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Quantitative phase imaging of living biological specimens is challenging due to their continuous movement and
complex behavior. Here, we introduce space-time Fourier ptychography (ST-FP), which combines a fast Fourier
ptychography (FP) model based on compressive sensing with space-time motion priors for joint reconstruction of
quantitative phase, intensity, and motion fields across consecutive frames. Using the same input data as compressive
sensing FP, ST-FP increases the space-bandwidth-time product of the reconstructed complex image sequence while
leveraging redundant temporal information to achieve robust reconstruction performance. The efficacy of this approach
is demonstrated across various applications, particularly in observing living microorganisms undergoing rapid mor-
phological changes and reconstructing amplitude and phase targets in motion. The improved phase retrieval capability
of ST-FP enables digital refocusing, facilitating comprehensive three-dimensional analysis of microorganisms. This
advancement paves the way for enhanced visualization of cellular processes, developmental biology studies, and inves-
tigations into life mechanics at the microscopic level. © 2024 Optica Publishing Group under the terms of the Optica Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.531646

1. INTRODUCTION

Understanding dynamic structures and processes is essential for
deciphering cellular function, revealing the mechanisms behind
various morphological changes [1–4]. Representative super-
resolution imaging, including structured illumination microscopy
[5,6], confocal microscopy [7], two-photon microscopy [8], and
other fluorescence-based techniques [9–16], are crucial for observ-
ing molecular information in dynamic studies. However, they
encounter limitations including sample suitability, the need for
well-controlled, customized optical setups, and risks of photo-
bleaching and phototoxicity. In this context, quantitative phase
imaging (QPI), a label-free method, emerges as a crucial tool
for studying cells and microorganisms in their native states, free
from chemical toxicity or photobleaching effects, and especially
advantageous for analysis of live specimens [17–19].

QPI employs diverse methodologies to obtain phase informa-
tion crucial for non-invasive studies of cellular dynamics, each
with its advantages and limitations. Techniques such as interfer-
ometry require phase references, increasing system complexity
and sensitivity to vibrations [20–22], whereas digital holography
and wavefront sensing offer computational reconstruction and
high temporal resolution but face challenges in resolution and
sensitivity [19,23–25]. Phase retrieval differs from prior meth-
ods, using computational, non-interferometric methods, and
reconstructing phase shifts from intensity image sequences under
varied conditions. Following this path, one notable technique

is defocused-based imaging via the transport of intensity equa-
tion (TIE) [26], which requires precise mechanical scanning or
wavefront-separation components. Differential phase contrast
(DPC) microscopy, another branch, acquires multiple images
under varied half-plane illuminations to retrieve phase informa-
tion, further expanding QPI utility in biological research [27,28].
Nevertheless, the practical application of QPI is constrained by
the need for a microscope system capable of providing a large field-
of-view (FOV) and subcellular resolution at video rate, which is
challenging for capturing dynamic biological processes.

Fourier ptychography (FP) represents a significant advance-
ment in QPI by simultaneously generating high-resolution (HR)
images and quantitative phase from sequences of low-resolution
(LR) images captured at varying illumination angles. This tech-
nique effectively solves the longstanding trade-off between
resolution and FOV [29,30], paving the way for non-invasive
cellular studies [31–35]. Notably, FP is lauded for its simplicity,
cost-effectiveness, and accessibility [36]. Nevertheless, accurately
observing the rapid activities of microorganisms remains a for-
midable challenge since traditional FP methods are hindered by
their sequential data acquisition process. To mitigate this, recent
advancements have introduced multi-camera systems to capture
different band-limited images simultaneously, reducing the cap-
ture time [37]. Another approach is to use the single-shot method,
employing diffractive gratings or configurations akin to light-field
imaging setups, to capture the data in one snapshot, although
they often involve compromises between the FOV and resolution
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[38]. The advent of multiplexing illumination strategies marks a
significant leap forward in high-speed FP [39,40]. FP multiplexing
works have demonstrated the potential to reduce redundancy
and shorten exposure times, enhancing the practicality of FP for
dynamic studies. Our work builds upon these illumination strat-
egies, introducing a novel time-domain optimization to achieve
high-speed, high-resolution FP. Specifically, our computational
method extends the space-bandwidth product (SBP) of the recon-
structed complex image compared to the raw capabilities of the
FP hardware. This innovation enables the documentation of
microorganism dynamics with unprecedented detail, offering
insights into complex biological phenomena such as the interlimb
coordination of tardigrades and protozoan defense mechanisms
against predation, thus enriching our comprehension of microbial
ecology and survival tactics. [41–45].

Incorporating temporal information for moving object recov-
ery has made significant strides in the computational imaging field
[46–51]. Here we introduce space-time Fourier ptychography
(ST-FP), which achieves dynamic FP reconstruction by integrating
object reconstruction over time with parameterized motion track-
ing in an optimization framework, without requiring additional
hardware. Expanding upon pioneering space-time reconstruction
frameworks [52–54], our approach simultaneously reconstructs
complex-value objects and dense velocity estimates from digital
image correlation analysis of successive frames. We address this
challenge using a novel splitting framework, as shown in Fig. 1.
Initially, we utilize an enhanced FP imaging model under multi-
plexed illumination via compressive sensing [55] to mitigate fast
imaging tasks. Object reconstruction is formulated as a compres-
sive sensing problem with integrated smoothness and temporal
consistency priors, and requires only a small number of iterations
through the alternating direction method of multipliers (ADMM)
[56]. Subsequently, we determine the optical flow between adja-
cent recovered frames using Huber-l1 regularization [57]. By
alternating between FP reconstruction and motion estimation

[53], high-resolution QPI is achieved under rapid and freeform
deformations of the object. See details in Section 2.B.

We explore various reconstruction scenarios utilizing our
novel optimization method. Initially, we evaluate the perform-
ance of ST-FP in motion correction for various targets through
both simulation and experiments. The results demonstrate a
significant reduction in “blurring” artifacts while preserving
resolution integrity. Subsequently, we showcase our technique
for reconstructing living organisms with uncontrolled dynam-
ics, particularly for tardigrades and rotifers. Our results exhibit
high fidelity in capturing the details during their free move-
ment. Leveraging the phase retrieval capability of FP, we achieve
digital refocusing to visualize internal activity and structures of
microorganisms. ST-FP has the potential to revolutionize our
understanding of microbe locomotion and behavior and could
inspire the development of microscale and soft-bodied robotics
by drawing inspiration from the locomotion strategies of live
microorganisms.

2. METHODS

A. Forward Model

The FP hardware typically consists of an LED matrix and a normal
research microscope, as shown in Fig. 1(a). Each LED with index
m results in a (spatially coherent) plane wave at the object o, with
the specific angle of illumination corresponding to the spatial fre-
quency km = (kxm, kym). This process corresponds to a shift in the
Fourier domain controlled by the angle of illumination, and then
filtered by the pupil function H [29,30]. This resulting spectrum is
then inverse Fourier transformed to form the intensity at the sensor
plane:

Im(o(r))=
∣∣F−1
[F[o(r) exp( jkm · r)]H(k)]

∣∣2, (1)

where F and F−1 respectively represent the 2D Fourier trans-
form and its inverse, and j is the imaginary unit. r= (x , y ) and

Fig. 1. Principle of space-time Fourier ptychography (ST-FP). (a) Schematic of ST-FP setup, including multiplexed LED illumination and the pathway
through lenses to the sensor, captures the dynamics of living organisms. (b) To address rapid deformations between successive frames, a novel reconstruction
approach utilizes warping to approximate intermediate frame states. For each timestamp, raw data bt is captured under multiplexed illumination. Utilizing
motion fields−vt−1 and vt , backward and forward warping are applied to estimate complex-valued objects ot−1 and ot+1, respectively. This approach effec-
tively aggregates phase and amplitude information across time, resulting in increased reconstruction accuracy and resolution. This method aligns each cap-
tured raw frame with its temporal stamp, allowing for the reconstruction of objects even with significant motion, as opposed to the traditional scheme that
requires negligible object movement.
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k= (kx , ky ) denote the coordinates at the spatial and frequency
planes, respectively. For simplicity, we will use the notation Im(o)
in the following text, neglecting the explicit dependence on the
spatial coordinate r.

The traditional FP imaging procedure is to sequentially turn
on each LED, which corresponds to extracting different areas of
Fourier space. FP algorithms aim to stitch together these low-
resolution (LR) sub-images in the Fourier domain to achieve a
large effective NA, resulting in a high-resolution (HR) object
reconstruction. At the same time the redundant information from
the overlap regions allows for phase retrieval. However, long acqui-
sition times limit the ability to image moving live samples using
FP.

In our work we utilize and expand on multiplexed illumination
[40,55,58] to mitigate this problem by simultaneously activating
multiple LEDs according to a temporal sequence of different
binary activation patterns Pt . This yields a sequence of measured
images corresponding to the activation image formation model:

At(o)=
NLED∑
m=1

Pt,mIm(o), (2)

i.e., the measurements are incoherent sums of the sub-images cor-
responding to the activated LEDs at each time. Using the theory of
compressive sensing (CS), it is possible to reconstruct the complex
object o from NCS <NLED such measurements [55], therefore
speeding up the imaging process.

While this CS approach simplifies the imaging of slow moving
targets, it still assumes a quasi-static setting in which the object
motion is negligible during the capture of the NCS successive
illumination patterns. For faster movements this assumption is
violated even for short sequences, such as NCS = 2, which is barely
sufficient to achieve phase imaging or a super-resolution effect.

B. Space-Time Fourier Ptychography Framework

Here we introduce space-time Fourier ptychography (ST-FP),
which aims to overcome the limitations of CS-FP and can recon-
struct a time-varying object ot , which has a different, deformed
geometry at every time t . The objective of ST-FP is to leverage
temporal information to extract additional motion information
from CS FP data, thereby increasing the space-bandwidth-time
product of the reconstruction, and enabling imaging of dynamic
states of the object across different frames. As a side benefit, ST-FP
also provides an estimate of the object motion vt over time.

This is achieved by solving an optimization problem that min-
imizes the least-squares error between the observed measurements
and the predicted object states. For each frame t , the objective func-
tion is given by

min
ot
||At(ot)− bt ||

2
2, (3)

where At(·) is the forward multiplexing function for frame t , ot

is the (complex-valued and moving) object at time t , and bt rep-
resents the observed measurement. The ill-posed nature of this
problem necessitates regularization to impose prior knowledge
about the motion.

We impose a deformation prior by introducing motion fields
between consecutive frames under the assumption that points on
the specimen maintain the same intensity and amplitude under

motion. This is a generalization of the brightness constancy assump-
tion from the optical flow [59] and digital image correlation (DIC)
[60] literature:

vt = arg min
vt
||Dt |ot | +Ds |ot | · vt ||1, (4)

where Dt and Ds represent the temporal and spatial discrete gra-
dient operators, implemented as one-sided divided differences.
vt is the velocity (motion) field estimated for the motion from
the amplitude image |ot | to amplitude image |ot+1|. Here our
intensity constancy assumption neglects minor defocusing effects.
Note that this may not fully account for three-dimensional (3D)
movements, particularly along the longitudinal (z-axis) direction.
To address these potential deviations, we incorporate motion pri-
ors and temporal information to enhance robustness. Our method
continuously tracks and updates motion fields, leveraging the
redundant information across consecutive frames to correct for
minor defocusing effects. Although ot is a complex image in FP,
we have found that utilizing only the amplitude for the motion
estimation is more robust. For biological samples exhibiting a large
degree of transparency, the bright field amplitude contrast may be
too small to perform accurate tracking. However, since ST-FP uses
multiplexed illumination patterns, each raw image also has a dark
field illumination component, which enhances the intensity con-
trast even for transparent samples [29,30]. Thus, it is still possible
to obtain useful intensity information even from pure phase-only
samples (see Supplement 1 Fig. S4).

Given the estimated motion between two partial reconstruc-
tions, we can now warp or distort the reconstruction of the time t
step to align with the reconstruction of the previous or next time
step:

ot+1 ≈warp(ot , vt) and ot−1 ≈warp(ot ,−vt−1). (5)

Warping is defined as a pair of functions ot and vt , which map a
position in ot to a position in another image ot+1 [61]. When the
mapped point is not an integer, interpolation methods are used
to estimate the value at non-integer coordinates. Here, we use the
well-known bicubic interpolation method, resulting in a smooth
surface using the values and derivatives of the surrounding integer
samples [59,62].

Enforcing similarity between partial reconstructions achieved
in this fashion is a powerful prior for improving overall reconstruc-
tion quality by aggregating information across time in a space-time
framework. This is in contrast to classical CS-FP methods that
assume a quasi-static object, where multiple successive lighting
patterns can be imaged with negligible motion.

In the ST-FP framework, to address situations where the object
undergoes fast deformations from frame to frame, we incorporate
the warp-and-project method first introduced in x-ray tomography
[53]. The principle behind this approach is depicted in Fig. 1(b).

Specifically, we exploit the inherent temporal coherence
between contiguous frames to refine the joint estimation of object
and motion. We formulate an optimization problem that concur-
rently considers neighboring frames, thereby enforcing consistency
in the motion estimation process across the temporal dimension.
By integrating this strategy, we effectively close the numerical
reconstruction loop, ensuring that the reconstructed motion infor-
mation closely aligns with the actual dynamics present within the
scene. Overall, the joint optimization framework of ST-FP can be
described as

https://doi.org/10.6084/m9.figshare.26530786
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min
{ot ,vt }t

T∑
t=1

∥∥At(ot)− bt

∥∥2
2 + α

T−1∑
t=1

‖Dt |ot | +Ds |ot | · vt‖1

+γ

(
T−1∑
t=1

∥∥At+1(warp(ot , vt))− bt+1

∥∥2
2 +

T∑
t=2

∥∥At−1(warp(ot ,−vt−1))− bt−1

∥∥2
2

)

+β

T−1∑
t=1

(∥∥Ds vt,x

∥∥
Hµ1
+
∥∥Ds vt,y

∥∥
Hµ1

)
+ δ1

T∑
t=1

‖Ds ot‖Hµ2
+ δ2

T−1∑
t=1

‖Dtot‖Hµ3
, (6)

where the first term is the data fidelity term for the individual
measurements. The second term is the optical flow term that
jointly estimates the velocity/motion of the object. The next line
incorporates the warp-and-project method, in which the partial
reconstruction of the object at time t is warped forward (and
backward) in time, and undergoes the image formation model
At+1 at that time (project), the result of which is compared to the
measurement bt+1 obtained for that time. The final line has several
smoothness regularizers for both the motion field (in space) as well
as the object (in space and time). For these smoothness terms we
utilize the Huber penalty function || · ||H, which provides a trade-
off between the `1 and `2 norms. γ , α, β, δ1, and δ2 are weights of
the different terms.

The joint optimization problem in Eq. (6) requires a special
optimization strategy involving alternating between updating the
complex images {ot}t and refining the motion estimates {vt}t . We
first initialize ot in each time byA−1

t (bt), whereA−1
t (·) represents

the pseudo inverse of At(·) [55]. Then the {ot}t and {vt}t of two
sub-problems are updated iteratively. The {ot}t update solver deals
with object reconstruction by minimizing a complex objective
function that balances FP data fidelity and regularization terms.
It leverages the Huber loss function for robust optimization and
updates complex variables by separating them into real and imagi-
nary components. The {vt}t update solver, on the other hand,
utilizes a multi-scale, coarse-to-fine strategy [59,62,63] to handle
large displacements effectively, starting with a broader view and
refining the estimation as it progresses to finer scales. Detailed
procedures for the overall algorithm are provided in Supplement 1,
S2.

3. RESULTS

A. Description of the Setup

For our experiments we utilize an FP setup following the diagram
in Fig. 1(a). The commercial RGB LED matrix (Adafruit, 4 mm
pitch) is placed at ∼75 mm away from the specimen plane. The
central wavelength of the green channel is 525 nm, and the spectral
linewidth is 20 nm. During the imaging process of each times-
tamp, multiple LED elements randomly selected are lit up at a
time, which are driven with an Arduino controller board (ATmega
2560). The light transmitted through a transparent specimen was
collected by a microscope objective (Mitutoyo, M Plan Apo 10×,
0.28 NA) and then directed to a camera via the tube lens (Thorlabs,
TTL200-B) to form the image at the sensor. The camera (Triton,
5.4 MP Sony IMX490 CMOS, 3 µm pixel size) is synchronized
with the LED matrix by the same controller via the coaxial cable
that provides the trigger signal.

We experimentally set the system frame rate to be ∼24 Hz.
Since we use a color sensor, color crosstalk exists from two effects

[64]. First, the color LEDs used for illumination do not produce
pure color light, but rather a broad spectrum centered on the
nominal LED color. Second, the filtered pixel array of the image
sensor similarly responds to a broad spectrum. Correcting for color
crosstalk can be accomplished by generating a crosstalk map for the
color separated [65], interpolated intensity maps. After the linear
color unmixing process, we extract one color channel that we use to
get the raw data captured with an exposure time of∼36 ms.

B. Simulation Results

To evaluate the robustness and precision of dynamic objects, we
present a comparative analysis of the conventional CS-FP tech-
nique and our proposed ST-FP method, as shown in Fig. 2. The
analysis simulates four frames, each incorporating distinct motion
patterns including translation along the y and x axes, and a com-
posite of translation and rotation. This simulation is designed
to emulate the behavior of both amplitude and phase parts of a
complex optic field, thus providing a comprehensive evaluation
of imaging capabilities. Our simulation employed a setup with a
10× /0.28 NA objective lens, a sensor with a pixel size of 6 µm, a
central illumination wavelength of 530 nm, and an LED array with
a spacing of 4 mm. The LED array was situated 75 mm beneath the
sample.

Figure 2 provides a comprehensive visualization of both ampli-
tude and phase reconstructions, enabling an in-depth comparison.
Figures 2(a) and 2(f ) show the ground truth (GT) for amplitude
and phase. Frames simulate distinct motion types: translations
along the y axis, x axis, combined x -y axes, and a composite
translation-rotation motion. Figure 2(b) illustrates the central
LR sub-image obtained under the central illumination of the FP
system. Figures 2(c) and 2(g) are the HR amplitude and phase
reconstruction results from the standard FP method to serve as a
baseline. The amplitude reconstructions for the CS-FP and ST-FP
are presented in Figs. 2(d) and 2(e), respectively, where ST-FP
maintains higher fidelity to the GT, especially under complex
motion. Notably, the transition from the central LR image to
our ST-FP method reveals marked improvements in resolution,
evident in the clarity of line pairs within group 9 (left-up elements).
Although the FP results show higher quality, they are computed for
static frames and are provided for reference only. Please note that
our method is designed for dynamic scenarios, where traditional
FP cannot be applied. Therefore, in moving scenes, our method
demonstrates the most suitable performance. Additionally, transla-
tions along the y axis using CS-FP enhance vertical detail contrast,
though this inadvertently diminishes horizontal contrast. This
effect is also observed with the x axis movement. Our ST-FP
method, however, consistently maintains superior contrast and

https://doi.org/10.6084/m9.figshare.26530786
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Fig. 2. Comparative analysis of dynamic simulation across four frames using a complex-valued USAF target. Frames simulate distinct motion types:
translations along the y -axis, x -axis, combined x -y axes, and a composite translation-rotation motion. (a) Ground truth (GT) for amplitude. (b) LR sub-
image under central FP system illumination. (c)–(e) Amplitude reconstruction for traditional FP method (144 sub-images used), CS-FP, and proposed ST-
FP. (f ) GT for phase. (g)–(i) Phase results of traditional FP, CS-FP, and our method. (j), (k) Comparison of amplitude and phase reconstruction quality
against the GT, using SSIM, RMSE, and PSNR metrics for both CS-FP and ST-FP.

resolution in both directions, even in complex motion scenar-
ios involving both translation and rotation. This is a significant
departure from the previous motion-corrected FP [66], primarily
addresses translational shifts. The phase reconstructions achieved
using CS-FP and ST-FP are shown in Figs. 2(h) and 2(i).

The quantitative analysis, detailed in Fig. 2(j) for amplitude
and Fig. 2(k) for phase, employs metrics such as SSIM, RMSE,
and PSNR to quantify the enhancements provided by ST-FP over
CS-FP. These metrics not only confirm the superiority of ST-FP
in handling dynamic objects but also underscore its suitability
for high-resolution dynamic imaging applications, where precise
phase reconstruction is critical. For a more comprehensive set of
data and in-depth analysis, the readers can refer to Supplement 1,
S3.

C. Real Experiments with Controlled Motion

Here we test our method by moving static samples in the real world.
First, red blood cells (RBCs) were imaged to assess the dynamic
imaging capabilities of ST-FP. Initially, employing a conventional
FP approach coupled with EPRY [67] for aberration correction,
the static sample was imaged to establish a reference for quantita-
tive phase reconstruction, utilizing 144 sub-images. Figure 3(a)
presents the full FOV original LR image captured under a singular
centered LED and the region of interest (ROI). Figures 3(b) and
3(c) are the HR amplitude and phase reconstruction results from
the standard FP method. They serve as a baseline for comparing
the performance of our method against conventional techniques.

Subsequently, we induced sample motion by manually translat-
ing the stage along one axis to simulate dynamic conditions. We
leveraged a fast Fourier transform (FFT)-based image registration
algorithm [68] to estimate the global shift, initializing the optical
flow computations. Figure 3(d) illustrates the raw data captured.
Figures 3(e) and 3(f ) depict the amplitude results at different times-
tamps using the CS-FP method and ours, respectively. Similarly,
Figs. 3(g) and 3(h) display the corresponding phase results. The
amplitude and phase outcomes by CS-FP show a marked degra-
dation in clarity and contrast over time due to sample movement.
ST-FP maintains a consistent quality across all frames. The speed
of movement was estimated in pixels per frame (PPF). In Fig. 3, the
speeds for each frame were about 0.83, 2.17, 3.52, 4.04, 5.59, and
7.14 PPF, calculated by averaging the flow values of each frame.
The variances in speed for each frame were about 0.01, 0.01, 0.04,
0.02, 0.04, and 0.01 PPF. These speeds were chosen to represent
a range of movement conditions. The robustness of ST-FP is
particularly evident in the phase images, where CS-FP exhibits
significant blurring and distortion of the phase profiles, while ours
presents a clear and stable reconstruction of the phase information
throughout the sequence (see Visualization 1). The ability to pre-
serve the quality of both amplitude and phase information over
time is indicative of the potential of ST-FP for real-time biomedical
imaging applications, where motion is an intrinsic challenge.

We further demonstrate the digital refocusing capability of
ST-FP, leveraging in-iteration phase retrieval to compensate for
defocusing [69,70]. The results show notable improvements in

https://doi.org/10.6084/m9.figshare.26530786
https://doi.org/10.6084/m9.figshare.25931713
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Fig. 3. Dynamic ST-FP imaging of red blood cells (RBCs). (a) Full FOV LR image captured under central LED illumination. (b), (c) Show the HR
reconstructed amplitude and phase results, respectively, obtained from the standard FP algorithm when the sample is static, providing baseline reference.
(d) LR raw data. (e), (g) Illustrate the amplitude and phase results, respectively, over time using the conventional CS-FP method, highlighting the suscep-
tibility to motion-induced degradation. (f ), (h) Present the temporal amplitude and phase results by ST-FP, demonstrating enhanced stability and image
quality under dynamic conditions. The movement speeds in the raw data were estimated as 0.83, 2.17, 3.52, 4.04, 5.59, and 7.14 PPF. The variances in
speed for each frame were about 0.01, 0.01, 0.04, 0.02, 0.04, and 0.01 PPF, respectively.

edge clarity and sharpness at various defocusing distances, validat-
ing the ability of ST-FP to dynamically achieve precise focus (see
Visualization 2 and Supplement 1, S4).

The resolution capability of the ST-FP method was further
substantiated by a pure amplitude USAF resolution target. A
conventional FP technique was employed to capture LR images
of the static target from 144 sub-images. Figures 4(a) and 4(b)
display the full FOV and the ROI, respectively. The HR recon-
struction obtained through the standard FP method is shown in
Fig. 4(c), establishing a reference for comparison. To introduce
dynamic imaging conditions, manual translation of the target
along one axis was performed using a translation stage. Similarly,
an FFT-based technique quantified the shift [68], providing an
initial parameter for optical flow computations. Under dynamic

conditions, the conventional CS-FP method experienced diffi-
culties, with a noticeable decline in image sharpness and contrast
as illustrated in Fig. 4(d). By contrast, our method demonstrated
significant enhancements in image quality preservation amid
motion, as shown in Fig. 4(e). The performance is also quantita-
tively supported by line plots derived from elements in group 9.
Movement speeds were estimated as 0.53, 0.29, 1.06, 2.80, and
3.98 PPF. The corresponding variances in speed were 0.04, 0.03,
0.07, 0.18, and 0.04 PPF, respectively. While line plots from the
CS-FP method exhibit pronounced fluctuations indicative of vul-
nerability to motion-induced effects, line plots from ST-FP display
markedly less variability. ST-FP achieved a 20% improvement in
full-pitch resolution along one axis, reaching 1.560 µm compared
to 1.875 µm under single-LED illumination. This results in a

https://doi.org/10.6084/m9.figshare.25931722
https://doi.org/10.6084/m9.figshare.26530786
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Fig. 4. Comparative analysis using moved pure amplitude USAF target. (a) Full FOV LR image of the target captured with a single LED. (b) Zoomed
ROI. (c) HR reconstruction of the target using the standard FP method. (d) The sequence of results under dynamic conditions by CS-FP. The line plots
show the susceptibility to motion. (e) The sequence of images by ST-FP illustrates robust amplitude estimation with reduced variability in line plots.
Movement speeds were 0.53, 0.29, 1.06, 2.80, and 3.98 PPF. The corresponding variances in speed were 0.04, 0.03, 0.07, 0.18, and 0.04 PPF, respectively.

1.2× 1.2= 1.44 times increase in the 2D case for SBP. Together
with the recovered phase, ST-FP therefore increases the space-
bandwidth-time product (SBP-T) from the raw image stream by a
factor of 2.88.

Compared to CS-FP, ST-FP produces a substantially higher
output frame rate at the same time as a higher spatial resolution.
In CS-FP, an important parameter is the number of illumination
patterns NCS from which to reconstruct a complex image. For
static targets, the achieved spatial resolution increases with NCS.
However, for dynamic targets, motion artifacts increase with NCS,
limiting the spatial resolution. At the same time, the output frame
rate is also reduced by a factor of NCS. Figures 4(d) and S4(d) in
Supplement 1, S4 show that even for NCS = 2 the spatial reso-
lution is already compromised along the (horizontal) motion
direction, with a super-resolution effect being achieved only in the
orthogonal (vertical) direction. Supplement 1, S6 shows that and
increasing the number of patterns further exacerbates the problem.

The resolution of CS-FP for dynamic targets was calculated by
selecting a relatively motionless frame, representing the optimal
performance that CS-FP can achieve under motion conditions.
CS-FP achieves a resolution of 1.96 µm (group 9, line pair 1,
as seen in the ninth frame of Fig. 4(d) and the fourth frame of
Fig. S4(d)), while ST-FP achieves a resolution of 1.56 µm [group

9, line pair 3, as seen in Figs. 4(e) and S4(e)]. This results in a res-
olution improvement factor of 1.26×. When combined with a
temporal resolution improvement by a factor of two compared
to CS-FP, the SBP-T of ST-FP is 1.26× 1.26× 2= 3.18 times
higher than that of CS-FP, reaching 1.82 megapixels per second.
This performance was achieved over a 0.40 mm2 FOV, capturing
0.16 megapixels within 90 ms. We note that higher-frame-rate
cameras and illumination hardware could increase the SBP-T of all
methods, with ST-FP being able to deal with faster motion than the
competing methods. More detailed analysis and comparisons can
be found in Visualization 3, Visualization 4, and Supplement 1,
S4.

The data processing for our algorithm was performed on a
CPU (AMD EPYC 7763 64-Core Processor) using MATLAB
R2022b. The computational complexity of our algorithm is chal-
lenging to express in closed form due to the interplay of various
components and it primarily involves two parts: optical flow
estimation and ADMM iterations. In general, for sequences
consisting of 24 frames with each raw image having a resolution
of 250× 250 pixels, the total running time for processing was
approximately 56 min after two iterations.

https://doi.org/10.6084/m9.figshare.26530786
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D. Experiments with Uncontrolled Motion – Live
Microorganisms

Figure 5 presents a comparative analysis between CS-FT and
ST-FP in the reconstruction of a live rotifer. Figures 5(a) and 5(b)
illustrate the raw data captured and a zoomed-in region for detailed
examination, respectively. CS-FT employs data from multiple
time frames to reconstruct a single frame, assuming minimal object
movement during intermediate frame times. While this method
benefits from the aggregation of information, aiding in HR image
reconstruction, any movement in the intermediate period can vio-
late the quasi-static assumption, leading to significant artifacts, as
shown in Figs. 5(c) and 5(e). It is noteworthy that CS-FP can pro-
duce inaccurate details due to its time-mixed recovery approach,
challenging its reliability. In contrast, ST-FP utilizes single-frame
time images for reconstruction. Although this approach is inher-
ently ill-posed and yields only marginal HR improvement, the
spatial and temporal regularization in the optimization proc-
ess demonstrates satisfactory performance [see Figs. 5(d) and
5(f )]. In comparison to CS-FP, our method shows significant
improvements, particularly in phase reconstruction quality and
resolution, which is crucial for accurate QPI in dynamic scenarios.
It notably achieves sharp amplitude details and a saturated phase
with minimal background noise (see Visualization 5).

We also demonstrate the digital refocusing capability of our
proposed method. In Fig. 6, the optical field of a previously ana-
lyzed rotifer is digitally propagated through various defocusing
distances (see Visualization 6 for more details). Each row corre-
sponds to a specific frame time, illustrating the effectiveness of
digital refocusing in achieving the correct focus plane across differ-
ent areas and in sharpening the edges of originally blurry regions, as
indicated by the red arrows.

We then contrast the reconstruction outcomes under three
different scenarios to demonstrate the impact of various priors.

The first case relies solely on the data fidelity term, which is marred
by noise and a lack of recovery of high-frequency information due
to insufficient priors. The second one is incorporating smooth-
ness priors for space and time. The third one (ST-FP) considers
dynamic uniformity between successive frames and reveals more
distinct details of the inner structure and boundaries. Detailed
results and analysis are provided in Supplement 1, S5.

To prove the versatility of our method, we demonstrate it on
various samples, including a faster live rotifer (see Visualization 7
and Visualization 8) and another tardigrade with more complex
movement (see Visualization 9 and Visualization 10). Please refer
to Supplement 1, S5 for more details.

4. DISCUSSION AND CONCLUSIONS

In terms of future enhancement, ST-FP has the potential for the
3D reconstruction of dynamic processes, particularly when used
in conjunction with tomography techniques [71]. In fact, signifi-
cant and rapid movements on the z-axis could affect the accuracy
of the optical flow, leading to potential deviations in the quality
of the reconstruction of our method. Future work will focus on
integrating depth information and improving our model to explic-
itly handle 3D movements more explicitly. As sensor frame rates
continue to advance, ST-FP can be applied to capture faster move-
ments, such as those of paramecium [46] or C. elegans [72,73].
Also, the non-linear imaging processes and inverse solutions inher-
ent in multiplexed FP models could be resolved with the aid of deep
learning techniques [49,74,75], thereby expediting and enhancing
recovery accuracy.

Our algorithm has the flexibility to allow it to be integrated
with different types of imaging hardware, enhancing the ability
to capture high-resolution, dynamic processes. However, the
limitation of our algorithm is its inability to accommodate signifi-
cant displacement within a single captured frame. In particular,

Fig. 5. Results comparison of a live rotifer at different times. (a) LR raw data. (b) ROI from (a). (c), (d) Amplitude results of CS-FP and our method. (e),
(f ) Phase results of CS-FP and our method.
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Fig. 6. Temporal digital refocusing on a rotifer dataset across various propagation distances. (a) Reconstruction results of our method in zero plane across
different frame times with ROI 1 and ROI 2. (b)–(d) The amplitude profiles of ROI 1 at some specific frames, showcasing the refocusing effects at distances
of 0µm (the reference plane),−20 µm, and 20µm, respectively. (e)–(g) The refocusing results for ROI 2. Red arrows highlight areas where edge clarity and
definition are significantly improved.

if the motion is fast enough to cause motion blur within a single
exposure, our method cannot recover sharp features. To address
this limitation, future work could focus on training neural net-
works with known motion blur characteristics, to develop models
that can deblur images or accurately predict the underlying sharp
features.

In regard to the applications, ST-FP could revolutionize the
study of dynamics like droplet generation [76] and other fluid
mechanics applications [77–79]. It could also catalyze extensive
research into novel medium combination processes across various
industries [80]. Significantly, our findings underscore the value of
tardigrades as a comparative system to understand the mechanics
underlying coordination in panarthropod locomotion. Moreover,
tardigrades serve as a vital reference for the design and control of
small, soft-bodied locomotive systems, spanning from natural
organisms to robotics [81]. ST-FP stands as a pivotal tool in both
scientific exploration and technological innovation.

In conclusion, we propose a highly innovative approach, space-
time Fourier ptychography (ST-FP), for reconstructing dynamic
microscopic scenes by aligning spatial and temporal information.
This approach combines optical flow estimation with fast FP
imaging methodology, utilizing random multiplexing patterns
within a customized optimization framework. We demonstrate
that the proposed method achieves a symbiotic improvement in
accuracy by correlating fluid velocity fields with the recovered
complex-valued objects across different timeframes. Furthermore,
ST-FP reduces extensive hardware setup, enabling its successful
application across various practical scenarios, including live tardi-
grades, mixed-type rotifers, and moving targets. ST-FP has shown
robust capabilities in reconstructing substantial portions of the
internal structures of specimens with high accuracy, particularly
after employing a digital refocusing technique.
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