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1 ADDITIONAL DETAILS ON ZEMAX OPTIMIZATION
The surface parameters of our two prototype lenses are described
in Table 1, with their optical layouts and spot diagrams shown in
Figure 1 and Figure 2, respectively.

We use the surface equation of even aspherical surfaces in Zemax
for both designs. We observe that the peak intensity of PSF of the
dual-surface lens design (referred to as A) is higher than that of the
single-surface lens design (referred to as B). This is reasonable since
using two surfaces theoretically increases the designs degree-of-
freedom for aberration correction.
The thickness deviation of the two prototype lenses, i.e. 10 mm

v.s. 3 mm, is mainly because we require the solid substrate support
in the prototyping process for dual optical surfaces. Theoretically,
the planar substrate shows a very minimal effect on the lens quality.
As mentioned in the main text, our design can be applied to multiple
surfaces configuration which offers more degrees of freedom for
diverse lens designs.

2 FABRICATION DETAILS
Photographs of our two prototype lenses are shown in Figure 3. As
mentioned in the main text, the fabrication accuracy of our deep
Fresnel lens surface depends on the specifications of the diamond
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Table 1. Surface parameters of our two prototype lenses.

3 mm design 10 mm design
front sur-
face back surface front

surface back surface

Radius (mm) infinity -21.399 226.656 -23.164
Thickness (mm) 3 - 10 -

Material PMMA - PMMA -
K 0 0 0 0
A4 0 1.080e-5 1.492e-5 1.696e-5
A6 0 -1.828e-8 1.139e-7 2.631e-8

A8 0 2.981e-10 -5.886e-
10 1.240e-10

A10 0 -7.834e-13 0 -2.977e-13

Fig. 1. Optical layout (left) and spot diagrams (right) of the prototype lens
with a substrate thickness of 3 mm.

turning tip. Illustrated in Figure 4, the head of the turning tip has
a rounded region that results in an imperfect deep valley for each
ring. Although the rounded radius has only a size of 16 µm, a part
of light rays directly travels through it without being altered by the
correct phase modulation. This is a crucial source of contrast loss
of the measurement images.

3 ADDITIONAL DETAILS ON DECONVOLUTION
In this section, we provide additional detail on the proposed image
reconstruction method. Recent advances in image deconvolution
have the goal of including statistical prior knowledge, such as gradi-
ent statistics [???]. At its core, the proposed deconvolution approach
also relies on such prior knowledge – however, learned from cap-
tured image data.
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Fig. 2. Optical layout (left) and spot diagrams (right) of the prototype lens
with a substrate thickness of 10 mm.

Fig. 3. Photographs of our prototype lenses with dual optical surface (left)
and single optical surfaces (right).

Patch-based Processing. In our approach, we assume the blur is
more dependent on field-of-view rather than depth in our case.
Inspired by the prior work [?], we divide the image radially to a
few rings, and then unwrap each ring to a rectangular image patch,
except for the central round region. To this end, the blur becomes
more spatial invariant on each image patch such that we could
drastically increase the efficiency of deconvolution, compared to the
regular square block partitioning. After the processing, we wrap the
patches and then stitch them back to yield the final reconstruction
result. We will release the code for our implementation including
all processing steps and hyperparameters.

Cross-channel Deconvolution. As mentioned in the main text, tra-
ditionally, camera systems preserve color fidelity by designing a
complex stack of refractive and diffractive optics. To compare our
method in terms of color fidelity, we compare it against the cross-
channel prior which enforces gradient consistency of edges on the
images of different color channels [???]. For this baseline method,
for each individual patch, the optimization problem of resolving the
latent image ic given the blurry input bc and the estimated kernel
pc , is described as:

ic = argminic
µ

2
∥bc − pc ic ∥22 + β ∥Dic ∥1 + γ

∑
l,c

∥Dic − Dil ∥1, (1)

where the first term is the data fitting term, µc is its weight for
channel c . D is an operator that takes gradients of the image. Thus,

Fig. 4. Illustration of the rounded head region of the turning tip (top) and
the 3D layout of our prototype lens (bottom).

the second term is a total variation regularization while the third
term is a cross-channel regularization, with their weights of β and γ ,
respectively. Both terms enforce gradient priors of natural images.
This cross-channel deconvolution can be implemented in both

blind and non-blind manner, that at each step, the regularizations
result in a non-linear optimization problem that can be solved by
introducing slack variables for the ℓ1 terms and using proximal
operators [?] to turn the ℓ1 terms into shrinkage operators. We refer
the readers to [?] for details.

4 ADDITIONAL COMPARISON OF GENERATIVE
END-TO-END DESIGN

In this section, we show additional results demonstrating that an
end-to-end training with the proposed reconstruction framework is
not feasible with existing methods. As a result, the following exper-
iments validate the proposed co-design relying on an engineered
intermediate metric.

As existing end-to-end design methods, such as [?], only support
optics where the paraxial approximation holds, we cannot directly
apply such methods to our wide FOV design problem. Instead, we
compare the proposed GAN reconstruction framework applied to
the task of a full-spectrum focusing lens. Here, we consider the
problem of designing a phase plate which focuses light for the
visible spectrum. In particular, we adopt the setting from Sitzmann
et al. [?] and optimize for a lens with a lens-to-sensor distance
of 25 mm and an aperture of 5 mm. Instead of optimizing for the
full spectrum, we optimize for the wavelengths 460 nm, 550 nm,
and 640 nm. We approximate a sensor readout noise with standard
distribution drawn uniformly between 0.001 and 0.02. We use a
Zernike parametrization [?] to regularize the optimization.
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For reproducibility by readers, we note that the code from the
official repository is incorrect, and requires the PSF to be flipped
using tf.reverse in the implementation of the Wiener deconvolution.

In the following, we describe five experiments with and without
the GAN reconstruction approach from the main draft. In particu-
lar, we compare end-to-end training with a low-parameter Wiener
filter against end-to-end training with the proposed GAN recovery
method, and against fine-tuning the GAN on pre-optimized PSFs.
The GAN reconstruction experiments are performed as follows.
At each iteration of training, the Zernike lens model produces a
1,356×1,356 sensor image. Then random 256×256 crops are taken
of this image, along with the corresponding 256x256 crop of the
ground truth, and these are fed as training input into the GAN. If
we are training end-to-end then losses are back-propagated to both
the GAN and the lens model. If we are fine-tuning the GAN then
losses are only back-propagated to the GAN and the lens model
stays fixed. For the optimization, we use Adam with a learning rate
of 10−4 and momentum of 0.99.
We used the high-resolution images from [?] for optimizing the

phase masks presented below (Table 2).

Experiment 1 = Wiener deconvolution end-to-end. This approach is
the method proposed in [?]. The lens model is jointly trained with a
Wiener deconvolution operation, whose only trainable parameter is
γ . The PSF of the lens model is convolved with the input image and
random noise is added in. This simulates the image captured by the
sensor. To recover the true image, Wiener deconvolution uses the
known PSF of the lens model along with an estimate of the noise
(determined by γ ) to deconvolve the sensor image.

The pipeline: Input Image→ Lens (Trainable) + Noise→ Sensor
Image→Wiener Deconvolution (Trainable)→ Output Image

Experiment 2 = GAN reconstruction end-to-end. The lens model
is jointly trained with GAN reconstruction, which has orders of
magnitudes more trainable parameters than the Wiener recovery.
The generator receives a loss penalty from the discriminator (critic)
and the perceptual loss.
This experiment had poor results as output images still looked

very blurry. Inspection of the PSF shows that the lens model has
not been optimized at all, and it seems that the pipeline is relying
solely on the GAN.
The pipeline: Input Image→ Lens (Trainable) + Noise→ Sensor

Image→ GAN Reconstruction (Trainable)→ Output Image

Experiment 3 = Fine-tuning the GAN using PSF from Experiment 1.
The lens model is taken from Experiment 1 and is fixed. Only the
GAN is being trained in this experiment.
We note that this experiment had the best results of the five

experiments. Output images were sharp and clearer than all of the
other experiments.

The pipeline: Input Image→ Lens (Fixed) + Noise→ Sensor Image
→ GAN Reconstruction (Trainable)→ Output Image

Experiment 4 = Fine-tuning the GAN using PSF from Experiment 2.
The lens model is taken from Experiment 2 and is fixed. Only the
GAN is being trained in this experiment.

This experiment had poor results as the network was not able to
recover the large blur due to poor focusing of the optimized lens.

The pipeline: Input Image→ Lens (Fixed) + Noise→ Sensor Image
→ GAN Reconstruction (Trainable)→ Output Image

Experiment 5 = Fine-tuning the GAN using initial guess PSF. The
lens model is the initial guess for the Zernike system, from [?].

We note that this experiment achieved the same results as Exper-
iment 4, with the end-to-end designed lens.

The pipeline: Input Image→ Lens (Fixed) + Noise→ Sensor Image
→ GAN Reconstruction (Trainable)→ Output Image

Assessment. Experiment 2 validates that joint training with GAN
reconstruction is more difficult than joint training with Wiener de-
convolution. This is because of the large number of trainable para-
meters that a GAN has compared to that of Wiener filter– single
trainable parameter, so not enough training signal passes through
the GAN to the lens model. Furthermore, experiments 4 and 5 high-
light the importance of having both a good optimized lens model and
a high-quality deconvolution method. Despite the GANs strength,
it cannot perform well if the lens model is poor.

However, experiment 3 shows that good results can be obtained
by first optimizing the lens model using the Wiener filter as a proxy
that can be efficiently optimized, then replacing the Wiener filter
with a GAN and optimizing the GAN while fixing the obtained lens
model. Using the Wiener filter forces the lens model to be optimized
because the Wiener filter is a less powerful deconvolution method
than the GAN.

5 ADDITIONAL ASSESSMENTS
Comparison against alternative reconstruction algorithms. In addi-

tion to the discussion in Section 8 of the main text, we present the
full resolution images reconstructed by U-net, pixel-to-pixel and
our method, respectively, shown in Figure 7. We observe that the
pix2pix outperforms U-net on real-world data, while still suffering
from severe artefacts, e.g. the sky region. The proposed method
mitigates these artifacts.

Comparison against off-the-shelf well-corrected lens. Figure 8 shows
comparisons of our prototype lens compared against awell-corrected
commercial SONY FR 1.4/50 compound lens. The proposed method
achieves high image quality, when compared to this compound
lens, while showing a larger depth-of-field. This is due to the fact
our effective aperture that contributes to the central peak of PSF is
smaller than that of a regular lens under the same clear aperture
setting. Furthermore, we are training our method on 2D images dis-
played and captured on an LCD monitor, without providing depth
information. However, our recovery shows robustness on this semi-
synthetic data acquisition process, and in turn, shows the possibility
of extending depth of field.

Comparison against Fresnel lens and aspherical lens. Using the
same setup as in comparison above, Figure 9 shows results captured
by an aspherical lens, and our prototype lens. Note, the 100 mm
Fresnel lens is fabricated using state-of-the-art photolithography [?].
The 50 mm lens is realized by stacking two 100 mm Fresnel lenses
together. This is because the fabrication resources available to us can
only realize a pixel pitch down to 1 µm, which is far from sufficient

ACM Trans. Graph., Vol. 38, No. 6, Article 1. Publication date: November 2019.



1:4 • Yifan Peng, Qilin Sun, Xiong Dun, Gordon Wetzstein, Wolfgang Heidrich, and Felix Heide

Table 2. End-to-end training for various training configurations for an RGB collimator realized with a single diffractive surface, including full end-to-end
training and fine-tuning using proxy models or the initial guess (Fresnel lens centered on green channel).

Experiment 1
Wiener End-to-End

Experiment 2
GAN End-to-End

Experiment 3
Fine-tune GAN on (1)

Experiment 4
Fine-tune GAN on (2)

Experiment 5
Fine-tune GAN on Zernike Init.

PSNR [dB] 23.9 22.8 25.7 21.9 21.9

Fig. 5. PSFs for Experiments 1-5 for the end-to-end design comparisons, see text.

to create a well-defined Fresnel lens with an aperture diameter of
8 mm at a focal length of 50 mm at a principle wavelength of 550 nm.

Although featuring ultra-thin form factors, conventional Fresnel
lenses suffer from severe chromatic aberration because of diffraction.
Moreover, a conventional aspherical lens suffers from the most
severe off-axis aberration among all evaluated lenses.

Outlier patches for hallucination experiments. As mentioned in
Section 8 of main text, Figure 10 presents additional outlier image
patches that are selected from the validation set. Note again, these
image patches are considered as outlier images, i.e., worst case scen-
arios. We do not observe noticeable artifacts, beyond blur and lack
of contrast in some regions, indicating that our learn reconstruction
does not hallucinate unwanted details.

Reconstruction comparison of different perceptual loss settings. Fig-
ure 11 shows comparisons of results reconstructed from the same
network but with slightly different settings regarding perceptual
loss. Note that with applying VGG loss of single layer the reconstruc-
ted result visually show higher image contrast and more aggressive
color tone. There may appear some residual artifacts in dark regions.
Instead, with applying VGG loss of multiple layers the reconstruc-
ted result of same input visually show more gentle tone mapping
with less residual artifacts in dark regions. Our learned reconstruc-
tion has been validated robust under both settings to produce high
quality results.

Additional Imaging Results. Figure 12 shows additional comparis-
ons against the pinhole imaging at different exposure levels. These
results further validate the discussion in Section 9.2 of the main text.
Refer to the caption of each figure for details.
More measurement and reconstruction results of our prototype

lens are shown in Figure 13, 14, 15, and 16.

Additional Web-based Viewer. In addition to the selected image
crops presented in themain text and this document, we have provided
an interactive web-page that users can browse and switch between

the measurement and the visualization result via mouse-over. Please
refer to the .html file in the package.

6 SUPPLEMENTARY VIDEO
Thismanuscript includes a supplementary video (.mpeg) that provides
a brief overview of this work.
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Fig. 6. Reconstruction results for Experiments 1-5 for the end-to-end design comparisons. The images for each experiment are shown in rows 1-5, with each
row corresponding to the respective experiment as described in the text. The bottom row represents the ground truth images.
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Fig. 7. Comparison results reconstructed by U-net, Pixel-to-pixel, and ours. The pix2pix outperforms U-net on real world data, while still suffers from
non-trivial visual artifacts, e.g. in the sky region. However, our proposed reconstruction mitigates these artifacts.
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Fig. 8. Comparison results of our prototype lenses (left) and the SONY FE 1.4/50 lens (right) with a slightly different field of view due to the deviation of focal
lengths. We show both measurement and reconstruction of ours side-by-side. With this numerical aperture, the SONY lens shows noticeable depth-dependent
defocus effect. Note, our lens is a single element thin plate while the counterpart lens has an optical stack of more than a dozen of optical elements.
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Fig. 9. Comparison results of a chessboard target (top) and a wild scene (bottom) captured by Fresnel lenses (aperture 8mm), an aspherical lens(aperture
23.5mm), and our prototype lens(aperture 23.5mm).
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Fig. 10. Outlier image patches from validation set for hallucination assessment. For each pair, we show the recovered image patch on the left while the
ground truth image patch on the right.
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Fig. 11. Comparison results reconstructed using our network but with different settings regarding perceptual loss functions.
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Fig. 12. Additional comparison results captured by our lens and a pinhole for low light imaging scenarios. For each example we present the exposure time
and ISO for readers’ information.
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Fig. 13. Additional results captured by our prototype lenses (1-4). For each example we present side-by-side the measurement and the recovery images.

ACM Trans. Graph., Vol. 38, No. 6, Article 1. Publication date: November 2019.



Supplementary Information:
Learned Large Field-of-View Imaging With Thin-Plate Optics • 1:13

Fig. 14. Additional results captured by our prototype lenses (2-4). For each example we present side-by-side the measurement and the recovery images.
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Fig. 15. Additional results captured by our prototype lenses (3-4). For each example we present side-by-side the measurement and the recovery images.
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Fig. 16. Additional results captured by our prototype lenses (4-4). For each example we present side-by-side the measurement and the recovery images.
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