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Figure 1: (a) We use a photonic mixer device (PMD) coupled with a 2D projector to acquire “light-in-flight” images and depth maps for
scenes with complex indirect transport. (b)-(c) The sharp, evolving wavefronts of light travelling along direct and caustic light paths can be
seen clearly. (d) We also recover time-of-flight depth maps in a way that is not affected by strong indirect light. This indirect light mainly
consists of diffuse inter-reflections for the scene in (a) but we also show experimental results where caustic light paths dominate.

Abstract

We analyze light propagation in an unknown scene using projectors
and cameras that operate at transient timescales. In this new pho-
tography regime, the projector emits a spatio-temporal 3D signal
and the camera receives a transformed version of it, determined by
the set of all light transport paths through the scene and the time de-
lays they induce. The underlying 3D-to-3D transformation encodes
scene geometry and global transport in great detail, but individual
transport components (e.g., direct reflections, inter-reflections, caus-
tics, etc.) are coupled nontrivially in both space and time.

To overcome this complexity, we observe that transient light trans-
port is always separable in the temporal frequency domain. This
makes it possible to analyze transient transport one temporal fre-
quency at a time by trivially adapting techniques from conventional
projector-to-camera transport. We use this idea in a prototype that
offers three never-seen-before abilities: (1) acquiring time-of-flight
depth images that are robust to general indirect transport, such as in-
terreflections and caustics; (2) distinguishing between direct views
of objects and their mirror reflection; and (3) using a photonic mixer
device to capture sharp, evolving wavefronts of “light-in-flight”.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
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Links: DL PDF WEB

1 Introduction

Recent years have seen a strong interest in using computational
imaging methods to probe and analyze light transport in complex
environments. A cornerstone of this body of work is the light trans-
port equation, which describes the interaction of light with a scene
in terms of a simple linear relation [Ng et al. 2003; Debevec et al.
2000; Goral et al. 1984; Kajiya 1986]:

i = T p (1)

where i is a 2D image represented as a column vector of pixels, T
is the scene’s I × P transport matrix, and p is a vector that repre-
sents the scene’s spatially-varying illumination (e.g., a 2D pattern
projected onto the scene by a conventional video projector).

The transport equation governs a broad range of optical phenomena
but the matrix T is often unknown and must be inferred from im-
ages. This inference problem—after more than a decade of graph-
ics and vision research—has produced a large repertoire of analysis
techniques and is now quite mature. Examples include methods for
acquiring [Peers et al. 2009], decomposing [Bai et al. 2010], trans-
posing [Sen et al. 2005], approximating [Garg et al. 2006; O’Toole
and Kutulakos 2010], or inverting [Seitz et al. 2005] the matrix;
methods that use its properties for image-based rendering [Debevec
et al. 2000] or transport-robust shape acquisition [Gupta and Nayar
2012]; and imaging techniques that enhance the contribution of spe-
cific light transport components [Nayar et al. 2006; O’Toole et al.
2012; Reddy et al. 2012]. All these techniques make the problem
tractable by capturing images under many different illuminations at
rates limited by current projection technology (30kHz or less).

Against this backdrop, transient imaging has emerged as an alterna-
tive paradigm for transport analysis that exploits light’s finite speed.
Instead of illuminating a scene with spatially-varying patterns they
rely on temporally-varying ones, using MHz to THz lasers and
sensors sensitive to these rates (e.g., streak cameras [Velten et al.
2013] and photonic mixer devices [Heide et al. 2013; Kadambi
et al. 2013]). These techniques have opened new frontiers—looking
around corners [Kirmani et al. 2011], time-of-flight depth imag-
ing [Velten et al. 2012; Kirmani et al. 2013], lensless imaging [Wu
et al. 2013], and capturing propagating optical wavefronts [Velten
et al. 2013]—but are fundamentally limited in their ability to ana-
lyze complex global transport.

http://doi.acm.org/10.1145/2601097.2601103
http://portal.acm.org/ft_gateway.cfm?id=2601103&type=pdf
http://www.dgp.toronto.edu/~motoole/temporalprobing.html
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Figure 2: Spatial vs. single-frequency spatio-temporal patterns.
On the right, pixel intensities vary sinusoidally with a common tem-
poral frequency ω but their amplitudes and phases differ.

In this paper we combine both paradigms by considering, for the
first time, the generation and acquisition of transient space-time pat-
terns for scene analysis. In this new analysis regime, the projector
emits a 3D signal (2D space × 1D time) and the camera receives
a transformed 3D version of it. This brings two sets of constraints
to bear on the same problem: constraints on the spatial layout of
light paths arriving at a given pixel and constraints on their travel
time. These constraints are complementary but not orthogonal; thus,
by considering them jointly we can draw far stronger conclusions
about light transport than when spatial or temporal light patterns are
used in isolation, or sequentially.

To demonstrate the practical advantages of this approach, we apply
it to the problem of decomposing a scene’s transient appearance
into transport-specific components. This very basic imaging task
has received considerable attention in conventional light transport
but is poorly understood in transient settings. Here we give a solu-
tion to this problem for general scenes and three transport compo-
nents: (1) direct reflections and retro-reflections, (2) caustic light
paths and (3) non-caustic indirect paths. We then implement this
basic imaging ability in a functional prototype to

• improve the robustness of time-of-flight sensors against
indirect transport by acquiring and processing only the
direct/retro-reflective time-of-flight component;

• capture sharp, evolving wavefronts of “light-in-flight” that
so far have been directly observed only with very expensive
streak camera technology; and

• conduct space-time light path analysis to separate “true” scene
points from their mirror reflections.

Toward these goals, our key contribution is a new form of the
light transport equation that makes many classical transport anal-
ysis problems easy to formulate and solve in the transient domain.
This new equation, which we call the transient frequency transport
equation, assumes that we “probe” the scene by projecting a spe-
cial spatio-temporal signal onto it—a signal whose pixel intensities
vary sinusoidally in time with a common frequency ω (Figure 2):

i
ω = T

ω
p
ω , (2)

where pω is a column vector of P complex numbers, each repre-
senting the sinusoid’s amplitude and phase for a specific projector
pixel; iω represents the per-pixel sinusoids received at the camera;
and Tω is the scene’s I × P transient frequency transport matrix
for emission frequency ω. Intuitively, this matrix tells us how the
temporal sinusoid received at a specific camera pixel is affected
by temporal sinusoids emitted by different projector pixels, after
accounting for all global light transport paths and the delays they
induce (Figure 3). In this sense, the transient frequency transport
matrix describes light transport exactly like the conventional matrix
does, except that it deals with per-pixel temporal sinusoids instead
of per-pixel intensities. This matrix is different for different emis-
sion frequencies and reduces to the conventional transport matrix
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Figure 3: Visualizing the transient frequency transport equation.
The projector emits sinusoids of frequency ω from pixels 2, 3 and 4
and these signals propagate to camera pixel 2 along three paths: a
direct path (blue), where light bounces only once; a caustic path
(red), where light enters and exits the scene along distinct rays
and undergoes several bounces in between, at most one of which
is non-specular; and a non-caustic indirect path (green). Since all
sinusoids have the same frequency, their superposition, recorded
by camera pixel 2, will have the same frequency as well. Pixel 2’s
amplitude and phase depend on path-specific attenuations and de-
lays, specified in the elements of Tω (e.g., for the green path it is
Tω

23). For an example of a retro-reflective path, which can occur
only when the projector and camera are coaxial, see Figure 10.

for the DC frequency, where illumination is a constant projection
pattern. Taken together, this continuous family of discrete transport
matrices is a five-dimensional structure that fully describes global
light transport at transient timescales—from a projector plane to a
camera plane via a 1D set of emission frequencies.

The fact that Equation 2 exists has two implications for light trans-
port analysis. First and foremost, we can directly apply conven-
tional light transport techniques to the transient case—without com-
promising their effectiveness or adding extra assumptions. This in-
volves simply replacing conventional projectors and cameras with
transient ones, and “probing” the scene by emitting from every pro-
jector pixel a temporal sinusoid of a common frequency ω. We
use this idea extensively in our prototype to acquire specific compo-
nents of light transport with such probing patterns. These compo-
nents cannot be captured robustly with existing techniques because
temporal signals may propagate through the scene along many dif-
ferent paths and combine upon arrival at a pixel, making it impossi-
ble to separate them without strong assumptions about the actual
signal received (e.g., diffuse one-[Kirmani et al. 2012] or three-
bounce transport [Kirmani et al. 2011], dominant peak [Wu et al.
2012], parametric [Heide et al. 2013], and/or sparse [Dorrington
et al. 2011; Kadambi et al. 2013]).

Second, probing the scene with a specific temporal frequency is
relatively easy to implement with photonic mixer devices (PMDs).
These devices offer affordable spatio-temporal imaging and can be
configured to operate at a single emission frequency. Our proto-
type is built around such a camera, with spatio-temporal projection
made possible by replacing the light source of a conventional pro-
jector with the PMD’s laser diode. In this respect, our prototype can
be thought of as generalizing the point-source/transient-camera sys-
tem of Heide et al. [2013] and the transient-projector/single-pixel-
camera system of Kirmani et al. [2012].

2 Global Light Transport in Space and Time

We begin by deriving the transient frequency transport equation
from first principles by considering propagation in space and time.
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Figure 4: Simulated transient light transport, rendered using a modified path tracing integrator for non-caustic transport and a photon
mapping integrator for caustic transport. For each camera pixel i, we simulate the travel time τ of all light paths from the scene lit by a
projector pixel j. (a) The scene contains, from left to right, a diffuse bunny, a mirror casting caustic light on the bunny, a glossy bowl, a diffuse
v-shaped wedge, and a glass dragon. (b) A transient image of pixels i across times τ . (c) A conventional light transport matrix, tabulating
transport for each camera pixel i in response to projector pixel j. (d-h) Space-time impulse response functions for distinct camera pixels,
as labelled in (a). Both the direct light paths, highlighted by the red circles, and caustic light paths, highlighted in yellow, are impulses in
space-time. Note that (g) and (h) show the individual bounces of light occur between the two faces of the v-shaped wedge, whereas these
multi-bounce light paths overlap in (b) and (c).

The space-time impulse response The conventional light trans-
port equation ignores time completely. One way to interpret that
equation is to think of the projector as emitting a time-invariant pat-
tern; the camera then captures a photo only after light propagation
through the scene has reached a steady state.

To take transient phenomena into account, we must consider the
case where light has not yet reached a steady state. The most
straightforward way to do this is to add a time dimension to the
basic light transport equation:

ĩ(τ) = T̃(τ) p̃(0) (3)

Here p̃(0) is an illumination pattern that is emitted for an infinitely-

brief interval at time zero, and ĩ(τ) records only light that arrived at

the camera exactly at time τ . The time-varying matrix T̃(τ) there-
fore describes the part of the light transport in the scene that has
a travel time of exactly τ . From a signal processing perspective,
this non-negative matrix-valued function can be thought of as the
scene’s space-time impulse response [Kirmani et al. 2011].

The relationship between the space-time impulse response and the
conventional light transport matrix is a simple time integral:

T =

∫ ∞

0

T̃(τ) dτ (4)

Transport of general spatio-temporal patterns Now consider
a general pattern p̃(t) that varies in both space and time. If the
projector emits p̃(t0) for an infinitely-brief interval at time instant

t = t0, the time sequence of camera pixel intensities that results
from that emission will be

ĩ(t0 + τ) = T̃(τ) p̃(t0) (5)

Emitting the full spatio-temporal pattern p̃(t) will produce a time-

varying image that takes into account all possible travel times:1

ĩ(t) =

∫ ∞

−∞

T̃(τ) p̃(t− τ) dτ (6)

def
= (T̃ ∗ p̃)(t) (7)

where the operator ∗ convolves a matrix function and a vector func-
tion over time.2 More information on this form of the convolution
operator and a brief overview of algebra and notation on matrix and
vector functions can be found in the supplemental material.

When the scene’s space-time impulse response is known, we can
use the convolution integral of Equation 7 to render the scene un-
der any space-time illumination pattern (Figure 4). Applying this
equation in practice, however, is difficult for several reasons. First,

rendering even a single transient snapshot ĩ(t0) requires the full 5D
space-time impulse response because of the convolution integral in-
volved. Second, this function can be extremely large because of
the extra time dimension, compared to the conventional light trans-
port matrix, making it even more challenging to measure, store, and

1Since light cannot travel back in time, T̃(τ) is zero for τ < 0.
2Our definition of convolution here is consistent with convolution oper-

ators on tensor fields [Hlawitschka et al. 2004].



# Description Reference(s) Conventional Light Transport Single-Frequency Transient Light Transport

1 transport equation [Debevec et al. 2000; Ng et al. 2003] i = T p iω = Tω pω

2 dual equation [Sen et al. 2005; Sen and Darabi 2009] i = TT p iω = (Tω)T pω

3 inverse equation [Wetzstein and Bimber 2007] i = T† p iω = (Tω)† pω

4 radiosity equation [Goral et al. 1984] i = p + AFi iω = pω + AFωiω

5 radiosity solution [Goral et al. 1984] i = (I − AF)−1p iω = (I − AFω)−1pω

6 inverse transport [Seitz et al. 2005; Bai et al. 2010] T−1 = A−1 − F (Tω)−1 = (Dω)−1[ A−1
− Fω ](Dω)−1

7 transport eigenvectors [O’Toole and Kutulakos 2010] λv = T v λv = Tω v

8 probing equation [O’Toole et al. 2012; O’Toole et al. 2014] i = (T ⊙ Π) 1 iω = (Tω ⊙ Π) 1

9 low/high-frequency

transport separation

[Nayar et al. 2006] ilow = 1

α
mink T pk

ihigh = maxk Tpk − αilow

iωlow = 1

α
mink Tωpω

k
iωhigh = maxk Tωpω

k
− αiωlow

Table 1: Related works on light transport analysis that have simple extensions to the single-frequency transient domain. In each instance,
the transient formulation becomes the conventional (steady state) formulation at ω = 0. Rows 1-7: Refer to the supplemental materials for
more details on the notation and formulation. Rows 8 and 9: We implement the probing equation and fast transport separation to separate
an image into three parts: a direct/retro-reflective component, a caustic component, and a non-caustic indirect component.

analyze directly. Third, representing this function as a discrete 5D
array makes it difficult to infer properties of transient light transport
because light travels along continuous and unbounded path lengths,
and the function’s dynamic range can be extremely high (e.g., direct
light paths consist of Dirac peaks). Fourth, using impulse-like illu-
mination patterns to analyze transient transport typically requires
expensive equipment, long capture times, and exotic techniques to
overcome signal-to-noise ratio issues.

The transient frequency transport equation Observe that the
convolution in Equation 7 is only in the temporal domain. To derive
the transient frequency transport equation we apply the convolution
theorem to the time axis only, independently for each element of

matrix T̃(τ):

F{ ĩ }(ω)
︸ ︷︷ ︸

image iω

= F{ T̃ ∗ p̃ }(ω) (8)

= F{T̃}(ω)
︸ ︷︷ ︸

matrix Tω

F{p̃}(ω)
︸ ︷︷ ︸

pattern pω

(9)

where F{} denotes the element-wise Fourier transform along the
time axis and ω denotes temporal frequency. For a fixed frequency
ω, Equation 9 is a matrix-vector product whose factors we denote
as Tω and pω for notational convenience. This brings it into the
form shown in Equation 2.

The transient frequency transport equation can be interpreted as
an image formation model for patterns like those shown in Fig-
ures 2 and 3, which contain just one temporal frequency. The most
important advantage of this model is that it is separable in three
domains simultaneously: the temporal frequency domain and the
domains of the projector and the camera pixels, respectively. This
leads to a mathematically simpler representation for light transport
analysis. In particular, the contribution of all light paths from a spe-
cific projector pixel to a specific camera pixel—including all atten-
uations and time delays—is captured in just one complex number
per temporal frequency (Figure 3).

Analyzing light transport one frequency at a time offers computa-
tional advantages as well: in contrast to the scene’s space-time im-
pulse response which is 5D, the transient frequency transport ma-
trix is a 4D object that has exactly the same size as the conventional
transport matrix. Moreover, inexpensive and light-efficient PMD
cameras can be configured to follow this single-frequency image
formation model exactly, making it possible to perform transient
light transport analysis directly in the temporal frequency domain.

3 Analysis by Temporal Frequency Probing

Much of the theory established for conventional light transport anal-
ysis applies to the transient case, as long as we restrict illumination
to patterns that are single-frequency temporal sinusoids. Below we
consider transient versions of two techniques we have implemented,
as well as of the rendering equation. Table 1 summarizes several
more, with details provided in the supplemental material.

Probing the transport matrix The techniques of O’Toole
et al. [2012; 2014] make it possible to capture direct/retro-reflective
and indirect-only photos of a scene. Their main feature is that they
can be applied to scenes with high-spatial-frequency indirect trans-
port paths (e.g., containing mirror reflections, refractions, etc.). We
use transient versions of these techniques to perform similar trans-
port decompositions for images acquired with a PMD camera.

Specifically, transport probing implements a generalized image for-
mation model that can be used to block specific light paths from
contributing to a photo:

i = (T⊙Π) 1 (10)

Here Π is a known matrix that is multiplied element-wise with the
transport matrix of the scene, which is considered unknown. Light
paths are blocked by setting some of Π’s elements to zero. This
has the effect of “zeroing-out” the corresponding elements of the
transport matrix, preventing their associated light paths from affect-
ing the photo. For instance, O’Toole et al. [2012] use a coaxial
projector-camera arrangement to acquire direct/retro-reflective by
choosing Π to be diagonal. This is because direct light transport
occurs only along retro-reflective paths, which always correspond
to the diagonal elements of Π and T. Similarly, the binary comple-
ment of Π yields an indirect-only photo.

We can readily use the transport probing model of Equation 10 for
transient imaging because matrix elements Tij and Tω

ij represent
the exact same set of light paths for any i, j. As a result, matrix Π
has the same effect in both imaging regimes:

i
ω = (Tω ⊙Π) 1 (11)

The transient rendering equation This equation represents all
light transport as a function of time t [Kirmani et al. 2011]:

lij(t) = qij(t) +

M∑

k=1

fkij lki(t− τki) (12)



where lij(t) captures radiance along a ray, qij(t) is the emitted
radiance, fkij represents the form factors, and τki corresponds
to the flight time between two points k and i. Note that this
spatially-discrete expression is based on a continuous-valued (i.e.
non-discretized) set of travel times τki between pairwise points.

We now prove that the transient rendering equation is itself separa-
ble in the temporal frequency domain:

lωij = qωij +

∫ ∞

−∞

(
M∑

k=1

fkij lki(t− τki)

)

e−2πitω dt

= qωij +
M∑

k=1

fkije
−2πiτkiω

∫ ∞

−∞

lki(t)e
−2πitω dt

= qωij +

M∑

k=1

fkije
−2πiτkiωlωki (13)

where lωij denotes the Fourier coefficient of temporal function lij(t)
for frequency ω. The key difference between Equation 13 and the
conventional rendering equation [Kajiya 1986] are the complex ex-
ponential factors that represent phase delay between pairs of scene
points. Most of the equations in Table 1 follow as direct conse-
quences of this equation. Note that the equation remains valid for
discrete temporal frequencies as well.

Fast separation of low/high-frequency transport components

Another way to capture individual components of light transport is
to conventionally project onto the scene a sequence of patterns that
have high spatial frequencies [Nayar et al. 2006]. This takes ad-
vantage of the spatial-frequency-preserving properties of different
components of the light transport matrix. The typical application
is for acquiring the direct-only and indirect-only images of a scene.
In particular, sub-surface scattering and diffuse inter-reflections typ-
ically act as low-pass filters on incident illumination because the
form factors fkij of the rendering equation are smooth relative to
the spatial frequency of the illumination patterns. Direct transport,
on the other hand, preserves high spatial frequencies and thus can
be distinguished from low-spatial-frequency transport by analyzing
a scene’s response to various high-spatial-frequency 2D patterns.

Nayar et al.’s separation technique can be applied to the tran-
sient domain too. This is because the transient form factors
fkije

−2πiτkiω in Equation 13 will also be smooth for space-time
signals of a sufficiently low temporal frequency ω.

In general, of course, indirect transport may also preserve high spa-
tial frequencies because of caustic light paths. We follow the ap-
proach suggested by O’Toole et al. [2012] to handle this case: we
capture the direct/retro-reflective and indirect-only components by
probing the transient transport matrix at a single frequency; then we
apply Nayar et al.’s method to decompose the indirect-only compo-
nent further, into caustic and non-caustic indirect components.

Relation between matrices Tω for different frequencies ω Per-
frequency analysis is most effective when transport matrices at dif-
ferent temporal frequencies are related, so that analyzing one tells
us something about the others. Fortunately strong correlations do
exist, and we use three of them here. First and foremost, element
Tω

ij represents the same physical 3D transport path(s) from projec-
tor pixel j to camera pixel i regardless of the frequency ω. Thus,
if it represents direct or caustic transport at one frequency, it will
do so at all others.3 Second, a direct path between these pixels
contributes a Dirac peak to pixel i’s temporal profile, which has a

3See O’Toole et al. [2012; 2014] for an analysis of the block-diagonal

structure of T and its relation to individual transport components.

Algorithm 1 Acquire a PMD photo for illumination pattern p.

In: frequency ω and real-valued spatial illumination pattern p

Out: photo equal to iω = Tω pω

1: given frequency ω, set hardware-defined modulation functions f(t), g(t) such

that h(τ) = (f ∗ g)(τ) = cos(ωτ) + b for some arbitrary constant offset b

2: define phase delay vector φ =
[

0, π
2ω

, π
ω
, 3π
2ω

]

3: for d = 1 to 4 do

4: display pattern p

5: modulate sensor and source with f(t), g(t − φd) so that

h(τ) = cos(ω(τ + φd)) + b

6: capture image iωd satisfying Equation 14

7: end for

8: set iω = (iω
1
− iω

3
) + i(iω

2
− iω

4
)

9: return captured PMD photo iω

flat spectrum. We can therefore use element Tω
ij to predict ampli-

tude at all frequencies, and to predict phase up to a discrete (phase-
unwrapping) ambiguity. Third, a similarly strong correlation occurs
for elements representing caustic paths, which also produce Dirac
temporal peaks in typical settings.

In contrast, correlations are much weaker when the transport be-
tween pixels j and i is non-caustic indirect. Such transport often
involves a broad distribution of path lengths and contributes tem-
poral profiles with complex shape and small spectral support. This
makes it hard to predict phase and amplitude far from ω.

4 Implementation: Hardware & Algorithms

Basic imaging procedure The working principle behind pho-
tonic mixer devices (PMDs) is the synchronous modulation of both
the incident and outgoing light at high frequencies. Modulating the
incident light by function f(t) and projecting pattern p̃(t) = g(t)p,
with temporal modulation function g(t) and 2D spatial pattern p,
yields the following image formation model:

i =

∫ NT

0

f(t)

∫ ∞

−∞

T̃(τ)p̃(t− τ) dτ dt

=

[∫ ∞

−∞

T̃(τ)

(

N

∫ T

0

f(t)g(t− τ) dt

)

dτ

]

p

=

[

N

∫ ∞

−∞

T̃(τ)h(τ) dτ

]

p (14)

where the function h(τ) is the convolution between the two mod-
ulation functions f(t) and g(t), T = 1

ω
is the modulation period,

and the integer N is the number of periods captured during a single
exposure. This becomes exactly Equation 2 when the convolution
function is chosen to be the complex exponential h(τ) = e−2πiτω .

In practice, the modulation functions and their convolution have
non-negative, real values. The basic imaging procedure of a PMD
camera synthesizes images for mean-zero, complex-valued h(τ) by
capturing and linearly combining four images: two for the real term
and two for the imaginary term. See Algorithm 1 for the basic
imaging procedure when the illumination pattern p is real valued,4

and refer to Figures 12 and 13 of the supplemental material for
illustrations of the procedure.

In real PMD cameras, the specific modulation functions g(t) and
f(t) are usually determined by hardware constraints, and cannot

4Illuminating the scene with a complex pattern pω is not physically re-

alizable. It can be simulated, however, by capturing four PMD photos in a

way similar to Algorithm 1. We do not use such patterns in our experiments.
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Figure 5: Overhead view of our prototype. The modulated laser
source (right) emits light that passes through a lens and the existing
optics of a DLP projector (middle) on its way to the scene. The
PMD camera (left) captures the light returning from the scene.

be chosen arbitrarily. In particular, h(τ) is not always an exact si-
nusoid. We note, however, that, if g(t) and f(t) are periodic with
frequency ω, then so is h(τ). Therefore h(τ) is a superposition of
the base frequency ω and its harmonics. In this case, the transport
matrices are simply a weighted sum of the transport matrices for
the base frequency and its harmonics. In practice, we conduct the
bulk of our analysis at frequency ω1 = 100MHz (i.e., depth acqui-
sition and phase estimation for direct and caustic paths), where our
prototype’s deviation from a perfect sinusoid is negligible.

Hardware Figure 5 shows an overhead photo of our prototype in
its non-coaxial configuration, in which the projector and camera can
be thought of as forming a stereo pair. We modified the 160× 120-
resolution sensor of a PMD PhotonICs 19k-S3 by replacing the in-
ternal modulation signal with our own external modulation signals,
outputting frequencies that range from 12 MHz to 140 MHz. We il-
luminate the scene with a custom laser projector, built by replacing
the RGB light source of an off-the-shelf DLP LightCrafter projector
with the light emitted from six 650 nm laser diodes. A single 40 mm
lens (Thorlabs TRS254-040-A-ML) directs the modulated laser il-
lumination through the existing optics of the projector, from which
the RGB LEDs and dichroic mirrors were removed. For coaxial
camera and projector arrangements, we add a 50/50 beamsplitter
(Edmund Optics #46-583) to optically align the projector and the
camera.

The exposure time of our PMD camera was strictly limited to the
range of 1 to 8 ms. We used a 1 ms exposure time (Step 5 of Al-
gorithm 1) when operating the camera in a stereo arrangement as
shown in Figure 5; in coaxial arrangements we increased it to 8 ms
to compensate for the system’s 25% ideal light efficiency and for
beamsplitter imperfections. Thus, capturing one PMD photo with
Algorithm 1 takes 4 or 32 ms, depending on the arrangement.

Calibration The sensing behavior of individual pixels is not per-
fectly uniform over the entire PMD sensor. We model these devi-
ations as an element-wise product between two complex images—
the PMD photo of the scene and a 2D “noise” pattern wω . The pat-
tern’s amplitude, ‖wω‖, models the non-uniformity of pixel sensi-
tivities and represents fixed pattern noise (FPN). Its phase, argwω ,
models pixel-specific offsets in the phase of the sensor’s modula-
tion function, and thus represents fixed phase-pattern noise (FPPN).
Removing this deterministic noise pattern involves two steps: (1)
pre-compute wω by capturing a photo of a scene that is constant in

both amplitude and phase, and (2) multiply its reciprocal (wω)−1

with every captured PMD photo.

Transport matrix probing with a PMD camera The key to prob-
ing comes from approximating Equation 11 with a sum of bilinear
matrix-vector products [O’Toole et al. 2012]:

(Tω ⊙Π) 1 ≈

K∑

k=1

mk ⊙T
ω
pk (15)

Algorithm 2 Combine PMD imaging and matrix probing.

In: phase delay φd; spatial binary patterns p1, . . ., pK and masks m1, . . ., mK

such that Π ≈
∑K

1
mk(pk)

T

Out: component iωd of PMD photo (Tω
⊙ Π) 1

1: modulate sensor and source according to f(t), g(t − φd)

2: open camera shutter

3: for k = 1 to K do

4: apply pixel mask mk

5: display pattern pk for 1

K
-th the exposure time

6: end for

7: close camera shutter

8: return image iωd

where the sequence of vectors pk and mk defines a rank-K ap-

proximation of the probing matrix: Π ≈
∑K

1
mk(pk)

T
. When

ω is the DC frequency, O’Toole et al. [2012] showed how to im-
plement Equation 15 directly in the optical domain by capturing
just one conventional photo. Briefly, the idea is to treat vectors pk

as illumination patterns that are projected onto the scene one by
one, each for 1/K of the photo’s exposure. At the same time, the
light arriving at individual sensor pixels is modulated by a 2D pixel
mask, defined by the vectors mk, which changes in lockstep with
the projection patterns. A video-rate implementation of this proce-
dure was recently described in [O’Toole et al. 2014], using a pair
of synchronized DLP LightCrafter kits for projection and masking.
Their implementation approximates T with a sequence of binary
patterns and masks and allows up to K = 96 projection/masking
operations within the 36 ms exposure time of one video frame.

Generalizing this procedure to arbitrary temporal frequencies ω and
to complex-valued PMD photos is straightforward: we simply re-
place Steps 4 and 5 of Algorithm 1 (which acquire images without
a mask under a fixed illumination pattern) with Steps 1-8 of Algo-
rithm 2 (which change masks and illumination patterns K times).
Note that this modification of Algorithm 1 does not change the to-
tal number of images captured, which remains equal to four. Un-
fortunately, hardware constraints prevented us from implementing
Algorithm 2 exactly as shown, impacting the number of images we
capture in experiments. We return to this at the end of Section 4.

Mask/pattern sequences for indirect-only imaging The imag-
ing behavior of a matrix probing operation is critically dependent on
the precise definition of the mask and pattern sequences. We refer
interested readers to [O’Toole et al. 2012; O’Toole et al. 2014] for
detailed derivations and in-depth discussion of specific cases. Here
we concentrate on the binary mask/pattern sequences for indirect-
only imaging, which are used extensively in our PMD experiments.

In particular, let us first consider the case of a stereo projector-
camera arrangement. Following [O’Toole et al. 2014], we compute
the epipolar geometry between the projector and the PMD camera
and construct each mask mk by randomly turning each of its epipo-

Figure 6: Mask/pattern pairs for indirect-only imaging. Corre-
sponding epipolar lines are never “on” at the same time in the
randomly-generated mask (left) and its projection pattern (right).



Algorithm 3 Acquire a direct/retro-reflective PMD photo.

In: frequency ω and sequence length K

Out: direct/retro-reflective PMD photo iωdirect

1: acquire conventional PMD photo iω using Algorithm 1 and an all-white pattern

2: construct indirect-only binary sequences p1, . . . ,pK and m1, . . . ,mK

3: acquire indirect-only PMD photo iωindirect using Algorithms 1 and 2

4: return image iω − iωindirect

Algorithm 4 Acquire low- / high-frequency indirect PMD photos.

In: frequency ω and sequence lengths J and K

Out: photos iωlow and iωhigh containing low- and high-frequency indirect transport com-

ponents, respectively

1: construct indirect-only binary sequences p1, . . . ,pK and m1, . . . ,mK

2: construct high-frequency pattern sequence, q1, . . . ,qJ

3: set iωlow = iωhigh = 0

4: for j = 1 to J do

5: acquire a PMD photo iω using Algorithms 1 and 2, the mask sequence

m1, . . . ,mK and the pattern sequence p1 ⊙ qj , . . . ,pK ⊙ qj

6: set iωlow = min(iωlow, i
ω)

7: set iωhigh = max(iωhigh, i
ω)

8: end for

9: set iωhigh = iωhigh − iωlow

10: set iωlow = 1

α
iωlow

11: return separated components iωlow, iωhigh

lar lines “on” or “off” with probability 0.5. Given mask mk, we
construct the corresponding pattern pk by turning “on” all epipolar
lines that were turned “off” in the mask, and vice-versa. Intuitively,
such a mask/pattern pair is guaranteed to block all direct light paths
from projector to camera because (1) direct paths always satisfy the
epipolar constraint and (2) corresponding epipolar lines are never
“on” simultaneously on the projector and camera planes. Figure 6
shows such an example. In coaxial projector-camera arrangements,
where epipolar geometry is degenerate, we apply this construction
to the rows of an image instead of its epipolar lines.

Acquiring direct/retro-reflective PMD photos The basic pro-
cedure is shown in Algorithm 3. It amounts to capturing a conven-
tional PMD photo and then subtracting its indirect-only component.

Fast separation of low/high-frequency transport components

We further decompose the indirect component of a PMD photo into
its low- and high-frequency components, corresponding to caustic
indirect and non-caustic indirect paths, respectively. We do this
with the approach suggested by O’Toole et al. [2012]. The idea is
to modify the indirect-only mask/pattern sequences in a way that
combines transport matrix probing with the frequency-based sep-
aration technique of Nayar et al. [2006]. Algorithm 4 shows the
basic steps, adapted to the case of PMD imaging.

Depth acquisition from direct/retro-reflective PMD photos

The phase component of a PMD pixel encodes the depth of each
scene point as a value that ranges from 0 to 2π. Specifically, a
coaxial system produces pixel values of the following form:

i
ω = ae−2πid 2ω

c (16)

where a is the albedo of a scene point, d is its depth, 2d is the round-
trip distance travelled by light to the camera, and c is the speed of
light. This produces ambiguities in the relation between phase and
depth. For example, frequency ω1 = 100 MHz only encodes depth
for a maximum unambiguous range of c

2ω1
≈ 1.5 m. For a greater

depth range, we acquire direct/retro-reflective PMD photos for two
frequencies ω1 and ω2 = ω1/2 and use phase-unwrapping [Mei
et al. 2013] to calculate depth. Specifically, given photos iω1 and

PMD imaging task Optical masking Computational masking Experiments

illumination pattern p 4 4 4

indirect-only 4 4K 512

direct/retro-reflective 8 4 + 4K 516

low-/high-freq. indirect 4J 4KJ 3072

depth acquisition 8 4 + 4K 516

transport decomposition 8 + 4J 4 + 4K + 4KJ 3588

light-in-flight imaging 8 + 4J + 4F 4 + 4K + 4KJ + 4F 3718

Table 2: Images required for transient tranport analysis. We use
K =128, J =6, F =65 in our experiments, with ω1 = 100 MHz
and no phase unwrapping. See Sections 4 and 5 for explanations.

iω2 , the phase-unwrapped depth is

d =
c

2ω1

{

2−
arg iω1

2π
−

⌊
π + 2arg iω2 − arg iω1

2π

⌋}

(17)

Since the scenes in our experiments were well within 1.5 m, imag-
ing at a single frequency ω1 with no unwrapping was sufficient.

Hardware limitations and computational masking The 8 ms
maximum exposure time of our PMD camera prevented us from
implementing Algorithm 2 in one shot. This is because our DLP
kits can perform at most K = 21 projection/masking operations
in that interval, leading to much poorer approximations of Equa-
tion 15 compared to the 96 patterns that fit in a 36 ms video frame.
To overcome this limitation we mask images computationally, by
pushing Steps 2 and 7 of Algorithm 2 inside the loop. In particu-
lar, we capture K = 128 images individually, each with a 1 ms
exposure; we multiply element-wise the image captured in the k-th
iteration with the associated mask mk; and accumulate the result.
This increased significantly the number of images we had to capture
for the experiments in Section 5. Table 2 gives full details.

5 Results

Transport decomposition for time-of-flight imaging We start
with separating a scene’s transient appearance into its three trans-
port components—direct/retro-reflective, caustic, and non-caustic
indirect. Since both the direct/retro-reflective and the caustic com-
ponents are due to distinct temporally-isolated reflection events,
they correspond to Dirac peaks in the time domain. We run Al-
gorithm 3 for frequency ω1 to localize the former and Algorithm 4
for the same frequency to identify and localize the latter. This also
gives us the non-caustic indirect contributions for frequency ω1.

Figure 7 shows this decomposition for a scene containing a mirror
and a miniature statue of Michelangelo’s David positioned near the
corner of a room. We used a coaxial projector-camera arrangement
for this example.

Time-of-flight depth images robust to indirect transport PMD
cameras compute depth by acquiring PMD photos for one or more
frequencies with a co-located light source, and then using Equa-
tion 17 to turn phases into depth values. An unfortunate conse-
quence of this approach is that indirect light has a pronounced in-
fluence on the measurements. Though methods exist for remov-
ing the influence of indirect light from a PMD image computation-
ally [Fuchs 2010; Godbaz et al. 2012; Jiménez et al. 2014], these
methods rely on predictive models that do not generalize for han-
dling all forms of indirect light.

We demonstrate the ability to recover accurate depth images that are
robust to indirect light transport using PMD cameras. Specifically,
we use Algorithm 3 to capture the direct/retro-reflective PMD photo
of a scene for frequency ω1. This photo is by definition invariant to
indirect transport so its phase yields transport-robust depth maps.
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Figure 7: Capturing PMD photos corresponding to individual transport components. Since these photos are complex, we only show their
amplitudes in this figure. (a) A scene containing a mirror and a miniature statue of David. (b) PMD photo returned by Algorithm 1 for
an all-white illumination pattern. (c) PMD photo returned by Algorithm 3. (d) PMD photo returned by Algorithm 2 for mask/pattern pairs
similar to those in Figure 6. (e) Basic path geometries for a camera pixel i: direct/retroreflective light path i → i (black), caustic path
k → i (red), and non-caustic indirect path j → i (green). (f) One of six PMD photos acquired in Step 5 of Algorithm 4. This photo is an
indirect-only transient view of the scene under a projection pattern consisting of binary stripes. (g-h) PMD photos returned by Algorithm 4.

Figure 8 shows depth acquisition results for three scenes with sig-
nificant low- and high-frequency indirect transport. The scene in
row 1 is a bowl pressed flush against a planar wall (Figure 9). The
deep concavity of the bowl produces a significant amount of indi-
rect light through diffuse inter-reflections. As a result, the “raw”
time-of-flight measurements place the base of the bowl 4 to 5 cm
behind the wall itself (columns (a) and (c)). Our approach recon-
structs a physically-valid solution, with the bowl’s base coinciding
with the expected position of the wall (columns (b), (d) and (e)).
Note that the reconstructions of the convex handle of the bowl are
the same in both cases (lower-left region of the slice in column (e)).
The concave lip, on the other hand, in the conventionally-acquired
time-of-flight image is offset from its correct position (lower-right
region of the slice in column (e)).

Row 2 of Figure 8 shows reconstruction results for an open book
whose pages were kept as flat as possible. The significant diffuse
inter-reflections between these pages distort their conventionally-
acquired shape (columns (a) and (c)) but leave direct/retro-reflective
shape measurements unaffected: their flat shape is evident in
columns (b), (d) and (e). Row 3 shows results for the David scene.
The caustic light paths, specularly reflected by the mirror onto the
right wall, produce an embossed silhouette on the wall, indicated
by the yellow arrow in column (c). In contrast, the direct/retro-
reflective component is not influenced by caustic paths—and also
recovers the depth of objects viewed within the mirror itself.

Distinguishing between direct views and mirror reflections

We can use the phase of PMD photos to classify pixels according to
whether they receive light directly or via a retro-reflective path (e.g.,
as would occur if we viewed a diffuse point through a mirror). In
particular, when the projector and camera are coaxial, direct light
paths are always the shortest paths received by each camera pixel.
Retro-reflective paths, on the other hand, do not have this property:
if a pixel receives light from both retro-reflective and caustic light
paths, the caustic paths always take the shortest route to the camera.
This turns pixel classification into a simple pixel-wise comparison

of phase values in direct/retro-reflective and caustic PMD photos.
See Figure 10 for a detailed demonstration.

Capturing evolving wavefronts of “light-in-flight” PMD cam-
eras provide a cheap and light-efficient alternative to capturing tran-
sient images [Heide et al. 2013]. Unfortunately, the maximum mod-
ulation frequency is limited by PMD hardware, making reconstruct-
ing transient images a highly ill-conditioned problem, and requiring
strong regularizers to perform the reconstruction.

To overcome these limitations, we propose a transport-specific re-
construction for each of the direct/retro-reflective, caustic, and non-
caustic transport components of a scene. In particular, we recon-
struct the temporal intensity profiles for direct/retro-reflective and
caustic light paths by running Algorithms 3 and 4 at frequency ω1,
and fitting a Dirac peak to each pixel in i

ω1

direct and i
ω1

high. To recon-
struct the non-caustic indirect wavefront of a scene, we (1) capture
conventional PMD photos at F = 65 frequencies from 12 to 140
MHz in 2 MHz increments, (2) subtract the predicted contribution
of the direct and caustic Dirac peaks from these photos, and (3) ap-
ply the reconstruction method of Heide et al. [2013] to recover the
temporal intensity profile due to non-caustic indirect light. Please
refer to Figure 14 in the supplemental material for more details
on why subtracting the predicted direct/caustic contributions yields
more accurate estimates of this profile.

Figure 11 compares our approach to that of Heide et al. [2013],
which does not perform transport decomposition. The first scene
(rows 1 and 2) contains transparent objects that refract the wave-
front traveling through them. The second scene (rows 3 and 4) pro-
duces strong diffuse inter-reflections from two large bowls that are
positioned near a corner. The third scene (rows 5 and 6) includes
a mirror and a jug filled with milky water; these produce caustic
and retro-reflected light paths via the mirror, as well as volumet-
ric scattering through the water. Note that the direct and caustic
wavefronts propagating through the scene are well-resolved in both
space and time in our reconstructions, whereas they appear broad
and poorly-localized in the absence of transport decomposition.



(a) conventional: arg iω1 (b) direct: arg iω1

direct
(c) conventional 3D (d) direct/retro-reflective 3D (e) shape comparisons

Figure 8: Geometry results for the three scenes in Figure 7(a) and 9. (a) The phase of conventionally-acquired PMD photos. (b) The phase of
direct/retro-reflective PMD photos returned by Algorithm 3. (c-d) Views of the 3D meshes computed from (a) and (b), respectively. (e) Plots of
the x- and z-coordinates for a slice of each scene, computed from the conventional (blue) and the direct/retro-reflective (red) phases. Observe
that the base of the conventionally-acquired bowl protrudes through the back wall by about 5 cm; the pages of the conventionally-acquired
book appear curved; the corner of the room in the conventionally-acquired David scene is rounded, and the caustic paths illuminating the
room’s right wall produce a 2 to 3 cm offset in depth values. None of these artifacts appear in (b) or (d).

6 Conclusion

In this paper we uncovered a key mathematical link between time-
of-flight and conventional photography, making it possible to read-
ily transfer computational illumination techniques from one domain
to the other. The approach hinges on an ability to “probe” scenes
by illuminating them with coded space-time patterns that vary sinu-
soidally in time, with the same frequency at every pixel. Technol-
ogy with this capability built-in is already entering the consumer
market in the form of off-the-shelf devices such as PMD cameras
and the Kinect 2.

On the practical side, we expect the biggest immediate impact of
our work to be in the design of time-of-flight depth cameras that are
robust to indirect light. Although time-of-flight imaging is already
proving to be a superior technology for depth acquisition, this is
one area where conventional imaging still has the edge. Our experi-
mental results, although preliminary, suggest that this does not have
to be the case.

At a more fundamental level, the most exciting avenue for future
work is the design of new 3D scene analysis techniques that inte-
grate both geometric and time-of-flight constraints on light paths.
Distinguishing between direct views and mirror reflections of an
object—which is impossible to do from just stereo or time-of-flight
constraints—suggests that perhaps a great deal of untapped scene
information is lurking around the corner.
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Figure 9: Conventional photos of scenes reconstructed in Figure 8.
We used a coaxial projector-camera arrangement for these scenes.
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(a) PMD image (b) transient frame (t = 1.9 ns) (c) transient frame (t = 3.2 ns) (d) transient frame (t = 5.0 ns)

Figure 11: Transient image comparisons between Heide et al. [2013] and our approach. These scenes were all imaged with a stereo
projector-camera arrangement. (a) Steady state images of the scene captured with a normal camera under ambient illumination (rows 1, 3,
and 5) and our PMD camera with Algorithm 1 under white projector illumination (rows 2, 4, and 6). (b-d) Frames from the temporal intensity
profile reconstructed using the conventional approach (rows 1, 3, and 5) and our approach (rows 2, 4, and 6). Note the sharp Dirac impulses
travelling along the walls in our reconstructions, which meet in the corner of the scene. These correspond to direct transport, although
sharp caustic wavefronts also occur in some cases (rows 2 and 6). Moreover, even though reconstructing the non-caustic indirect time profile
remains highly ill-conditioned, reconstructing the direct and caustic contributions separately simplifies the reconstruction process for the
non-caustic indirect component, and improves its accuracy. This is most evident in column (b), where contributions from diffuse scattering
and inter-reflections appear to occur throughout the three scenes in the conventional reconstructions. This is physically impossible, however,
since the elapsed time is too brief for light to have actually reached those regions. In contrast, non-caustic indirect components are dark in
our reconstructions and appear to trail the direct wavefronts.


