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Progressive Self-Supervised Learning for CASSI
Computational Spectral Cameras
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Abstract—Compressive spectral imaging (CSI) is a technique
used to capture high-dimensional hyperspectral images (HSIs) with
a few multiplexed measurements, thereby reducing data acquisi-
tion costs and complexity. However, existing CSI methods often
rely on end-to-end learning from training sets, which may struggle
to generalize well to unseen scenes and phenomena. In this pa-
per, we present a progressive self-supervised method specifically
tailored for coded aperture snapshot spectral imaging (CASSI).
Our proposed method enables HSI reconstruction solely from
the measurements, without requiring any ground truth spectral
data. To achieve this, we integrate positional encoding and spectral
cluster-centroid features within a novel progressive training frame-
work. Additionally, we employ an attention mechanism and a multi-
scale architecture to enhance the robustness and accuracy of HSI
reconstruction. Through extensive experiments on both synthetic
and real datasets, we validate the effectiveness of our method. Our
results demonstrate significantly superior performance compared
to state-of-the-art self-supervised CASSI methods, while utilizing
fewer parameters and consuming less memory. Furthermore, our
proposed approach showcases competitive performance in terms
of reconstruction quality when compared to state-of-the-art super-
vised methods.

Index Terms—Self-supervised compressive reconstruction, pos-
itional encoding, hyperspectral Imaging.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are extensively em-
ployed in various fields such as remote sensing [1],

tracking [2], medical image processing [3], and high color
fidelity display [4]. Traditional spectral imaging systems based
on Nyquist’s sampling theorem demonstrate a high degree of
accuracy in the reconstruction of original HSI data. However,
owing to physical limitations, image sensors are restricted to
acquiring two-dimensional images, leading to a need for a
scanning-based strategy for HSI data acquisition [5], which can
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significantly impact data acquisition efficiency. Furthermore,
acquiring and storing high-dimensional spectral data requires
significant storage space and network transmission bandwidth.
To address these challenges, some recent studies estimate high-
resolution HSIs from RGB images, however these approaches
are inherently limited in their ability to discriminate metameric
colors i.e. different spectra that map to the same RGB triplet,
which is an important consideration in many applications of
HSIs [6]. RGB to HSI methods can therefore not be consid-
ered spectral measurements, but are in effect hallucinations
of spectral information learned from a limited dataset, making
them ill-suited for scientific applications. Other methods employ
encoded lenses to recover HSIs but may impact the contrast of
the resulting HSIs [7].

To ensure the fidelity of reconstructed HSIs on both spectral
and spatial dimensions, various snapshot compressed spectral
imaging (CSI) systems have been developed [8], [9], [10], [11],
[12]. In these systems, upon entering the cameras, each beam
is dispersed by a diffraction grating to separate its spectral
components. Subsequently, the modulated spectral information
is encoded by a modulation mask before reaching the sensors.
The measurements gathered by the sensors are utilized to re-
cover the HSIs using reconstruction algorithms. This technique
employs the theory of compressed sensing [13], [14] that allows
the reconstruction of the hyperspectral images using a smaller
number of measurements than those required by traditional spec-
tral imaging systems, thus enhancing efficiency and reducing
storage and transmission costs. Unlike RGB to HSI estimation
methods, compressed sensing approaches modify the capture
process to encode additional spectral information, and hence
can provide guaranteed signal restoration under certain sparsity
assumptions. Consequently, CSI has become a viable solution
for the recovery of high-quality HSIs. The underlying principle
of the CSI system is to encode the high-dimensional data into a
2D measurement. Among various hyperspectral image acquisi-
tion systems, the coded aperture snapshot compressive imager
(CASSI) is widely used. CASSI uses a coded aperture and a
disperser to modulate the HSI cube at different wavelengths and
then mixes all modulated signals to generate 2D measurements.
Fig. 2 shows a schematic diagram and reconstruction process
of CASSI. Given an HSI cube, denoted by x ∈ Rhwn×1, where
(h, w) and n represent the spatial and spectral resolutions of the
HSI respectively. A sensing matrix Φ ∈ Rhw×hwn is designed
to project x into a measurement by

y = Φx+ z, (1)
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Fig. 1. The comparisons of performance and visual reconstruction quality.
Upper: The reconstruction quality(PSNR), parameter amount, and the relative
memory consumption(circle radius) of the recent self-supervised(solid circle)
and supervised CSI methods(hollow circle). Bottom: The visual comparison of
the reconstructed HSI of the five self-supervised methods from a compressed
image.

Fig. 2. The schematic diagram and reconstruction process of CASSI. It uses
a disperser and a mask to modulate the HSI, and then the measurements are
processed through a reconstruction network to obtain the reconstructed HSI.

where z ∈ Rhw×1 denotes the noise.
The optimization of CSI is typically framed as an ill-posed

inverse problem. Existing solutions either rely on hand-crafted
image priors or employ deep networks to perform the HSI
reconstruction in a data-driven manner. Hand-crafted image

priors, such as total variation [15], [16], and sparsity [17],
[18], can be utilized as regularizers to enforce constraints on
the reconstructed results, thereby mitigating the risk of over-
fitting and suppressing the impact of noise while enforcing
a desired structure. However, such simple handcrafted priors
cannot compete with recent learned representations, and often
require scene-specific parameter tuning. On the other hand,
deep supervised methods require a large-scale dataset to ac-
quire implicit prior knowledge from the images [19], which
is impractical in the fields of life and natural sciences, in-
cluding mechanics, materials science, and biology, due to the
challenge of lacking training data. Even if the data can be
captured, spectral image datasets are highly sensitive to spectral
bands and resolutions. Models trained on datasets ranging from
400 nm to 700 nm cannot be applied to test images ranging
from 400 nm to 800 nm. It is also worth noting that recent
concurrent work [20] has shown very clearly the limitations
of data-driven spectral reconstruction methods, and specifically
suggests that the good numerical results from current approaches
are misleading and due to overfitting, resulting in very poor
generalization. Additionally, due to the spatial invariance of
CNNs, using CNN-based networks for spectral reconstruction
can lead to the problem of spectral ambiguity. [21] addresses this
issue by using positional-encoding vector as input to resolve
the spatial invariance problem. However, the reconstruction
process using only positional-encoding is insufficient and often
generates unnecessary artifacts without ground truth. Therefore,
a possible solution is to obtain features from spectral domain to
assist the positional-encoding based reconstruction network. By
combining spectral features and positional encoding vectors, it is
possible to effectively distinguish spectra and remove artifacts.

In this paper, we focus on the reconstruction of compressed
spectral images without labeled data for training, which holds
significant relevance and application within the area where
datasets are unavailable. Unlike previous works that utilize
handcrafted denoising priors or explicit CNN denoising priors,
we propose to reconstruct HSIs through a hybrid framework
combining positional-encoding representation in the spatial do-
main and features of cluster-centroid in the spectral domain. The
proposed method can be seen as progressive fitting processing of
the target HSI within a high-dimensional space that is spanned
by the pixel coordinates and the corresponding cluster centroids.
The contributions of this paper can be summarized as follows:
� We design a novel deep network framework for single

image CSI without any labeled data for training. To the best
of our knowledge, we are the first to successfully combine
the benefits of clustering features and positional-encoding
representation in a self-supervised fashion to reconstruct
HSIs.

� We put forward a novel progressive training approach that
integrates clustering uncertainty to avoid over-fitting. Ad-
ditionally, we leverage attention mechanisms and a multi-
scale architecture to enhance the reconstruction quality of
HSIs and apply noise injection to ensure the robustness of
the method.

� Quantitative and qualitative experiments demonstrate that
the proposed method surpasses the existing self-supervised
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learning method by 6.7 dB in PSNR and 0.06 in SSIM, the
method also exhibits comparable performance to the state-
of-the-art (SOTA) supervised learning methods with much
fewer training parameters and lower memory consumption.

II. RELATED WORKS

There have been many recent efforts to study CSI. Most of
the techniques pursued can be classified into optimization-based
and feature-based.

A. Optimization-Based Methods

To address the ill-posed inverse problem in CSI, conventional
approaches typically rely on hand-crafted priors, including spar-
sity [11], [18], total variation [15], and non-local similarity [22],
to accomplish the regularization of the reconstruction process.
The advent of deep learning has yielded significant advances
in the application of CSI. Deep unfolding networks [23], [24],
[25], [26], [27], [28], [29], [30], [31] combine the advantages
of model-based optimization and deep discriminative learning,
unroll the optimization algorithms utilized in compressive re-
construction, and employ diverse deep image denoising priors
to substitute manually designed priors. This yields a remark-
able level of flexibility in constructing compressive masks and
enhances the representational capacity of a wide array of hyper-
spectral images (HSIs). More recently, researchers have investi-
gated more efficient linear mapping algorithms to accelerate op-
timization [32], [33]. Additionally, some studies [25], [34] have
utilized self-attention transformer denoising modules to enhance
the reconstruction quality. Although unfolding networks provide
promising reconstructed results with clear interpretability, they
require a significant amount of data to be effectively trained.

B. Feature-Based Methods

Unlike optimization-based methods, feature-based methods
only focus on compressive reconstruction with specific com-
pressive masks, and reconstruct HSIs by analyzing the features
extracted from the measurements. In such methods, synthetically
obtained measurements serve as the input data, and the target
HSIs are treated as labels for training the reconstruction models
under the aforementioned masks. These network architectures
include but are not limited to fully connected networks [35], con-
volutional neural networks [36], [37], and generative adversarial
networks [38].

However, the small receptive fields of the convolutional
neural networks and fully connected networks used in these
methods lead to inherent limitations in capturing the non-local
self-similarity and long-range dependencies that are crucial for
HSI reconstruction. The emergence of Transform [39] brings
new perspectives to introduce non-local attention to the deep
networks. For example, MST [40] captures the long-range
inter-spectra dependencies by computing the self-attention in
the spectral domain. S2-Transformer [41] exploits the spatial-
spectral domain to model spatial dependencies. CST [42]
attempts to embed the HSI spatial sparsity nature into a
Transformer-based method. Despite yielding notable outcomes,

these approaches still rely on supervised training and entail
significant computational expenses due to the incorporation of
the Transformer model.

C. Self-Supervised Methods

Supervised networks require sufficient training data and time
and are usually application and domain-specific. Therefore,
effective unsupervised algorithms are still highly desired as
researchers are eager to apply CSI to unseen scenes. PnP-DIP-
HSI [43] develops a self-supervised framework by integrating
deep image prior (DIP) into an optimization procedure without
any training set. TV-FFDNET [44] proposes a general frame-
work that uses pretrained denoiser and total variation priors for
CSI reconstruction. LR2DP [45] integrates the low-rank prior
and deep image priors for SCI reconstruction, in order to exploit
the strong spectural correlation and deep spatial structure of HSI.
Furthermore, LRSDN [46] embeds data-driven low-rank sub-
space representations and data-driven attention networks within
an iterative optimization framework. More recently, another self-
supervised method [47] adopts an unrolling network with an en-
semble process to enhance the reconstruction quality. However,
the current self-supervised or unsupervised approaches lead to a
large number of parameters and excessive memory consumption
due to their explicit representation and may lack robustness
when handling high-dimensional data such as videos [48]. This
prompts us to seek other alternatives to effectively and efficiently
reconstruct HSI without a training set.

D. Positional-Encoding Representation

Traditional modeling approaches, like deep image priors,
often require extensive features and are susceptible to overfit-
ting with limited supervised data [49], [50]. The emergence
of coordinate-based MLPs offers a novel perspective, which
takes low-dimensional coordinates as input and outputs desired
representations at each position. Coordinate-based MLPs have
achieved state-of-the-art results across a variety of tasks such
as [51], [52], [53]. However, standard MLPs are poorly suited
for these low-dimensional coordinate-based vision and graphics
tasks. In particular, MLPs have difficulty learning high fre-
quency functions, a phenomenon referred to in the literature
as “spectral bias” [54], [55]. Recently, positional-encoding rep-
resentation methods have gained traction, particularly in 3D
vision tasks such as geometric reconstruction [56], [57] and
novel-view synthesis [58]. These methods represent signals as
parameterized functions of Fourier features, using a coordi-
nate vector p ∈ Rd, and reconstruct signals via a coordinate
network [48]. Unlike conventional encoding, these signals are
implicitly encoded within the network parameters, facilitating
efficient high-dimensional data representation [21]. However,
the potential of positional-encoding for spectral reconstruction
remains unexplored. This paper introduces a method that com-
bines positional-encoding and embedded clustering features for
precise CSI, leveraging the capability to represent and recon-
struct spectral images with fewer parameters. The approach of-
fers robustness and adaptability for diverse data and conditions,
making it valuable for real-world applications [55], [59].
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III. METHOD

A. Motivation

To make CSI applicable across multiple application domains
which may include previously unobserved phenomena and lim-
ited trained data, we focus on the reconstruction of HSI from a
single compressed image measurement using a compact neural
network architecture, which does not rely on any supervised
training data and hand-crafted priors. Our method is a self-
supervised method that uses positional-encoding representa-
tion and spectral clustering features. The combination of the
clustering features and positional-encoding representation can
form a complementary approach that constructs data in high
dimensions. In addition, it adopts a progressive training strategy
and introduces some uncertainty via clustering to avoid trapping
into local minima.

The previous modeling approaches, such as deep image pri-
ors, necessitates numerous features and parameters to represent
data, and are prone to overfitting when faced with inadequate
supervised training data. Although deep image priors can cap-
ture the intrinsic structure of an image, it may not effectively
recognize the spatial location information, particularly when
dealing with images that exhibit complex spatial variations. Due
to the ability to accurately represent various types of data, rep-
resentation methods based on positional-encoding have become
increasingly popular in recent years, especially in 3D vision
tasks like geometric reconstruction [49], [56], [57], [60], [61]
and novel-view synthesis [58], [62], [63]. This technique rep-
resents a specific signal as a parameterized function of Fourier
features, with an input consisting of a coordinate vector p ∈ Rd,
and reconstructs the desired signal via a coordinate network.
Unlike traditional encoding methods, the signals are implicitly
encoded in the coordinate network parameters, allowing for
efficient representation of high-dimensional data. The Multi-
layer perceptron (MLP) and 1× 1 Unet are commonly utilized
coordinate networks in this technique [48]. Before feeding into
the coordinate network, the coordinates p need to be mapped
to a higher dimensional space by positional encoding [11], [52],
which allows the network to learn the high-frequency component
of the desired signals, since simply taking coordinates as input
can lead to learning only the low-frequency part of the input
signal and exhibit global behavior [55], [59], [64], [65], [66].

To the best of our knowledge, no studies have explored the po-
tential of positional-encoding representation to spectral recon-
struction, which involves recovering spectral information from
compressive images of objects or scenes. However, positional-
encoding networks can be overly sensitive to high-frequency
noise, which adversely affects the quality of HSI reconstruction.
Therefore, we attempt to utilize the self-similarity of spectra
through clustering to perform denoising. Combining spectral
features with positional encoding vectors as high-dimensional
inputs to the reconstruction network enables the capture of a
broader range of data characteristics, enhancing the model’s gen-
eralization capability. This paper aims to adopt both positional-
encoding and embedded clustering features for accurate CSI,
building on the ability to accurately represent and reconstruct
spectral images with fewer parameters than traditional deep

models. Fourier feature mapping can represent complex rela-
tionships between input features and output images, allowing
for a more accurate reconstruction of spectral data by providing
the image structure prior. In addition, positional-encoding in
CSI can also lead to more robust and generalizable models,
able to handle a wider range of data and conditions. This can
be especially useful in real-world scenarios where conditions
may vary or data may be noisy. Inspired by the benefits of
positional-encoding, we encode a continuous function into the
parameters of the neural network to facilitate the reconstruction
of the target HSI.

In the following sections, we first introduce our proposed
architecture and progressive training strategy. Then we present
the two major modules in our method and the training details.
Lastly, we evaluate the effectiveness of our method through
simulations.

B. Progressive Training

As shown in Fig. 3, we propose a progressive deep neural net-
work training strategy that involves multiple iterations. Without
loss of generality, in the i-th iteration, we treat the reconstructed
HSI X̂(i−1) of the last iteration and the coordinate tensor Γ
as inputs and generate the HSI x̂(i) by using the proposed
network. The proposed framework consists of two modules,
which are as follows: (1) a spectral cluster-centroid denoising
module (SCCD) G that can be treated as a simple but efficient
non-local means denoising algorithm in spectral dimension and
uses pixel-level clustering and an efficient attention block to
capture long-distance relationships; (2) a compact multi-scale
aggregation (MSA) module F with pyramid structure blocks
are used to map the hybrid high-dimensional encoded tensor to
an HSI.

Note that the coordinate tensor is not input directly to the
MSA module, but rather mapped to a higher-dimensional space
through a position encoding before being fed into the network.
The network has the ability to incorporate the influence of po-
sitional information when learning in high-dimensional spaces,
thereby enhancing its capability to capture intricate details and
structural characteristics of the input space [67]. We utilize
frequency (sinusoidal) encoding for spatial coordinates and
map a coordinator p to a vector γ(p) ∈ R4L+2. The positional
encoding operation of a single coordinate, denoted by γ(·), is
defined as follows:

γ(p) =
(
p, sin (20πp), cos (20πp),

· · · sin (2L−1πp), cos (2L−1πp)
)
, (2)

where p = (u, v) denotes the normalized coordinate value lying
in [−1, 1], and L denotes the order of frequency of the vector.

To reconstruct the desired HSI x from the measured image
y, we generate an initial guess x̂(0) = ΦTy, and optimize the
x̂ iteratively. In order to ensure high reconstruction quality, we
couple the representation of the HSI after the SCCD module
G and the representation γ(p) after positional encoding in the
MSA module F , where p is the coordinate image. The trainable
parameters θ in the MSA module F and the parameters ω in the
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Fig. 3. Our progressive training with positional-encoding representation and embedded feature of spectral cluster-centroid for self-supervised learning. MSA
is fed with the positional encoded tensor of spatial coordinates and the output tensor of the denoising module SCCD as inputs and generates the intensity of
reconstructed HSI as output. The reconstruction x̂(i) serves as the input for the x+ 1 iteration of the SCCD module to obtain spectral centroid features G(i),
which are continuously optimized as training progresses, gradually increasing their contribution to the network.

SCCD module G are jointly optimized in the i-th iteration as:

arg min
θ,ω

∥∥∥y −ΦF
(
G(i−1),Γ; θ

)∥∥∥
1
,

s.t. Γ = γ(p), G(i−1) = G(x̂(i−1);ω), (3)

where Γ denotes the positional encoding tensors of coordinates,
and G(i−1) denotes the output tensors of modules the SCCD
of the i-th iteration. The goal of the objective function is to
minimize the reprojection error of the reconstructed HSI x̂(i) as
it can be obtained directly by:

x̂(i) = F
(
G(i−1),Γ; θ

)
. (4)

We will introduce the details of the two modules in the following
sections.

C. Spectral Cluster-Centroid Denoising Module

Non-local image denoising algorithms are widely acknowl-
edged as effective techniques for removing noise from images.
These algorithms operate on the principle that patches in an im-
age that is similar in structure also share similar noise character-
istics. In this study, we exploit the observation that HSI exhibits
a degree of self-similarity in their spectra and that this similarity
can be exploited to estimate the true underlying structure of the
image. Pixels with similar spectra can be grouped together by
clustering, allowing for specialized processing of each group of
similar pixels. This approach effectively enhances the denoising
performance. To this end, we propose the SCCD module that first
identifies similar spectra for each pixel and replaces the pixel’s
spectrum with the mean of these similar spectra. Following
this, a convolution modulation block is employed to further
reduce noise in the image and generate the denoised HSI G(i−1)

which is considered as the clustering feature representation of
the image.

Rather than calculating the similarity between every pair of
pixels, we utilize a clustering method directly on the HSI. Within
each cluster, we consider the similarity between pixels to be
1, while for the pixel pairs in different clusters, we assign a
similarity of 0. There are two key advantages to utilizing a
clustering method in this context. Firstly, the computational
complexity of clustering is significantly less than that of non-
local means, and it can be further improved through the use of

GPU computing [69]. Secondly, clustering can introduce more
uncertainty than deterministic non-local means, which can help
to avoid local minima and ensure robustness.

We denote the reshaped matrix of x ∈ Rhwn×1 as X ∈
Rhw×n, thus the spectrum of j-th pixel is denoted as Xj ∈
R1×n, where j = 1, 2, . . . , hw. In the i-th iteration, we apply
k-means algorithm to divide the set of estimated spectrum
{X̂(i−1)

j |j = 1, 2, . . . , hw} into k(i) clusters and calculate the

centroid for each cluster, where k(i) is the number of clusters
in the i-th iteration. Suppose X̄(i−1) ∈ Rhw×n is the matrix
constructed by using the spectrum of each cluster centroid, thus
X̄

(i−1)
j is the centroid spectrum of the cluster that X̂(i−1)

j belongs

to. Here the use of the centroid matrix X̄(i−1) to represent
the current reconstructed HSI matrix X̂(i−1) is based on the
observation that HSI images can often be reconstructed from a
few samples [70].

Note that k(i) is the cluster number that varies with the number
of iterations. We design a simple clustering number that grows
linearly with the number of iterations, as shown in:

k(i) =

{⌊
i
α

⌋
, mod (i, β) �= 0,

1, mod (i, β) = 0,
(5)

where α is an empirical parameter to adjust the growth rate of
the number of clusters, and �·� is the round-down operation. To
introduce more uncertainty into the reconstruction for avoiding
overfitting, we set the number of clusters to 1 every β iteration
to allow the network to escape from local optima. Note that at
the beginning of the reconstruction iterations, the number of
clusters is set to 0, and we use ΦTy as the initial reconstructed
HSI matrix X̂(0) in this case.

The design of this mechanism is mainly due to the fact that
during the initial stage of reconstruction, the spectral informa-
tion of each pixel is inaccurate and difficult to partition, whereas,
with the increasing number of the iterations, the reconstructed
spectrum becomes increasingly accurate and exhibits a clear
distribution of clusters.

Then we treat the centroid matrix X̄(i−1) as a tensor with
n channels and hw samples and feed it into a convolutional
modulation (CM) block [68] to capture long-range depen-
dencies. We denote the reshaped tensor of X̄(i−1) ∈ Rhw×n

as X̄ (i−1) ∈ Rh×w×n. The block simplifies the self-attention
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Algorithm 1: The progressive Self-Supervised Learning for
CSI.

Inputs: Mask Φ, measurement y, coordinates tensor Γ,
maximum iteration amount max_iter

Outputs: Reconstructed HSI x
Initialization: Random initialize θ and ω, x̂(0) = ΦTy,

x̄(0) = x̂(0), k(0) = 0
for i = 1, 2,..., max_iter do

if i ≥ 5000 then

k(i) =

{⌊
i
α

⌋
, mod (i, β) �= 0,

1, mod (i, β) = 0,

using k-means algorithm on x̂(i−1) with cluster
amount k(i) in module G

else
skip k-means and let x̄(i) = x̄(i−1) in module G

end if
θ, ω = argminθ,ω ‖y −ΦF(G(x̂(i−1);ω),Γ; θ)‖1
x̂(i) = F(G(x̂(i−1);ω),Γ; θ)

end for

mechanism [40] by modulating the value V ∈ Rh×w×c with the
convolutional attention feature A ∈ Rh×w×c obtained through
group convolution:

A = DConvk×k

(
W1X̄ (i−1)

)
,

V = W1X̄ (i−1),

G(i−1) = A�V, (6)

where DConvk×k denotes depthwise convolution with kernel
size k × k, and� denotes the Hadamard product. We use k = 11
in the convolutional modulation block. The CM block employs
convolution for building relationships, which is a more memory-
efficient alternative to self-attention architectures, particularly
when dealing with high-resolution images. Additionally, the
block is capable of adapting to input content through the use
of a modulation operation, in contrast to the fixed structure of
classic residual blocks. The CM block with trainable parameters
ω is for efficient spectral cluster-centroid denoising and maps the
centroid matrix X̄(i−1) to a tensor with c channels.

Finally, we combine G(i−1) and Γ to form the input of the
MSA as shown in (4). With the two branches of data flow, our
network ensures that only two pixels with similar spectra and
close spatial locations can have a close distance in the high-
dimensional space of the result.

D. Multi-Scale Aggregation Module for Reconstruction

The aggregation module aims to reconstruct the target HSI by
fusing the extracted features of the clustering centroids x̄(i−1)

and the positional encoding tensorΓ. Note that the purpose of the
module is equivalent to that of the MLPs in traditional implicit
neural networks [71].

The proposed method not only uses the positional encoding
vector of spatial coordinates (u, v) as input but also includes

the denoised result of the cluster-centroid for the current recon-
structed spectrum. This is for an adaptive fitting to train the net-
work F(·) in the high-dimensional space of “spatial-centroid”
with the image structural prior. Additionally, the uncertainty
of the clustering in each iteration can add a certain degree of
randomness to prevent the network from falling into a local
optimum.

The detailed architecture of the aggregation module is shown
in Fig. 4. Due to the fact that in traditional implicit neural net-
works, the positional-encoded tensor Γ is not processed through
convolution operations, but rather the encoding vector for each
coordinate is fed into an MLP to generate image intensities,
in the main structure of our aggregation module, we employ a
convolutional block consisting of 1× 1 convolutional layer with
instance normalization and GELU activation function to replace
the linear layers in the MLP equivalently. This is reasonable
since previous work has shown that 1× 1 U-Net architecture
with positional-encoding inputs is more appropriate to deal with
specific vision tasks such as image superresolution, than the
widely used MLP [48]. Another benefit of this approach is
the significant reduction in network parameters, enabling the
construction of a compact and efficient network.

Multi-scale Centroid Feature: Clustering errors may intro-
duce noise into the reconstruction, particularly during the early
iterations. To address this issue, we propose using multiscale
spectral cluster-centroid features. This is because noise levels
tend to be smoothed and reduced at smaller scales in the image.
Additionally, coupling features across multiple scales helps to
achieve higher noise impedance.

As shown in Fig. 4, we apply the features at four scales, where
each downsampled scale includes a pair of downsampling blocks
and upsampling blocks. Note that all the output feature maps of
the four scales share the same resolution. The first input channel
amount of the first block is 28, and it is subsequently mapped to
L× s after s-th block. The multiscale features are concatenated
with the feature maps produced by each 1× 1 convolutional
layer and then fed to the next 1× 1 convolutional layer. The
downsampling block at the s-th scale(s = 1, 2, 3) consists of a
3× 3 convolutional layer and a 2s × 2s max-pooling layer with
stride 2s, and the upsampling block at the s-th scale magnifies
the feature maps by 2s times using bilinear interpolation. In
addition, we add a CM block after the last convolutional block
for further improvement with long-range dependencies.

Noise Injection: The measurements of CSI are typically sub-
ject to imaging noise, which can significantly compromise the
quality of image reconstruction in the presence of overfitting. To
mitigate overfitting and improve the generalization capability of
our network, we adopt a noise injection method that introduces
noise to the feature maps before each 1× 1 convolution block as
a regularizer. Specifically, Gaussian noise is used for injection,
which is updated independently to produce slightly different
feature maps at each iteration. By causing the feature maps to
“jitter” in the feature space, the neural network is made less likely
to fit the measurements too closely. As a result, the performance
of the network during training exhibits a noisy trajectory, thereby
ensuring generalization capability to scenes with unknown noise
priors.
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Fig. 4. The architecture of Multi-scale Aggregation(MSA) module and spectral cluster-centroid denoising(SCCD) module. Note that we use a convolutional
modulation(CM) [68] block in both modules.

E. Training Details

We implement the proposed method by Pytorch and the
models are trained on one GTX 1060 GPU. In the i-th iteration,
the training objective is to minimize the Smooth Mean Absolute
Error Loss between the reconstructed measurement Φx̂(i) and
measurement y as shown in (3). Note that differing from the
deep image prior methods [43] where parameters are randomly
reset in each iteration, our network parameters are updated
based on the previous iteration, resulting in faster computational
efficiency. The models are trained with Adam optimizer, and the
learning rate is set to 5× 10−5. We observe thatL = 64 or larger
frequencies would increase the model parameter numbers with-
out significantly improving the reconstruction results, therefore
the frequency of positional encoding embedding L is set to 32 in
the whole training stage. In the SCCD,β is set to 4000 andα is set
to 3000. To ensure the accuracy of clustering, we use the spectral
centroid matrix obtained through the clustering algorithm until
5000 iterations. In the MSA module, the feature maps are added
with Gaussian noise (μ = 0 andσ2 = 0.1) before feeding to each
convolutional block. The detailed algorithm of the experiment
is presented as Algorithm 1.

IV. EXPERIMENTS

In this section, we compare our method with the SOTA
unsupervised and supervised CSI techniques and evaluate the
effectiveness of each proposed module via the ablation study.

A. Simulation HSI Reconstruction

We conduct simulations on KAIST [76] and CAVE [77].
The CAVE dataset comprises 32 hyperspectral images with
a spatial resolution of 512× 512, while the KAIST dataset
includes 30 hyperspectral images with a spatial resolution of
2704× 3376 . To evaluate the proposed method, we select ten
scenes from the KAIST HSI dataset as the test set. As in previous
works [27], [30], [33], [35], [37], [40], we obtain the HSIs by

interpolating at the 28 wavelengths ranging from 450 nm to
650 nm with 10 nm intervals. In simulations, the 3D HSIs are
cropped into patches with a spatial resolution of 256× 256. The
movement step size d in dispersion is set to 2. Therefore, the
size of the measurements in the test set is 256× 310. Table I
shows the comparison of our proposed methods with four SOTA
unsupervised HSI reconstruction algorithms (DIP-HSI [43],1

HQSCI [47],2 TV-FFDNET [44])3 and LRSDN [46] 4 on the
ten simulation scenes. In the LRSDN experiments, to ensure
fairness, we conducted two experiments: one strictly follows the
paper using GAP-TV [15] for initialization, and the other used
x̂(0) = ΦTy for initialization. As the source code for another
self-supervised method LR2DP [45] is unavailable, here we
do not include it in our comparisons. However, in Table II,
we present the reconstruction errors of our method on the five
images sourced from the CAVE dataset, for the purpose of
comparison with the reported results of LR2DP.

In this paper, all algorithms are tested with the same settings
as presented in [35], [43]. The PSNR and SSIM calculations
are consistent with [33], [40]. We also present the results of
spectral angle mapping (SAM) to evaluate the reconstructed
spectra of each method. Our method has clearly achieved the
optimal performance among various self-supervised methods in
terms of evaluation metrics.

The results of our method are also competitive with those of
supervised methods, and its image quality on PSNR and SSIM is
very close to that of the SOTA supervised methods MST++ and
BIRNET (see Fig. 1), even with much fewer trainable parameters
and lighter network structure. The comparative results with
supervised methods are shown in the Table III. Note that the
code and the SAM of DGSM-Swin [30] are not provided.

1https://github.com/mengziyi64/CASSI-Self-Supervised
2https://github.com/XinranQin/HQSCI
3https://github.com/ucker/SCI-TV-FFDNet
4https://github.com/ChenYong1993/LRSDN
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TABLE I
COMPARISONS OF RECONSTRUCTION QUALITY AND PARAMETER AMOUNT BETWEEN THE PROPOSED AND SOTA SELF-SUPERVISED ON TEN SIMULATION

SCENES(S1-S10)

Fig. 5. Reconstructed simulation HSI comparisons of Scene 2 with 4 out of 28 spectral channels. Three SOTA self-supervised methods and our method are
included. The spectral density plots (left-bottom) are corresponding to the selected white box of the reference image.

TABLE II
COMPARISONS OF RECONSTRUCTION QUALITY BETWEEN THE PROPOSED

AND LR2DP ON CAVE

We also give visual comparisons of the self-supervised meth-
ods. The simulated HSI reconstruction comparisons of Scene
2 with 3 (out of 28) spectral channels are shown in Fig. 5. As
observed in the reconstruction, our method demonstrates the best
visual performance on HSIs reconstruction, with fewer recon-
struction artifacts, clearer boundaries, and textures compared to
previous methods, particularly in reconstructing high-frequency

structural content and maintaining spectral consistency. Our
approach, which utilizes clustering features and positional-
encoding representation, exhibits significant advantages over
three methods that rely on the structure priors of CNN and
handcrafted priors.

B. Real HSI Reconstruction

We further evaluate the effectiveness of our method in real HSI
reconstruction. The dataset is collected by the real HSI system
designed in TSA-Net [35]. Each HSI has 28 spectral channels
with wavelengths ranging from 450 nm to 650 nm and has 54-
pixel dispersion in the column dimension. The measurement
used as input is at a spatial size of 660× 714. Similar to [33],
[35], we use the same real mask as [35] for HSIs reconstruction.
Fig. 6 shows the visual comparisons between our method and
three unsupervised SOTA methods. The reconstructed results of
HQSCI exhibit noise due to the presence of measurement noise,
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TABLE III
COMPARISONS OF RECONSTRUCTION QUALITY AND PARAMETER AMOUNT BETWEEN THE SOTA SUPERVISED METHODS AND THE PROPOSED SELF-SUPERVISED

METHOD ON TEN SIMULATION SCENES(S1-S10)

whereas the results obtained from DIP-HSI contain water-wave-
like artifacts. This is because DIP-HSI employs not only a deep
image prior but also a handcrafted total-variation regularization.
As shown in Figs. 6 and 7, our reconstructed results exhibit
smooth and natural appearance, while maintaining significantly
higher color fidelity compared to the three methods we compared
against.

C. Running Time

For real HSI reconstruction, it takes approximately one to two
hours, which is close to other self-supervised methods [43]. We
employ a compact network for the reconstruction task, with the
majority of running time in the clustering phase. Using deep
efficient clustering technique might accelerate the reconstruc-
tion [78], [79].

D. Ablation

To investigate the effectiveness of each module in the pro-
posed method, we first conduct simulations to compare our
method with the naive implicit neural representation (INR)
methods solely using positional encoding, and then give the
performance of the proposed method with and without the

attention block, SCCD module, multi-scale architecture, and
noise injection.

Comparison with naive INRs: A naive 2D approach for sorely
utilizing INR to reconstruct the desired HSI involves incor-
porating positional encoding into the 2D spatial coordinates
(u, v) and feeding the resulting encoded vector γ(u, v) into an
MLP to generate the spectrum for each spatial position within
the HSI. An alternative 3D approach is treating the spectrum
as a separate independent dimension and employing positional
encoded vectors of 3D spatial-spectral coordinates (u, v, λ) as
inputs to generate intensity values for each 3D position within
the HSI.

To quantify the improvements brought about by the coupled
features and training strategy, we implement the INR networks
that directly adopt 2D and 3D coordinate MLPs to represent
HSI and train with our loss function. In the 2D INR network,
the frequency of their positional encodingL is set to 64; while in
the 3D INR network, the frequency of their positional encoding
L is also set to 64 for each dimension. Consequently, the input
dimensions for the 2D and 3D INR networks are 4× L+ 2 =
258 and 6× L+ 3 = 387 respectively.

As shown in Table IV, the proposed method outperforms
the 2D and 3D INR by 4.63 dB and 5.53 dB in PSNR, even
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Fig. 6. The comparisons of the reconstructed HSI of the three SOTA self-supervised methods. The HSIs are reconstructed from the real measured images of
Scene 1. Here 5 out of 28 spectral channels are shown. The comparison of rendered RGB images of the three self-supervised methods is also given in the last
column. The spectral density plots (left-bottom) are corresponding to the selected white box of the reference image. The RGB images are rendered using CIE 1931
RGB color matching functions.

Fig. 7. The additional visual comparisons of the reconstructed HSI of the three SOTA self-supervised methods. Here 3 out of 28 spectral channels are shown.

TABLE IV
COMPARISON WITH NAIVE INRS

with fewer training parameters. Fig. 8 shows the visualized
comparisons of reconstruction results adopting 2D and 3D INR
on simulation scenes, respectively. While 2D and 3D imaging
techniques employ differing numbers of dimensions to represent
data, their reconstructed images often display significant arti-
facts and exhibit similarities. In contrast, our proposed method
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Fig. 8. Comparisons of reconstructed images of 3D and 2D naive INR methods
and ours on Scene 7 and 8 with 3 (out of 28) spectra. The spectral density plots
(left) are corresponding to the selected white box of the reference image.

TABLE V
COMPARISON OF VARIOUS CLUSTERING STRATEGIES

TABLE VI
ABLATION STUDY OF CM BLOCKS

is capable of producing resultant images with less noise and
greater fidelity.

Comparison of various clustering strategies: The proposed
method applies the clustering strategy as shown in Algorithm 1
to adjust the cluster amount in each iteration. To investigate the
influence of the used cluster amount in our model, we apply two
additional clustering strategies, including continuously increas-
ing the number of clusters without jitter to 1, as well as fixing it
to 20. Both two methods decrease the randomness of the model,
which may lead to getting trapped in local minima. As shown
in Table V, our method achieved optimal results, outperforming
others by 1.73 and 1.92 in PSNR, respectively.

With and without CM blocks: We compare the performance of
the network with and without the CM blocks. The utilization of
CM blocks, which enlarges the receptive field of the network and
takes into account spatial long-distance relationships, results in
significantly improved performance compared to methods that
do not incorporate them, with improvements of 2.17 dB and
0.031 in PSNR and SSIM (see Table VI), respectively. Fig. 9
shows the visualization of the feature maps with and without

Fig. 9. The feature visualization of the last CM block in MSA. The left column
shows the original reference image. The middle and right columns respectively
exhibit the feature maps with and without CM. Note that the feature maps are
obtained after 50,000 iterations.

TABLE VII
BREAK-DOWN ABLATION

TABLE VIII
THE ABLATION OF NOISE INJECTION

the CM blocks. In the case without CM block, we employ
a single convolutional layer with instance normalization and
GELU activation instead. Models that lack CM blocks generate
feature maps that are noisy, whereas models that incorporate CM
blocks produce feature maps with sharp edges and demonstrate
resistance to noise. Therefore, the effectiveness of CM blocks
in providing long-distance relationships within modules can be
verified.

Break-down Ablation: We conducted a breakdown ablation
analysis to investigate the impact of each component on per-
formance. The results of the reconstruction image quality are
presented in Table VII. The baseline model excludes the SCCD
module and only employs Γ as input. It can be considered
as an INR network followed by a CM block, but it does not
encompass multi-scale features. We also evaluated the method
without either the SCCD module or multi-scale architecture in
the aggregation module to assess the enhancements provided by
these two components. Our results indicate that both of these
components contribute to an improvement of nearly 2.5 dB in
PSNR, and the combination of the two components yields more
than a 5.4 dB improvement. To further illustrate the effectiveness
of the proposed approach, we provide a comparison of the
ground truth, the reconstructed HSIs of the proposed method,
and the method without the SCCD module, multi-scale features,
and positional encoding tensor Γ in Fig. 10. The complete
network shows the best image reconstruction quality among the
compared methods, which effectively verifies the advance of the
architecture in the CSI task.

Ablation of Noise Injection: To illustrate the effectiveness
of our noise injection, we present the quantitative results of
the reconstruction image quality in Table VIII and visualize
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Fig. 10. Simulation HSI reconstruction results of without SCCD, without MSA feature, without positional encoding tensor Γ and the complete network on Scene
8 with 2 (out of 28) spectra.

Fig. 11. The comparisons of using noise injection and no noise injection. Left: the simulated reconstructed HSIs of Scene 3 with 2 (out of 28) spectral channels.
Right: Comparison of loss function curves with the varying number of iterations.

the intermediate results during training with and without noise
injection. Noise injection can effectively alleviate overfitting and
bring about an improvement of nearly 1 dB in PSNR and 0.01
in SSIM since it introduces some uncertainty into the training.
Although the loss curve with noise injection appears higher
than the one without noise injection, its loss function value
remains consistently smoother. Fig. 11 displays the intermediate
results obtained at iterations 5,000, 28,000, and 70,000. Notably,
the implementation of noise injection techniques facilitates the
prompt acquisition of the correct image structure in comparison
to results obtained without noise injection.

Ablation of initial guess: To investigate how different ini-
tializations of x̂(0) influence its results, we examine the impact
of various initialization techniques on the performance through
a comparative analysis of three distinct initialization settings:
zero-filled, random, and ΦTy . Each of the strategies is recon-
structed for 100,000 iterations. The reconstruction using zero
initialization is mainly dominated by the positional-encoding
branch during the initial training phase, while multiscale cen-
troid features contribute less to the reconstruction. Random ini-
tialization introduces some randomness into the initial guess and
increases the likelihood of reconstruction. As shown in Table IX,

TABLE IX
THE ABLATION OF INITIAL

the proposed initialization achieves the most remarkable results,
surpassing the other two strategies by more than 2 dB in PSNR.

V. CONCLUSION

In this paper, we introduce an effective self-supervised
method for accurate single HSI reconstruction without training
data. Our approach uses a progressive learning framework to
aggregate hybrid features from implicit neural representation
and clustering-centroid, which can capture both spatial nonlo-
cal relationships underlying structure of HSI. Additionally, the
backbone network is further we augmented with noise injection
to enhance the robustness of the reconstruction. Through em-
pirical experiments, we have demonstrated the efficacy of our
proposed method by comparing it with SOTA self-supervised
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and supervised methods. The proposed method is a generic
framework with the potential to be applied in various domains,
such as medical image reconstruction and video compression
reconstruction.
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