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Figure 1: Left to right: textured point clouds, individually reconstructed frames (note the gluing when the puppet’s arms are
folded or the actor’s mouth closes), globally consistent reconstruction, circle pattern visualizes frame-to-frame correspondence.

Abstract

Most objects deform gradually over time, without abrupt changes in geometry or topology, such as changes in
genus. Correct space-time reconstruction of such objects should satisfy this gradual change prior. This requirement
necessitates a globally consistent interpretation of spatial adjacency. Consider the capture of a surface that comes
in contact with itself during the deformation process, such as a hand with different fingers touching one another in
parts of the sequence. Naive reconstruction would glue the contact regions together for the duration of each contact
and keep them apart in other parts of the sequence. However such reconstruction violates the gradual change prior
as it enforces a drastic intrinsic change in the object’s geometry at the transition between the glued and unglued
sub-sequences. Instead consistent global reconstruction should keep the surfaces separate throughout the entire
sequence. We introduce a new method for globally consistent space-time geometry and motion reconstruction from
video capture. We use the gradual change prior to resolve inconsistencies and faithfully reconstruct the geometry
and motion of the scanned objects. In contrast to most previous methods our algorithm doesn’t require a strong
shape prior such as a template and provides better results than other template-free approaches.

1. Introduction

Geometry scanning and capture techniques in combination
with surface reconstruction methods provide a powerful and
convenient way to create virtual replicas of real-world ob-
jects. Advanced scanning methods are now capable of pro-
viding raw capture data, typically point clouds, for dynami-
cally deforming shapes. Reconstruction methods from such

space-time data have three main goals [WAO∗09,LAGP09]:
preserving the captured per-frame geometry while filtering-
out capture noise; computing the most likely object motion
or frame-to-frame geometry correspondence; and comple-
tion of geometric information that is missing in some frames
by using the computed motion and the data available in other
frames. The latter two tasks must leverage knowledge of
the temporal behavior of the captured objects and thus are
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Figure 2: Two frames of the hand sequence: (top) per-frame
reconstruction; (bottom) our globally consistent reconstruc-
tion - the circle pattern visualizes the inter-frame correspon-
dences.

strongly linked to the motion priors assumed by the recon-
struction method.

Most commonly scanned deforming objects change their
shape gradually in terms of both Euclidean coordinates and
intrinsic surface shape. This includes articulated objects, hu-
mans, animals, garments, and many other objects in our ev-
eryday surrounding. This gradual change observation im-
plies that no abrupt changes are possible that would drasti-
cally affect the intrinsic shape, such as a change in the ob-
ject’s genus. Note that the gradual change prior does not pre-
vent fairly large changes in the shape over longer periods of
time. Correct, or globally consistent space-time reconstruc-
tion of such shapes should satisfy this prior.

One of the challenges in spatio-temporal reconstruction is
to reconcile inconsistent per-frame inputs. Inconsistent in
this context means that straightforward, naive combination
of the per-frame scans violates the shape or motion priors. A
common source of inconsistencies in captures of gradually
changing shapes is self-contact situations, where the moving
surface comes in contact with itself, such as when the dog’s
paws are folded, an actor’s mouth closes (Figure 1), or the
fingers of a human hand touch (Figure 2). Such self-contacts
occur quite frequently in typical motions. Without additional
priors, temporally local reconstruction of the contact sub-
sequences would incorrectly glue the contact areas together
(Figure 1, 2nd column, and Figure 2, top). However, when
the complete sequence is available, globally consistent re-
construction should keep them apart (Figure 1, 3rd column,
and Figure 2, bottom). Inconsistencies can also happen be-
cause of capture noise and errors in local reconstruction.

A template or another strong shape prior can help with
resolving self-contacts or other inconsistencies [VBMP08,
LAGP09, BHPS10]. However, the use of such a prior can
be limiting, as creating templates for each particular cap-
ture requires a significant effort and possibly additional scan-
ning hardware. Instead, Wand et al. [WJH∗07,WAO∗09] re-
solve inconsistencies by using the input data to construct a
template-like surface representation and then deform it to ap-

proximate the inputs. The approximation can often lead to
loss of local geometric details (Figure 3).

We present an alternative template-free, globally-consistent
reconstruction method which uses a bottom-up approach to
achieve better local detail preservation and which can han-
dle more complex examples than those shown in [WJH∗07,
WAO∗09]. We first reconstruct each frame independently,
capturing local geometric details, using off-the shelf static
reconstruction methods, and then assemble these frames into
a globally consistent space-time frame sequence, comput-
ing the object’s motion and completing missing information
across time. The assembly process detects and corrects the
inconsistencies present in the local reconstructions.

We observe that for many captures the gradual change prior
by itself does not define a unique reconstruction result (con-
sider for instance a sphere rotating around itself). Since our
method focuses on reconstruction from video, we use the vi-
sual data, and specifically optical flow [Bou99], as an aid to
reconstruct the most likely motion.

The key component of our method is computation of cor-
respondence between consecutive frames in the sequence.
We observe that since the change is gradual, the correspon-
dence, or mapping between correctly reconstructed consec-
utive frames should exhibit very little stretch, as the intrinsic
surface distances change very little with a small change in
time. However, for the initial independently reconstructed
frames such a mapping may not exist a priori, since due to
occlusions and inconsistencies the frames might have dif-
ferent genus and other large intrinsic differences. To over-
come these differences we developed a specialized mapping
mechanism that uses a local to global approach, assembling
a global mapping from a set of local ones, resulting in a map
which allows for easy detection of inconsistencies and hole
completion and which provides a low-stretch feasible corre-
spondence in the consistent regions.

As demonstrated by the results (Section 7), our method can
handle a variety of contact situations correctly, as it recon-
structs the scanned shapes and accumulates both geometric
details and motion information across the frame sequences.

2. Related Work

In recent years numerous methods for space-time re-
construction have been proposed, such as [HAWG08,
TBW∗09, PG08, SAL∗08, GILM07, WAO∗09, LAGP09,
BHPS10, SWG08, FP09, dAST∗08, ZST∗10]. Most of these
methods target gradually changing geometries, often making
additional assumptions on the processed models.

Despite the frequency of surface self-contacts, few of the
methods explicitly address contact scenarios or show ex-
amples where contacts occur [WJH∗07, WAO∗09, LAGP09,
BHPS10, FP09, VZBH08]. Methods that aim to reconstruct
both geometry and motion but ignore the possibility of
contacts or inconsistencies, e.g. [BPS∗08], can either pro-
vide unnatural results or fail completely when those are
present. Methods that compute only the motion or frame-to-
frame registration of the scanned object, [ATR∗08,VZBH08,
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Figure 3: Preserving local details: (top) results from
[WAO∗09]: point clouds (left) reconstruction (right). Note
the mismatch in the wrinkles on the forehead. Bottom - fa-
cial reconstruction with our method (typical frames): tex-
tured point clouds [BHPS10] (left) reconstruction (right).

MFO∗07, HAWG08], can often overcome such inconsisten-
cies. However without corresponding geometry reconstruc-
tion and data completion, their results are not as useful.

One approach for resolving inconsistencies is to introduce
a strong shape prior and ignore local data not consistent
with it. A few methods use an external template, typically
aligned manually or semi-manually with the first frame
[LAGP09,VBMP08]. Creating a template may require a sig-
nificant user effort. Others use one of the frames in the se-
quence as a template, e.g. [SWG08, FP08, FP09, BHPS10].
This often involves manual cleanup of the selected frame, in-
cluding data completion and noise removal. Finding a frame
with good local reconstruction, such that the completion and
correction required are minimal, can be a challenge for some
sequences. Replacing the template with a skeleton [PH08],
still requires significant user input and is only applicable to
a specific subset of models.

A template-free, global approach for consistent reconstruc-
tion was proposed in [WJH∗07] and improved upon in
[WAO∗09]. Their methods use the data to construct a
template-like surface representation and then deform it to ap-
proximate the inputs. The approximation often smoothes out
details or introduces non-existent details coming from the
approximating surface (see Figure 3). Like these approaches
our method does not rely on a template or other external pri-
ors. However, by adopting a bottom-up reconstruction ap-
proach combined with the new mapping mechanism it ob-
tains better reconstruction results.

3. Algorithm Overview

The goal of our method is to reconstruct a consistent frame
sequence from a given space-time point cloud using precom-
puted optical flow correspondences as an aid, robustly han-
dling self-contacts and other local inconsistencies. We define
a consistent frame sequence as a sequence of meshes with
the same connectivity and with per-frame vertex positions
that satisfy the gradual change assumptions of small spatial
and intrinsic changes in the mesh. The shared connectivity
explicitly defines the object’s motion over time.

Initialization: When performing the reconstruction, we
aim to maximize the use of per-frame geometric informa-
tion.To this end, our method starts by constructing geomet-
rically accurate per-frame meshes by performing noise and
outlier removal on the point cloud. The obtained per-frame
mesh geometry is preserved as much as possible throughout
the rest of the pipeline. We found the method of [BBH08]
for reconstruction from passive video to be well suited for
this task.

Hierarchical Assembly: To assemble the reconstructed
per-frame meshes into a single globally consistent sequence
we use a hierarchical sequence assembly procedure that, at
each step, combines pairs of consecutive consistent frame
sub-sequences into a single consistent sequence (Figure 4).
At level zero (left column), we pair individual frames. At
level one, we pair sub-sequences of length two, and so forth.
The assembly mechanism can propagate geometric informa-
tion across any number of frames, completing missing data.
For instance, for the dog in Figure 1, the chest geometry
is captured only in the last few frames and is successfully
completed across the entire sequence. Similarly, consistent
connectivity is propagated across any number of frames.
Thus for instance in the spheres sequence (Figure 4) the first
five frames have the spheres glued or partially glued, but
as the sub-sequences are joined together the correct topol-
ogy is progressively propagated throughout. The hierarchi-
cal processing allows for straightforward parallelization of
the computations at lower levels of the hierarchy.

Figure 4: Hierarchical assembly of a consistent frame se-
quence. From left to right are sequences of length 1, 2, 4, and
8 respectively. Note the correction step applied to frames III
and IV, V and VI, and again to the first two sequences in the
second column.
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Figure 5: Combining the source and target meshes (optical
flow correspondences highlighted) to generate a consistent
frame sequence. Holes highlighted in red.

Pair-wise Sequence Combination: The main step of our
method combines pairs of consecutive consistent frame sub-
sequences into a single consistent sequence. When combin-
ing the sub-sequences we aim to obtain the union of the geo-
metric information available in each, as illustrated in Figures
5 and 6, and to resolve any inconsistencies between them. As
part of the process we also compute a common connectivity
for the combined sequence, establishing an explicit one-to-
one mapping throughout.

To combine the sub-sequences we first pair the last frame of
the first sub-sequence, referred to as source mesh, and the
first frame of the second sub-sequence, referred to as tar-
get mesh. We then propagate the combined result through-
out both sequences, generating a single consistent sequence.
The source and target pairing is done as follows:

• Cross-Parameterization: We first compute a mapping be-
tween the source and target meshes capturing the motion
between them (Section 4). To this end our mapping mini-
mizes the intrinsic change between the source and its map
on the target and is consistent with the optical flow be-
tween them. Since the source and target meshes may a pri-
ori not allow for a low stretch map, we develop a special-
ized mapping mechanism that computes the global map as
an assembly of local low-stretch maps such that areas of
high stretch in the assembled mapping directly correspond
to inconsistencies between the source and target (Figure 6,
row two).

• Analysis and Correction: We use the computed mapping
to locate and correct inconsistencies as follows. Consider
two consecutive inconsistent meshes, such as the spheres
in Figure 6. The local stretch of the mapping indicates the
inconsistent regions on both but does not identify which
mesh is correct and which isn’t. However, if we delete
the identified region on one mesh treating it as a hole and
use the other mesh to complete this “missing” geometry,
we will face two distinct scenarios. If we use the correct
mesh to complete the incorrect one (use target to com-
plete source in Figure 6) the mapping provided by the
completion will have low stretch. In the other direction
however, the map we would obtain will likely still exhibit
unacceptable stretch, e.g. in the spheres example it will be
effectively identical to the high stretch map in Figure 6,
row two. Thus, this pairwise completion test allows us
to obtain consistent reconstruction for both meshes. (Sec-
tion 5).

• Completion and Connectivity Combination: We use the

Figure 6: Combining source and target frames. In row two
the coloring represents stretch varying from 0.9 (blue) to 1.1
(red) (ideal stretch is one).

mapping to combine the geometric information from the
source and target frames as illustrated in Figure 5, and
generate a common connectivity for both frames. We then
propagate the new connectivity and merged geometric in-
formation throughout both sequences (Section 6).

Global Drift Correction: The pairwise maps we compute
between consecutive frames reflect a likely motion between
them. However, as we combine longer and longer sequences
even tiny errors in motion reconstruction can cause some
drift over time. To remove drift we apply the following pass
of global correction on the final mesh sequence.

Since adjacent frames in the sequence are expected to be
nearly isometric, the transformation of any given triangle
from one frame to the next should be near rigid. For each tri-
angle we compute the per-triangle transformation gradients
between consecutive frames and, using polar decomposition,
extract the rotational component of each gradient matrix. To
improve isometry, we aim to make the transformation gradi-
ents more similar to these extracted rotations. We use the
rotations as target transformation gradients for computing
new positions of the vertices in the second mesh using the
formulation described in [PZB∗09] balancing the resulting
quadratic functional with preservation of the original vertex
positions. The process provides a more isometric mapping
between consecutive frames, eliminating visible drift. Since
all meshes have the same connectivity to obtain the new po-
sitions we only need to invert a single matrix for the en-
tire frame sequence and back-substitute different right-hand
sides, resulting in a very fast computation.

4. Cross-Parameterization

The goal of this step is to compute a map between the source
and target meshes that captures the motion between them.
Since we assume the motion or change to be gradual, we
aim for a mapping that minimizes such change. We explic-
itly minimize the mapping stretch (intrinsic change) while
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using optical flow based initialization (Section 4.1) to bound
the spatial change. The challenge we face is that the source
and target meshes may not a priori support a bijective low
stretch map. First, because the meshes can be incomplete,
each mesh can contain regions with no corresponding coun-
terpart on the other (Figure 5). Second, and much more chal-
lenging, the meshes may be inconsistent, with drastic intrin-
sic differences preventing a low stretch mapping. To over-
come both problems, we compute the global parameteriza-
tion as an assembly of local low-stretch maps (Section 4.2).
The assembly process (Section 4.3) provides a partial map-
ping from source to target in which points with no corre-
sponding map indicate regions on one mesh that correspond
to missing geometry on the other, and regions of high stretch
indicate local inconsistencies between the source and target.

4.1. Optical Flow Tracking

We aim to obtain a mapping consistent with the expected
motion from source to target. Using the available video data,
we can incorporate optical flow [Bou99] as an additional
source of information on the likely motion. Unlike other
methods that rely on a dense, accurate optical flow to track
the geometry through time (e.g. [FP09, BHPS10]), we use
sparse optical flow correspondences as soft anchors to ini-
tialize the parameterization. Therefore, we require only a
small number of correspondences, allowing for fairly ag-
gressive filtering of inaccurate correspondences, and can tol-
erate small inaccuracies in the remaining ones.

We track the optical flow between frames in all camera
views, and obtain a 2D vector field describing the image-
space motion of the object from one frame to the next. We
then query the 3D motion of a vertex by projecting it into
two cameras, advancing it through time using the 2D optical
flow in camera space and projecting it back onto the model
at the next frame. Next, we perform two levels of pruning
to eliminate unreliable correspondences. First, we check the
forward and backward flow in 2D for consistency, and only
keep the optical flow samples that fall in the same pixel af-
ter moving forward and backward in time. We then check
that the actual 3D point correspondences are consistent when
projected back into the camera space.

For subsequent computation we aim for a set of anchors uni-
formly distributed across the surface, since uniform distribu-
tion allows us to use the same parameters across the entire
model. To obtain such a uniform set of anchors we add extra
anchors in areas where the current set is too sparse and re-
move redundant anchors in areas where it is too dense. We
first propagate the motion vectors from the anchor vertices to
all the vertices in the mesh by solving the Laplace equation
using the anchor motion vectors as boundary constraints.
Vertices whose motion vectors map them to the target sur-
face are considered as secondary anchors that can be used in
areas where the optical flow anchors are too sparse.

To remove redundant anchors, including most of the newly
computed secondary ones, we perform a breadth-first search
from all anchors and remove those within a given radius of
another anchor. Whenever a secondary anchor is too close

Figure 7: Local patch parameterization. The stretch range
in the final map (D) is between 0.95 (blue) and 1.05 (red).

to an original optical flow one, we delete the secondary. The
number of retained anchors is on the order of three percent
of the number of mesh vertices.

4.2. Local Patch-Based Parameterization

We use a local, patch-based parameterization technique as
a stepping stone toward computing a global parameteriza-
tion. As noted in [BPS∗08], if two near-isometric surfaces
are mapped to the same domain using stretch-minimizing
parameterization, then their maps are likely to be identical;
in other words, using the map from one to the common do-
main and then the inverse map from the common domain to
the second surface defines a near-isometric parameterization
between the surfaces (Figure 7). Based on this observation,
we grow patches on both models centered around match-
ing anchors and find patch-to-patch maps by parameterizing
the patches into the plane and aligning them using the an-
chors. Since the patches capture very similar geometry we
expect the map between them to be close to isometric and
to closely resemble the actual motion between the frames in
that region. This process provides a set of overlapping low-
distortion local parameterizations between the two models.
We then use these maps to piece together a global mapping
(Section 4.3).

Patch Growth: We start by growing patches simultane-
ously from all the source anchors and their corresponding
points on the target. To maximize patch similarity we use
distance based breadth-first growth while enforcing disk-
topology. The growth process terminates once the patches
contain three to seven matching anchors (Figure 7, left).
Three anchors are sufficient for subsequent processing, but
the parameterization is more robust to noise in the optical
flow when the number of anchors per patch is higher. The
overall mapping stretch is likely to increase with patch size
(recall that we do not expect the meshes to be truly isomet-
ric). Hence, if a patch grows to more than 4% of the total
area but not enough anchors are found, the growth is aborted
and the patch is discarded.

Patches grown only from source anchors may not cover the
entire source model. To improve the coverage, we perform a
second iteration of patch growth, growing patches from the
uncovered vertices. Initially, such regular source mesh ver-
tices do not have a known match on the target mesh. There-
fore, when growing a patch from a regular vertex, we first
grow the patch on the source mesh until an anchor is en-
countered, and then grow a patch on the target mesh around
the matching anchor until its radius is equal to the radius
of the first patch. From here we proceed with regular patch
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growth. Vertices that remain uncovered at the end of this pro-
cess typically indicate source regions that lack matching tar-
get geometry.

Patch Cross-Parameterization: The two matching patches
are first parameterized independently in the plane. We use
ABF++ [SLMB05] for computing the planar parameteriza-
tions, because it provides a reasonable trade-off between
minimizing stretch and efficiency. The two parameteriza-
tions are then aligned in the plane using an affine transfor-
mation that aligns matching anchors in a least-squares sense
(Figure 7, C), implicitly providing a parameterization from
one patch to the other.

For isometric patches this provides a mapping with mini-
mal stretch. Our patches are not isometric, as the geome-
tries are not identical and the patch growth may capture
slightly mismatching regions. However, in most cases the
cross-parameterization stretch (Figure 7, D) is concentrated
along the patch boundaries, where the mismatch is most sig-
nificant. For parameterization purposes we therefore ignore
the mapping in the boundary regions (greyed out in Fig-
ure 7, D).

4.3. Parameterization Assembly

After the local parameterizations are computed, most ver-
tices on the source mesh have multiple possible mappings
on the target based on the patches they belong to. To obtain
a one-to-one map, we first select for each vertex a single lo-
cal mapping from this set and then apply an optimization
procedure to improve the resulting parameterization.

Map Selection: Our goal is to select a patch, or local map,
for each vertex, such that the resulting global map exhibits
minimal stretch. This goal translates into a combinatorial op-
timization problem, which unfortunately is very difficult to
solve. Instead we opt for the following efficient heuristic,
which combined with the subsequent optimization yields the
desired result. We observe that in the local mappings stretch
is concentrated mostly near patch boundaries (Figure 7, D).
Hence, for each vertex we select the map corresponding to
the patch in which the vertex is closest to the center. This
heuristic results in global parameterizations that exhibit very
low stretch for triangles in the interior of most local patches,
and higher stretch in the patch boundary regions. Triangles
whose vertices are mapped using different patches typically
exhibit the worst stretch, and in extreme cases can even be
flipped (Figure 8, left).

Optimization: To improve the parameterization we need
an optimization procedure that, given the initial map, si-
multaneously reduces the stretch and fixes flipped triangles.
In the presence of flips, direct stretch optimization (e.g.
[SAPH04]) often gets stuck in local minima, because slid-
ing a vertex along the mesh in the correct target direction
increases the local stretch before decreasing it again. In addi-
tion, direct stretch minimization [SAPH04] is very time con-
suming, requiring runtimes of an hour or more for meshes of
interesting size.

Figure 8: Mapping optimization: (left) Initial global param-
eterization with stretch and flipped triangles most prominent
when mapping has switched patches; (right) stretch after op-
timization is applied (six global iterations).

We observe that, because the change in the intrinsic shape
from one frame to the next is small, a local shape-preserving
functional is consistent with stretch minimization in our set-
ting. Rather than directly minimizing stretch, we thus op-
timize a functional preserving the Laplacian coordinates of
the source vertices [LSA∗05] when mapped to the target.
Evaluating the Laplacian coordinates is significantly faster
than evaluating stretch, but more importantly, the evaluated
functional clearly detects flipped triangles, and minimizing it
eliminates them. Since the distortion is concentrated in small
regions, we can effectively utilize a local relaxation tech-
nique, iteratively moving one source mesh vertex at a time
over the target mesh to reduce the shape preservation error

min
ṽ
‖ L(ṽ)−L(v) ‖2

2 . (1)

Here L is the Laplacian coordinates operator [LSA∗05], v are
the original positions in the source mesh, and ṽ the mapped
positions on the target mesh. We constrain the solution space
to the target mesh, thus preserving the initial target geome-
try. To search for a local minimum, we use a random walk
approach. To speed optimization, we process the vertices in
a decreasing order of their error (Equation 1). Usually only
a few (five or six) global iterations are sufficient to reduce
stretch to acceptable levels across much of the mesh (Fig-
ure 8, right). Once the flipped triangles are corrected, it is
possible to switch to direct stretch optimization, but in our
experiments this did not improve results significantly.

Areas that have local high stretch even in the optimized map
are indicative of geometric inconsistencies between the pro-
cessed frames (Figure 6, row two). Vertices on either model
that remain unmapped at the end of this step typically indi-
cate geometry missing in the other model and are incorpo-
rated into that model by the completion step (Section 6).

5. Analysis and Correction

The map computed in the previous step is expected to ap-
proximate the motion between the frames. Thus under our
gradual change assumption, mapped triangles should exhibit
low stretch and the vertex motion prescribed by the map
should be sufficiently small. A violation of either of these
conditions indicates a problem in the local reconstruction of
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Figure 9: Completion: (left) Mapping the boundary; (cen-
ter) extracting patch (right) completing the geometry. Miss-
ing geometry highlighted in red.

either the source or target meshes and their corresponding
sub-sequences (Figure 6, row two).

Analysis: Manually setting a threshold on acceptable mag-
nitude of vertex motion can be problematic as it strongly
relates to the local motion speed. Instead, we found that this
test can be robustly replaced by checking for motion similar-
ity between neighboring vertices and between vertices and
neighboring anchors. Vertices belonging to triangles that ex-
hibit high-stretch, and vertices whose motion is much larger
compared to neighboring vertices or anchors are flagged as
potentially incorrect and clustered into regions.

Correction: Typically inconsistencies are caused by incor-
rect reconstruction of only one of the source or target se-
quences, but a priori we do not know which one. Deleting
the flagged regions on both would satisfy the motion prior
but is likely to delete valuable correct data present in one
of the sequences. Therefore, we need to identify which, if
any, of the source or target regions can be a viable source for
geometry completion replacing the flagged incorrect data on
the other. We consider a region as a viable completion source
if the mapping defined by the completion process (Section 6)
satisfies the gradual change criteria.

For each of source and target, we first delete the region in
one mesh and complete the hole with the corresponding re-
gion from the other, using the mechanism described in the
next section. We then test if the resulting mapping obeys
our gradual change test. Typically the completion is viable
in only one direction and the obtained completion result is
used for the combined sequence. If both completions violate
the gradual change test the flagged regions are deleted from
both frame sequences. In the extremely rare case where both
completions are viable, for simplicity, we pick the region on
the source to compete the target.

6. Completion and Connectivity Combination

The last step in combining two sub-sequences into one is
mutual completion, where geometric details present in one
sequence but lacking in another are incorporated into the

latter. of the reconstructed motion, we generate a shared
connectivity for both sequences. This step simplifies fur-
ther processing and allows for compact motion representa-
tion. We use the source sequence connectivity as the basis
for the shared one, modifying it as necessary during correc-
tion and completion steps. We first combine the source and
target meshes and then propagate the result through both se-
quences. To represent the target mesh using source connec-
tivity we simply position the source vertices on the target
using the previously computed parameterization.

Intuitively, completion is warranted when areas on one
model correspond to holes on the other. Thus we use source
regions with no mapping on the target to complete the new
target mesh. Since their vertices are already part of the new
target connectivity, we need only to find likely, new, tar-
get positions for them. Based on the gradual change prior,
we expect the local shape of the mesh to change very little
between consecutive frames, and thus the vertex Laplacian
coordinates to be largely preserved. Based on this observa-
tion we position these vertices in the target frame using a
standard Laplacian editing technique [LSA∗05], aiming to
preserve the source Laplacian coordinates of these vertices
while fixing the positions of the vertices for which a map-
ping to the target exists. This process is very similar to the
approach described in [KS05].

To identify target details missing in the source we map the
source mesh boundaries to the target (Figure 9, bottom left).
The regions on the target outside these boundaries represent
the completion geometry. Incorporating the details in this
direction is slightly more challenging since the new source
connectivity differs from the original target one. To embed
the identified vertices into the new connectivity we param-
eterize each extracted region in the plane and re-triangulate
it in 2D keeping the vertex positions and connecting them to
the mapped boundary edges (Figure 9, bottom right). Once
the vertices are embedded into the new connectivity we pro-
ceed as before, using Laplacian editing to obtain the source
mesh positions for these vertices.

Propagation: If the processed frame sequences contain
more than one frame, the correction and completion need
to be propagated across the sequence. The correction is
straightforward. Since the sub-sequences are already com-
patibly meshed, we simply delete triangles removed from
source or target from each of the corresponding sub-
sequences. We then propagate the new combined compati-
ble mesh across the target sub-sequence using the barycen-
tric coordinates of the source vertices on the target. Finally
we complete missing geometry across the entire sequence
using the Laplacian mechanism described above. After all
these steps are performed we have a single compatible mesh
describing the frame sequence, explicitly defining both the
geometry and motion of the captured data.

7. Results

Throughout the paper we demonstrate our reconstruction
method’s results on a number of datasets of varying com-
plexity. Four of the datasets are synthetic (spheres, hand,
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male, and fist). These were “captured” using a virtual scan-
ner which generates point-cloud inputs simulating occlusion
and other artifacts [SAL∗08]. To simulate optical flow we
use known correspondences on 3% of randomly sampled
mesh vertices. Using synthetic data we can fully evaluate
the reconstruction accuracy by measuring the distance from
the reconstruction to the original models (see Table 1). The
other five datasets (t-shirt, glove, dog puppet, and two faces)
are captures of real objects.

The hand (Figure 2) and male (Figure 10, top) datasets show
simple motions which generate contacts, causing methods
that do not account for those to fail. In both datasets, large
areas of the models are occluded through much of the se-
quences. In the hand sequence there isn’t a single frame that
contains the complete geometry. Our method correctly re-
constructs both, resolving the contacts and completing miss-
ing data.

The fist (Figure 10, row two) is perhaps our most complex
example in terms of the motion magnitude and the amount of
occlusions. Wand et al [WAO∗09] report failure on a scan of
similar motion. Our method recovers both motion and geom-
etry, completing the missing data throughout and preserving
fine features such as the lines on the palm. The example also
demonstrate a limitation of the method, in that it does not
explicitly prevent self-intersections and cannot predict the
motion of large occluded surfaces. As a result, as the cap-
tured motion continues (see attached video) with the thumb
occluded further, the reconstruction intersects the thumb and
the fingers.

The T-Shirt sequence (Figure 10, row three) from [BPS∗08]
highlights the robustness of our completion mechanism and
detail preservation. Even though no template is used, our
results are nearly identical to those of the garment recon-
struction method of [BPS∗08] who use a template and other
strong priors to generate the results (see attached video). The
difference is only notable in areas where data is unavailable
in any of the input frames and where Bradley et al. use the
template for completion, e.g. under the arms.

The glove model (Figure 10, bottom) is reconstructed from a
single binocular video pair, and shows different fingers com-
ing into contact at different points in time. This example is
typical of the type of two-dimensional self-contacts demon-
strated in recent work [WJH∗07,WAO∗09,BHPS10]. In con-
trast, the dog puppet example (Figure 1) shows a more com-
plex motion, comparable to that of the synthetic fist model,
where the dog’s folding paws occlude a large portion of the
chest. Our method successfully recovers the paw shape as
well as the occluded chest geometry in this situation. Pre-
vious methods that show results of similar topological com-
plexity [LAGP09] required a template, while our reconstruc-
tion does not.

We reconstructed two face sequences (Figures 1, 3, 11), cap-
tured by [BHPS10], with complex changing facial expres-
sions. The sequence in Figure 1 contains multiple self con-
tacts as the mouth opens and closes. The specialized method
of [BHPS10] fails on this example, while our general method
provides satisfactory results. The sequence in Figure 11 is

approx. cloud approx. # output # frames dist to dist to
size # anchors vertices input original

Puppet 900K 1400 26814 32 0.00041
Face (Fig. 1) 7.8M 1300 51764 226 0.00021
Hand 800K 1000 26696 64 0.00054 0.0029
Male 800K 1100 38140 16 0.00053 0.0011
Fist 600K 1100 51384 128 0.00087 0.00091
T-shirt 1M 400 22405 64 0.00073
Glove 1M 900 25862 256 0.00086
Face (Fig. 11) 7.7M 1300 56646 300 0.00027

Table 1: Model statistics: approximate numbers of cloud
points and anchors per frame, output mesh size, number of
frames, and deviation from per-frame meshes and ground
truth (when available).

a good example of gradual, but substantial intrinsic change
over time, as the skin on the forehead and cheeks signifi-
cantly stretches between expressions. The circle pattern we
use to visualize the motion reflects this stretching with the
circles shrinking and stretching accordingly. In both inputs
the point clouds are especially noisy in the hair region, caus-
ing some flickering in the reconstruction. [BHPS10] dis-
card these parts of the scan manually, removing them from
the first frame which they use as a template for the se-
quence. These two examples are quite similar in nature to
the face dataset used by [WJH∗07, WAO∗09]. In contrast
to them, our method successfully retains local facial details
such as appearing and disappearing wrinkles throughout the
sequences.

Quantitative Evaluation: One advantage of reconstruction
from synthetic data is the availability of ground-truth in the
form of the original virtually scanned models. To test the
accuracy of our method we measured the deviation of our
reconstruction results from these models (Table 1, last col-
umn). The numbers are average per vertex distances with
models scaled to the unit bounding box. The error is less than
half a percent of the diagonal. For real capture ground truth is
unavailable, thus we can only quantify the impact of our pro-
cessing when compared to the input per-frame meshes. The
deviation of our reconstruction results from these meshes
varied between 0.0002 (faces) and 0.0009 (fist) (see Table
1). The measurement ignores areas where the reconstruction
corresponds to input data classified as incorrect by our anal-
ysis step. The comparison of the two metrics for the syn-
thetic models indicates that overall our global reconstruction
step introduces less error into the process than the initial per-
frame reconstruction. We cannot compare our accuracy to
that of previous methods, as to our knowledge none provide
such metrics.

Runtimes: The reconstructed meshes have between 22K
and 57K triangles. Most of the run-time is spent in the
cross-parameterization and completion steps. The cross-
parameterization takes between eight and twelve minutes per
frame on a single Intel Xeon 3Ghz CPU. While per-frame
completion is very fast (i.e. a few seconds), the completion
time grows to five to ten minutes at higher levels of the hi-
erarchy where it is propagated across longer and longer se-
quences. Since our algorithm is highly parallelizable, we ran
it on a cluster significantly speeding up the process.
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Comparison to Other Methods: The examples above in-
clude a direct comparison with [BPS∗08] and [BHPS10].
However, since our method relies on the input video stream
to obtain the optical flow correspondences, we cannot pro-
vide a direct comparison with methods such as [WAO∗09,
LAGP09] where passive video data is not available. Instead
we provided a qualitative comparison, scanning comparable
inputs. Our results, on complex models such as the fist, pup-
pet and faces, appear on par with those of template-based
approaches, such as [LAGP09], but without requiring a tem-
plate. On inputs similar to those of [WAO∗09], such as the
faces, our examples demonstrate better local detail preser-
vation. We also include examples such as the fist and pup-
pet with more complex contact and occlusion situations than
those shown by Wand et al.

8. Discussion and Conclusions

We have presented a method for globally consistent recon-
struction from video based capture, using the gradual change
prior. As demonstrated by the examples we robustly han-
dle contact situations faithfully reconstructing the geometry
and motion of the scanned objects. A key component of our
system is a method for registering, or cross-parameterizing,
meshes with similar geometry but very different topology,
or connectivity. This method can potentially be used in other
settings where such registration is required.

Our method has a number of limitations which can be ad-
dressed by future work.

• Since the completion propagation slows up as sequence
length increases, the method as-is may become impracti-
cal for very large sequences. A potential fix would be to
restrict the completion from propagating beyond a certain
number of frames, trading quality for speed.

• By relying on optical flow we limit ourselves to passive-
video based capture settings. Depending on the type of
models the optical flow could potentially be replaced by
dense feature matching.

• On very fast motion of complex surfaces the gradual
change assumption may no longer hold. This problem can
be ameliorated using a setup that employs a camera with
higher frame rate.

• Our current implementation of geometry completion can
lead to surface self-intersections when surfaces come
close-by (as happens in the fist sequence). These can be
detected fairly easily, but may be quite challenging to re-
solve.

• The main step of our method operates on pairs of consec-
utive frames. It might be possible to improve the recon-
struction fidelity by considering a larger temporal window
and additional motion priors.
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