV 1.8GHz system.

Our final results after parameterisation are shown in Fig-
ure 9. We use a checkered texture to illustrate the param-
eterisation of the surface, but clearly any texture could be
applied.

We have found that capture of fast-moving cloth is prac-
tical. Figure 10 demonstrates one example, where the top
left corner of the cloth fell and pivoted about the fixed cor-
ner in the top right. This image was taken at the start of
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Figure 9: Top row: input images, frames 6,11,16. Middle row: parameterised geometry with checkered texture. Bottom row:
comparison of matched and verified feature density in R (from blue=1 to red=35, with grey=0)

the fall, where the left side of the cloth is moving quickly
while the right side stays still. Motion blur is evident in
the fast-moving left side. As can be seen, capture and pa-
rameterisation were successful in both the slow-moving and
fast-moving sections of the cloth. SIFT features are scale-
invariant, and consequently large features can still be found
in the presence of motion blur. We are unaware of any other
tracking technology that could achieve similar results.

7. Conclusions and Future Work

In this paper, we have described an approach for motion cap-
ture of cloth. The method is based on multi-baseline stereo
algorithms to capture partial geometry, and the SIFT feature
detection algorithm for recovering the parameterisation on

that geometry. We employ smoothing and interpolation to
fill holes in the geometry due to occlusion or lack of texture.

One of the biggest advantages of our approach is that we
can track features even if they move rapidly and are there-
fore blurred in the frames of the animation. None of the pre-
vious work is capable of dealing with situations like this.
This success is made possible by using the SIFT approach
(which works for blurred features due to its multi-resolution
character), and by not relying on temporal coherence be-
tween frames (i.e. by solving the recognition rather than the
tracking problem). On the down side, by not making use of
frame-to-frame coherence, we risk having cloth animations
that are not as stable as they could be. In the future, we would
like to apply temporal filtering to the feature positions. This
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Figure 10: Left: captured image of fast moving cloth. Right:
parameterised geometry. Red inset is moving quickly while
green inset is still.

would still allow tracking of fast moving parts of the cloth,
but would also stabilise slow moving and static parts.

In our specific implementation, we have used a single
trinocular vision system for the geometry recovery. This lim-
its our field of view so that we can only recover single-sided
cloth such as towels, curtains, and similar objects. However,
it is important to note that our method will extend to cal-
ibrated camera systems with any number of cameras. Sys-
tems with many synchronised and calibrated cameras are al-
ready quite common for traditional motion capture. In our
setting, they should allow us to capture objects such as cloth-
ing.

The use of a passive algorithm such as multi-baseline
stereo has the advantage that colour and possibly reflectance
can be acquired at the same time as the geometry and param-
eterisation. Our feature detection complements the stereo ge-
ometry acquisition, as both systems benefit from a richly
detailed pattern printed on the cloth. In order to preserve
the possibility for colour and reflectance capture, the pat-
tern (and hence the stereo acquisition) could be restricted to
a frequency outside the visible spectrum. For example, we
could print the patterns with a paint that only changes in-
frared reflectance. The stereo cameras would then have to
operate in the infrared spectrum, similar to the setup in the
Light Stage 2.5 We plan to investigate this possibility further
in the future.

Finally, the captured cloth geometry and parameterisation
could be used to solve the inverse cloth simulation problem,
i.e. the fitting of parameters for a cloth simulation algorithm
(such as the algorithms by Baraff & Witkin1 or Choi & Ko4)
to a sequence of cloth poses acquired with our approach.
This would allow us to re-target the acquired cloth parame-
ters to new animations and even new cloth geometries. We
believe this to be a fruitful area for future research.

Acknowledgements

We would like to thank David Lowe for providing source
code for the SIFT original method, and for valuable com-

ments on the subject. Many thanks to Point Grey Research
for providing the Digiclops stereo camera. This work was
supported by an NSERC graduate scholarship, the BC Ad-
vanced Systems Institute, and the IRIS network of centres of
excellence.

References

1. D. Baraff and A. Witkin. Large steps in cloth simulation. In
Proceedings of ACM SIGGRAPH 98, pages 43–54, 1998. 1,
2, 9

2. J. Beis and David Lowe. Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces. In Con-
ference on Computer Vision and Pattern Recognition, pages
1000–1006, 1997. 5

3. R. Bridson, R. Fedkiw, and J. Anderson. Robust treat-
ment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics (ACM SIGGRAPH 2002),
21(3):594–603, 2002. 1

4. K.-J. Choi and H.-S. Ko. Stable but responsive cloth.
ACM Transactions on Graphics (ACM SIGGRAPH 2002),
21(3):604–611, 2002. 1, 2, 9

5. P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese, and
T. Hawkins. A lighting reproduction approach to live-action
compositing. ACM Transactions on Graphics (ACM SIG-
GRAPH 2002), 21(3):547–556, 2002. 9

6. I. Guskov. Efficient tracking of regular patterns on non-rigid
geometry. In 16th International Conference on Pattern Recog-
nition, volume 2, pages 1057–1060, 2002. 2, 7

7. I. Guskov and L. Zhukov. Direct pattern tracking on flexible
geometry. In Winter School of Computer Graphics, pages 203–
208, 2002. 2, 7

8. J. Haddon and D. Forsyth. Shading primitives: finding folds
and shallow grooves. In International Conference on Com-
puter Vision, pages 236–241, 1998. 2

9. D. House and D. Breen. Cloth Modeling and Animation, chap-
ter 3, Particle representation of woven fabrics, pages 55–78.
A.K. Peters, 2000. 2

10. N. Jojic and T. Huang. Estimating cloth draping parameters
from range data. In International Workshop on Synthetic-
Natural Hybrid Coding and 3-D Imaging, pages 73–76, 1997.
2

11. D. Lowe. Object recognition from local scale-invariant fea-
tures. In International Conference on Computer Vision, pages
1150–1157, 1999. 1, 2, 3

12. B. Lévy and J.-L. Mallet. Non-distorted texture mapping for
sheared triangulated meshes. In Proceedings of ACM SIG-
GRAPH 98, pages 343–352, 1998. 6

13. M. Okutomi and T. Kanade. A multiple-baseline stereo. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
15(4):353–363, 1993. 1

14. D. Scharstein, R. Szeliski, and R. Zabih. A taxonomy and eval-
uation of dense two-frame stereo correspondence algorithms.
In Workshop on Stereo and Multi-Baseline Vision, pages 131–
140, 2001. 7

© The Eurographics Association and Blackwell Publishers 2003.


